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1. INTRODUCTION 
Differential Evolution (DE), proposed by [Storn and Price, 1995] is relatively a new 
optimization technique in comparison to Evolutionary Algorithms (EAs) such as Genetic 
Algorithms [Goldberg, 1989], Evolutionary Strategy [Back et al., 1991], and Evolutionary 
Programming [Fogel 1994 4].  Within a short span of around fifteen years, DE has 
emerged as one of the simple and efficient technique for solving global optimization 
problems. It has been successfully applied to diverse domains of science and engineering, 
such as mechanical engineering design [Rogalsky et al, 1999], [Joshi and Sanderson 
1999], signal processing [Das and Konar 2006], chemical engineering [Wang and Jang, 
2000], [Lampinen 1999], machine intelligence, and pattern recognition [Omran et al., 
2005], [Das et al., 2008] etc.  

Practical experience, however, shows that DE is not completely flawless. As pointed 
out by [Lampinen and Zelinka, 2000] DE may occasionally stop proceeding towards the 
global optimum even though the population has not converged to a local optimum or 
any other point. Occasionally, even new individuals may enter the population, but the 
algorithm does not progress by finding any better solutions. This situation is usually 
referred to as stagnation. DE also suffers from the problem of premature convergence, 
where the population converges to some local optima of a multimodal objective 
function, losing its diversity. The probability of stagnation depends on how many 
different potential trial solutions are available and also on their capability to enter into 
the population of the subsequent generations [Lampinen and Zelinka, 2000]. Further, 
like other evolutionary computing algorithms, the performance of DE deteriorates with 
the growth of the dimensionality of the search space as well. 

Several instances are available in literature which aims at improving the performance 
of DE. A brief review of some of the modifications suggested on the basic structure of 
DE is given in Section III. 

The modifications show that even a slight variation in the basic structure of DE helps a 
lot in improving its performance. Our objective in this study is to observe the combined 
effect of some of these variations. We have concentrated on three aspects of DE namely: 
initial population, mutation and DE structure which is based on two populations; current 
population and advance population. 

(i) Generation of initial population is a crucial task in a population based search 
technique. In case no a priori information about the solution is available, random 
initialization is the most popular method of generating the initial population. Maaranen et 
al. [Maaranen et al., 2004] introduced quasi random sequences for population initialization 
in Genetic Algorithms. Their results showed that though there is an improvement in the 
quality of solution, there is no noticeable change in the convergence rate while using 
quasi random numbers to generate the initial population. Moreover, from the 
programming point of view, the generation of quasi random numbers is quite difficult.  
An interesting method to generate the initial population was suggested by [Rahnamayan 
et al., 2008], where they used opposition based learning (OBL) [Tizhoosh, 2005] to 
generate the initial population. This method not only improves the quality of solution but 
also it helps in faster convergence. Further, it is very easy to program. The basic idea 
behind OBL is the simultaneous consideration of an estimate and its corresponding 
opposite estimate to achieve a better approximation for the current candidate solution. 
Mathematically, it has been proven in [Rahnamayan et al., 2008] that the opposite 
numbers are more likely to be closer to the optimal solution than purely random ones. We 
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have considered ODE [Rahnamayan et al., 2008], in which this scheme is used, as one of 
the parent algorithm. 

(ii) The second aspect which is the focus of this study is mutation. It is the most 
important operator of DE. The mutation operation utilizes the vector differences between 
the current population members for determining both the degree and direction of 
perturbation applied to the individual subject of this operation. Besides the basic mutation 
schemes of DE some other variants of mutation are also available in literature (please see 
Section III). In the present study we have considered a tournament best process [Kaelo 
and Ali, 2006] to select the base vector for the process of mutation. The corresponding 
DERL algorithm [Kaelo and Ali, 2006] is taken as the second parent algorithm. The 
rationale of using tournament best process is to prevent the search from becoming a 
purely random search or a purely greedy search. 

(iii) The third aspect is the general structure of DE which maintains two populations; 
current population and an advance population. In the present study we have considered a 
single population structure of DE [Babu and Angira, 2006, Thompson, 2004]. For the 
purpose of comparison we have used the algorithm given in [18] as a parent algorithm for 
MDE. In [Babu and Angira, 2006], the algorithm is named as MDE. In order to avoid 
confusion we shall refer to it as MDE1 in the present study. 

We can say that MDE is motivated by the law of synergy which states that a combined 
effort is always better than the individualistic effort.  

As already mentioned there are several modified versions of DE available in literature. 
The idea of the present study is to build a DE framework which is simple to understand 
and easy to apply, therefore we selected three simple but efficient modifications which 
have reportedly given good performance over the other contemporary optimization 
algorithms.  

Here we would like to mention that a preliminary version of this work has already been 
presented in a conference [Ali et al., 2009]. However, in the present study we present its 
elaborated version. Here we provide a comprehensive set of experimental verifications of 
the proposed MDE. Specifically, we have investigated the convergence speed and 
robustness, effect of dimensionality and population size, effect of jumping on the 
proposed MDE and its comparison with other algorithms. The numerical experiments are 
conducted on a comprehensive set of 25 standard benchmark problems, 7 nontraditional 
shifted functions and three real life problems. 

In order to investigate the effect of fusion, the proposed MDE is compared with DE 
and with its parent algorithms ODE, DERL and MDE1. We have discussed the 
improvements made by the parent algorithms over DE, individually and the improvement 
made when they are fused together in MDE.  

Further, MDE compared with some of the other latest modifications of DE namely 
jDE, JADE and SaDE. The comparison of algorithms is done using the standard 
performance measures like error, number of function evaluations (NFE) etc. The 
performance of the algorithms is also analyzed statistically using various tests like 
Wilcoxon test, Bonferrani Dunn test etc.  

The remainder of the paper is structured as follows. Section II describes the basic 
Differential Evolution. In Section III we give a brief review of the work done in the past 
to improve the performance of basic DE. In Section IV we explain the proposed MDE 
algorithm. Performance metrics and experimental settings are given in Section V. 
Problems used in the present study are listed in Section VI. Section VII provides results 
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and discussions for MDE, DE, ODE, DERL and MDE1. A brief description of other state 
of the art algorithms (jDE, JADE and SaDE) used in the present study and their 
comparison with MDE is given in Section VIII. Finally the conclusions based on the 
present study are drawn in Section IX.      

2. A BRIEF INTRODUCTION TO DIFFERENTIAL EVOLUTION  
Like all other population based search algorithms, DE starts with a population S of NP 

candidate solutions: Xi,G, i = 1, . . . ,NP, where the index i denotes the ith individual of the 
population and G denotes the generation to which the population belongs. The three main 
operators of DE are mutation, crossover and selection which may be defined as follows: 

Mutation: Once the initialization is complete, DE enters the mutation phase. In this 
phase a donor vector is created corresponding to each member or target vector Xi,G in the 
current generation. The method of creating donor vector differentiates one DE scheme 
from another. The most often used mutation strategies implemented in the DE codes are 
listed below. 
DE/rand/1: )(* ,,,, 321 GrGrGrGi XXFXV !+=          

DE/rand/2: )(*)(* ,,,,,, 54321 GrGrGrGrGrGi XXFXXFXV !+!+=  
DE/best/1: )(* ,,,, 21 GrGrGbestGi XXFXV !+=                   

DE/best/2: )(*)(* ,,,,,, 4321 GrGrGrGrGbestGi XXFXXFXV !+!+=  
DE/rand-to-best/1: )(*)(* ,,,,,, 4321 GrGrGrGbestGrGi XXFXXFXV !+!+=                   

The indices r1, r2, r3, r4 and r5 are mutually exclusive integers randomly chosen from 
the range [1, NP] and all are different from the base index i. these indices are randomly 
generated once for each vector. The scaling factor F is a positive control parameter and is 
used for scaling the difference vectors. Xbest,G is the individual having the best fitness 
function value in the population at generation G.  

Frequently referred strategies implemented in the public-domain DE codes for 
producing the donor vectors are also available online at:  
http://www.icsi.berkeley.edu/~storn/code.html. 

 Crossover: once the donor vector is generated in the mutation phase, the crossover 
phase of DE is activated. The crossover operation of DE helps in increasing the potential 
diversity of the DE population. The DE family of algorithms may use two types of 
crossover schemes; exponential (exp) and binomial (bin). During the crossover operation, 
the donor vector exchanges its components with the target vector Xi,G to form a trial 
vector Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1) . In the present study we shall follow the binomial 
scheme. According to this scheme, the trial vectors are generated as follows: 
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Where, j = 1. . . n, k ! {1, . . . , n} is a random parameter’s index, chosen once for each i. 
Cr is a positive control parameter set by the user. 

A general DE scheme may be defined as DE/X/Y/Z, where DE denotes the Differential 
Evolution algorithm; X represents a string denoting the vector to be perturbed; Y 
indicates the number of difference vectors considered for perturbation of X and Z stands 
for the type of crossover being used.  
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Throughout the present study we shall follow DE/rand/1/bin version of DE which is 
perhaps the most frequently used version and shall refer to it as basic version.  

Selection: The final phase of the DE algorithm is that of selection, which determines 
whether the target or the trial vector generated in the mutation and crossover phases will 
survive to the next generation. The population for the next generation is selected from the 
individual in current population and its corresponding trial vector according to the 
following rule: 
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Thus, each individual of the advance (trial) population is compared with its counterpart 
in the current population. The one with the lower objective function value will survive 
from the tournament selection to the population of the next generation. As a result, all the 
individuals of the next generation are as good as or better than their counterparts in the 
current generation. In DE trial vector is not compared against all the individuals in the 
current generation, but only against its counterpart in the current generation. 

The computational steps of basic DE are as follows: 
Step 1: Randomly generate a population set S of NP vectors, each of dimension n as 

follows: xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j), where xmin,j and xmax,j are lower and 
upper bounds for   jth component respectively, rand(0,1) is a uniform random 
number between 0 and 1. 

Step 2:  Calculate the objective function value f(Xi) for all Xi. 
Step 3: Select three points from population and generate perturbed individual Vi using 

equation (1). 
Step 4: Recombine each of the target vector Xi with perturbed individual generated in 

step 3 to generate a trial vector Ui using equation (2). 
Step 5: Check whether each variable of the trial vector is within the specified range. If 

yes, then go to step 6 otherwise bring it within range using ui,j =2* xmin,j - ui,j ,if 
ui,j < xmin,j and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j, and go to step 6. 

Step6:  Calculate the objective function value for trial vector    Ui. 
Step 7: Choose better of the two (function value at target and trial point) using equation 

(3) for next generation. 
Step 8: Check whether convergence criterion is met if yes then stop; otherwise go to step 

3. 

3. A BRIEF REVIEW OF PREVIOUS WORK   
Several attempts have been made to improve the ultimate performance of DE. These 

variations may broadly be classified as (1) investigating optimum choice of DE control 
parameters (2)its hybridization with other search techniques (3) development/ 
modification in the mutation/ crossover/ selection operators of DE and (4)other 
variations. In this section we give a brief review of some of the modifications suggested 
in the structure of DE. 

DE has three main control parameters namely population size, crossover rate Cr and 
scaling factor F. A number of investigations have been carried out to determine the 
optimum settings of these parameters. Storn and Price [1] indicated that a reasonable 
population size could be between 5n and 10n, where n denotes the dimensionality of the 
problem. They also recommended that a good initial choice of F can be 0.5. Gamperle et 
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al. in [Gamperle et al., 2002] suggested that the population size should be between 3n and 
8n, scaling factor F should be 0.6 and the crossover rate Cr should be in the range of [0.3, 
0.9] for best results. [Ronkkonen et al., 2005] suggested using F values between [0.4, 
0.95] with F=0.9 being a good initial choice. They further pointed out that the Cr values 
should lie in [0, 0.2] when the function is separable while it should lie in [0.9, 1] when 
the function’s parameters are dependent.  However, a drawback in their analysis is that in 
case of real life problems, it is very difficult to examine in advance the true nature of the 
function. Thus we can see that there is no concrete proof/ discussion available in 
literature for the selection of parameters. The researchers rely either on fine-tuning of 
parameters for a particular problem or consider self-adaptation techniques to avoid 
manual tuning of the parameters of DE. Liu and Lampinen introduced Fuzzy Adaptive 
Differential Evolution (FADE) [Liu and Lampinen, 2005] using fuzzy logic controllers, 
Qin et al. proposed a Self-adaptive DE (SaDE) [Qin et al., 2009] algorithm. In this 
algorithm, the trial vector generation strategies and their associated parameters are 
gradually self-adapted by learning from their previous experiences of generating 
promising solutions. [Zaharie 2003] proposed a parameter adaptation strategy for DE 
(ADE) based on the idea of controlling the population diversity, and implemented a 
multi-population approach. Later, [Zaharie and Petcu, 2004] designed an adaptive Pareto 
DE algorithm for multi-objective optimization and analyzed its parallel implementation. 
[Abbass, 2002] self-adapted the crossover rate Cr for multi-objective optimization 
problems, by encoding the value of Cr into each individual and simultaneously evolving 
it with other search variables. The scaling factor F was generated for each variable from a 
Gaussian distribution N (0, 1). [Omran et al., 2005] proposed an algorithm called SDE in 
which they introduced a self-adaptive scaling factor parameter F and generated the value 
of Cr for each individual from a normal distribution N (0.5, 0.15). Recently, [Brest et al., 
2007] proposed jDE algorithm using adaptive F and Cr. Although, most of the self 
adaptive versions of DE, involve adaption of Cr and F, work has also been done on the 
adaption of the population size. [Teng et al., 2009] proposed DE with Self Adapting 
Populations for DE in DESAP.  

Other class of modification in DE involves its hybridization with some other 
techniques. [Yang et al., 2008] proposed hybridization of DE with Neighborhood Search 
(NS) and called their algorithm, NSDE. In this algorithm mutation is performed by 
adding a normally distributed random value to each target-vector component. Later, 
[Yang et al., 2008] used Self-adaptive NSDE in the cooperative coevolution framework 
for optimizing large scale non-separable problems (up to 1000 dimensions). [Hendtlass, 
2001] hybridized DE with Particle Swarm Optimization (PSO). He used the DE 
perturbation approach to adapt particle positions. Particles’ positions are updated only if 
their offspring have better fitness.  
At the specified intervals, the swarm serves as the population for DE algorithm, and the 
DE is executed for a number of generations. After execution of DE, the evolved 
population is further optimized using PSO. [Zhang and Xie, 2003] and [Talbi and 
Batchoue, 2004] used the DE operator to provide mutations in PSO. [Kannan et al., 2004] 
applied DE to each particle of the swarm for a number of iterations, and replaced the 
particle with the best individual obtained from the DE process. [Omran et al., 2008] 
proposed a hybrid version of Bare Bones PSO and DE called BBDE. In their approach, 
they combined the concept of barebones PSO with self adaptive DE strategies. [Zhang et 
al., 2009] proposed a DE-PSO algorithm in which a random moving strategy is proposed 
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to enhance the algorithm’s exploration abilities and modified DE operators are used to 
enhance each particle’s local tuning ability. [Wu and Gu, 2009] proposed Particle Swarm 
Optimization with prior crossover differential evolution (PSOPDE). [Caponio et al., 
2009] proposed a hybridization of DE with three metaheuristics viz. PSO and two local 
search methods. A Free Search DE (FSDE) was proposed by [Omran and Engelbrecht, 
2009]. In their algorithm they hybridized DE with a newly developed ‘Free Search 
Algorithm’ and Opposition Based Learning. Hybridization of Nelder Mead algorithm 
with DE for solving constrained optimization problems was suggested in [Andriana and 
Coello Coello 2009]. 

Besides optimum choice for parameters and hybridization of DE, some other 
modifications in DE include development of new mutation schemes. [Fan and Lampinen, 
2003] proposed a Trigonometric Mutation Operator (TMO). In TMO, the donor to be 
perturbed is taken to be the centre point of the hypergeometric triangle. Parent Centric 
and Laplace Mutation were suggested by [Pant et al. 2009] and [Pant et al. 2009] 
respectively. The parent centric mutation operator is inspired by the PCX operator given 
by Deb et al. in [Deb, 2005], while in Laplace mutation the scaling factor F was replaced 
by a random number following Laplace distribution and an absolute weighted difference 
between the vectors was used. [Pant et al. 2009] suggested a mixed strategy DE (MSDE) 
in which two mutation strategies were used in a competitive game environment. More 
recently a new mutation operator based on wavelet theory was suggested by [Lai et al., 
2009]. A crossover based local search method for DE was proposed in [Noman and Iba 
2008, 2009].  

Some other interesting modifications in DE include the use of opposition based 
learning (OBL) for generating the initial population by [Rahnamayan et al. 2008]. 
[Rahnamayan and Wang, 2008] also applied it for solving large scale optimization 
problems. [Yang et al. 2009] developed an adaptive coevolutionary DE. They applied 
their algorithm, called JACC-G, for solving large scale global optimization problems. 
[Brest et al., 2009] performed dynamic optimization using DE, [Ting and Huang, 2009] 
varied the number of difference vectors in DE, [Epitropakis et al. 2009] suggested 
evolutionary adaption of the control parameters of differential evolution. [Tasgetiren et 
al. 2009] included of variable parameter search in DE. Some variants and applications of 
DE can also be found in [Montgomery, 2009], [Wang et al., 2009], [Peng et al., 2009], 
[Chakraborty, 2008]. 

4. STRATEGIES USED IN THE PROPOSED MDE ALGORITHM 
In this section we describe the strategies / concepts used in the proposed MDE 

algorithm which are: opposition based initial population, random localization and one 
population DE framework. To make the proposed algorithm self explanatory, first we 
will describe the three schemes briefly.   

A. Opposition based initial population 
It is based on the concept of opposite numbers. We can say that if ! ! !!! !! is a real 

number, then its opposite number x’ is defined as  
                 ! ! ! ! ! ! ! !                                                      (4) 
This definition can be extended for higher dimensions also as suggested in [14]. If 
! ! !!!! !!!! ! !!! is a point in n-dimensional space, where !!! !!!! ! !! ! ! and!!! !
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!! ! !! !!!! ! !!!!! ! ! , then the opposite point                  ! ! ! !!!! ! !!! !! ! !!! ! is 
completely defined by its components 
                ! !! ! !! ! !! ! !!                                                (5)  
Now, by employing the opposite point definition, the opposition- based initial population 
can be generated in three simple steps: 

• Generate a point ! ! !!!! !!!! ! !!! and its opposite         ! ! ! !!!! ! !!! !! ! !!! ! 
in an n-dimensional search space (i.e., a candidate solution).  

• Evaluate the fitness of both points f (X) and f(X’) 
• If ! ! ! ! !!!! (for minimization problem), then replace X with X’; otherwise, 

continue with X.  
Thus, we see that the point and its opposite point are evaluated simultaneously in order to 
continue with the fitter one. 

B. Randomized Localization 
According to this rule, three distinct points Xr1, Xr2 and Xr3 are selected randomly from 

the population corresponding to target point Xi. A tournament is then held among the 
three points and the region around the best point is explored. That is to say if Xr1 is the 
point having the best fitness function value then the region around it is searched with the 
hope of getting a better solution. For the sake of convenience we will denote the 
tournament best point as (say) Xtb. Assuming that Xtb = Xr1, the mutation equation (1) 
becomes: 

!!!!!! ! !!"!! ! !!!!!!!! ! !!!!!! 
This variation gradually transforms itself into search intensification feature for rapid 

convergence when the points in S form a cluster around the global minima.  
 In order to see the effect of tournament best method for mutation, we shall first discus 
in brief two common strategies of DE; DE/best/1/bin and DE/rand/1/bin. In DE/best/1/bin 
the base vector is always selected as the one having the best fitness function value. We 
can see that here the probability of selecting the best vector as the base vector is always 1. 
This strategy may provide a fast convergence in the initial stages. However, as the search 
procedure progresses it may lead to the loss of diversity in the population due to its 
greedy nature resulting in premature convergence. On the other hand, the strategy 
DE/rand/1/bin is completely random in nature. Here all the points for mutation are 
randomly selected and the best point of the point of the population may or may not be 
included in them. This strategy, due to its random nature helps in preserving the diversity 
but may lead to a slower convergence. Now, if we look at the tournament best method we 
see that although the three points for mutation are randomly selected, the base vector is 
always chosen as the one having the best fitness. This makes it neither purely greedy nor 
purely random in nature, but provides a localized effect which helps in exploring the 
different regions of the search space around the potential candidates.  

Making use of hypergeometric distribution, we can say that the probability of getting 
the best vector among the three chosen points for mutation is !

! ! !"!!
!!! ! !"

! , where 
M is the number of best points in the population. Initially, it is very much likely that there 
is one best point but as the evaluation process proceeds the number of best points keeps 
on increasing.  

In case of strategy, DE/rand/1/bin the probability that the best point of the population 
is among the three chosen points for mutation is !

! ! !"!!
!!! ! !"

!  and the probability 
that the best point is also selected as the base vector is !! !

!
! ! !"!!

!!! ! !"
!  When 
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we apply the tournament best strategy the probability selecting the best point from the 
three chosen will be 1. Thus the probability that the selected base vector is the best 
solution of the population becomes ! ! !

! ! !"!!
!!! ! !"

! .  
Thus we see that the probability of selecting the best point of the population as base 

vector, for tournament best strategy lies between the probabilities of DE/rand/1/bin and 
DE/best/1/bin. 
 !! !

!
! ! !"!!

!!! ! !"
! ! !

! ! !"!!
!!! ! !"

! ! !. This helps in maintaining the 
exploration and exploitation capabilities of the proposed MDE ensuring fast convergence 
and balanced diversity.    

C. Concept of single population  
It was suggested in [Babu and Angira, 2006, Thompson, 2004]. They have discussed in 

their work that in the basic structure of DE, two populations (current and advance) are 
considered simultaneously in all the iterations which results in the consumption of extra 
memory and CPU time leading to higher number of function evaluations. On the other 
hand in a single population DE, only one population is maintained and the individuals are 
updated as and when a better solution is found. Also, the newly found better solutions can 
take part in mutation and crossover operation in the current generation itself as opposed 
to basic DE (where another population is maintained and the better solutions take part in 
mutation and crossover operations in next generation). Updating the single population 
continuously enhances the convergence speed leading to lesser number of function 
evaluations as compared to basic DE.  

  
Based on the above modifications we will now discuss the computational steps of 

MDE which are same as that of basic DE given in Section II and differ from it only in the 
following steps: 
1. initialization  
2. mutation  
3. populations structure 

A point to point comparison of working two algorithms DE and MDE is given in Table 
I.    

5. PERFORMANCE METRICES AND EXPERIMENTAL SETUP 
In order to authenticate the viability of the proposed MDE algorithm we conducted a 

series of experiments following various criteria to test its efficiency, robustness and 
reliability. These criteria have been widely used to analyze the performance of an 
algorithm.  

 
Performance Metrics I 

• Number of function evaluations (NFE) 
• Average error = known global optimum – value to reach VTR (desired 

accuracy) 
• Percentage Acceleration rate (AR) = ratio of the NFE of the algorithm to be 

compared and the NFE of the algorithm to which we want to compare 
[Rahnamayan et al., 2008]. Thus the %AR of MDE in comparison to DE will 
be: 
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%AR = ! ! !!"#!!"#
!!"#!!" ! !"" 

• Average AR = !! !"!!
!!!  

• Success rate (SR) = !"!!!!"!!"#$%!!"#!!"#$%&'(!"#$%!!"!!"!!"#$%&  

• Average SR = !! !"!!
!!!  

Where N denotes the number of problems. 
 
Performance Metrics II 

The proposed algorithm is also analyzed statistically using various tests like Wilcoxon 
test, Friedmann test and Bonferrani Dunn test etc [Garcia et al., 2009]. Using these tests, 
we performed multiple-problem analysis, a comparison of algorithms over more than one 
problem simultaneously. In the multiple-problem analysis, due to the dissimilarities in the 
results obtained and the small size of the sample to be analyzed, a parametric test (paired 
t-test) may reach erroneous conclusions so we have analyzed the results by both, 
parametric and non parametric tests. 

All the tests used here obtain the associated p-value, which represents the dissimilarity 
of the sample of results. Hence, a low p-value points out a critical difference. In this 
study, we have considered a level of significance ! = 0.05 and 0.1. A p-value greater than 
! indicates that there is no significant difference between the algorithms.  
 
Experimental Settings – after conducting several experiments and referring to various 
literatures, we took the following settings for all the experiments unless otherwise 
mentioned. 

• Population Size (NP) = 100 for traditional benchmark problems and 500 for 
nontraditional problems [Zhang and Sanderson, 2009], [Rahnamayan and Wang, 
2008]. 

• Scaling/ amplitude Factor F = 0.5 [Rahnamayan et al., 2008]. 
• Crossover Rate Cr = 0.9 [Rahnamayan et al., 2008]. 
• Maximum NFE = 10000*n, where n is the dimension of the problem [Noman 

and Iba, 2008]. 
• VTR = 10-8 for all the test problems except noisy function (f7) for which it is set 

as 10-2 [Zhang and Sanderson, 2009]. 
Software used for statistical analysis – we used the following softwares for analyzing the 
proposed algorithm. 

• SPSS  
• MATLAB 

PC configuration – All the algorithms have been executed on dual core processor with 
1GB RAM. The programming language used is DEV C++. The random numbers are 
generated using inbuilt rand () function with same seed for every algorithm. 

In order to have a fair comparison for all the experiments, the parameter settings are 
kept same and the reported values are the average of the results of 50 independent runs. 

6. PROBLEMS USED IN THE PRESENT STUDY 
In the present study we used three types of problems given below in order to 

investigate the effectiveness of the proposed MDE algorithm.  
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A. Traditional Benchmark problems  
 First of all we scrutinized the performance of the proposed MDE on a test suite of 

twenty five standard benchmark problems taken from [Rahnamayan, 2008], [Zhang and 
Sanderson, 2009], with varying degrees of complexities and having box constraints. The 
test set includes fixed, lower dimension problems as well as scalable problems for which 
the dimension can be increased to increase the complexity of the problem. The problem 
set though small act as a good launch pad to investigate the effectiveness of an 
optimization algorithm. Mathematical models of the functions along with the true 
optimum value are given in Table II (A). 

B. Real life problems 
 The effectiveness of an algorithm can be justified, if it is able to solve the real life 
problems with equal ease with which it solved the test problems. Therefore, besides 
considering the benchmark functions we have also taken three real life application 
problems which are; transistor modeling problem, frequency modulation sound parameter 
identification problem and spread spectrum radar poly- phase code design problem from 
[Price, 1983] and [Das et al, 2009]. Mathematical model of real life problems are given 
below. 
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TABLE I 

 POINT WISE COMPARISON OF WORKING OF MDE AND DE ALGORITHMS 
Operation  DE MDE 

Initialization Construct an initial population 
S of NP individuals, dimension 
of each vector being n, using 
the following rule:  
xi,j= xmin,j + rand(0, 1)(xmax,j-
xmin,j), 
 Where xmin,j and xmax,j are lower 
and upper bound for jth 
component respectively and 
rand(0,1) is a uniform random 
number between 0 and 1. 

Randomly construct a population P 
of NP individuals, dimension of 
each vector being n, using the 
following rule:  
xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j), 
 Where xmin,j and xmax,j are lower 
and upper bound for jth component 
respectively and rand(0,1) is a 
uniform random number between 0 
and 1. 
Construct another population OP 
of NP individuals using the 
following rule: 

!!!! ! !!"#!! ! !!"#!! ! !!!! 
Where pi,j are the points of 
population P. 
Construct initial population S 
taking NP best individuals from 
union of P and OP. 

Mutation Select randomly three distinct 
individuals Xr1, Xr2 and Xr3 from 
population S and perform 
mutation using formula: 
!! ! !!" ! !!!!!! ! !!!! 

Where individual Xr1 is 
randomly chosen (i.e. it may be 
any one from the three 
individuals). 

Select randomly three distinct 
individuals Xr1, Xr2 and Xr3 from 
population S and perform mutation 
using formula: 

!! ! !!" ! !!!!!! ! !!!! 
Where individual Xtb (=Xr1) is the 
individual having the best fitness 
value among the three individuals. 

Crossover: Perform crossover according to 
equation (2). 

Perform crossover according to 
equation (2). 

Selection Perform selection of candidates 
for the next generation using 
equation (3). 

Perform selection of candidates for 
the next generation using equation 
(3). 

Structure Maintains two populations; 
operations performed in current 
population and data stored in 
advance population. 

All DE operations are performed 
on a Single population. 
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TABLE II (A) 
NUMERICAL BENCHMARK FUNCTIONS WITH A VARYING NUMBER OF DIMENSIONS (n). 
FUNCTIONS SINE AND COSINE TAKE ARGUMENTS IN RADIANS. THE MATRIX A USED IN 

FUNCTION f14, THE VECTORS a AND b USED IN f15 AND THE MATRIX a AND VECTOR c USED IN 
f21 – f23 ARE DEFINED IN THE APPENDIX.  fmin DENOTES THE MINIMUM VALUE OF THE 

FUNCTION. 
Test functions n Range fmin 

!! ! ! !!!
!

!!!
 30 [-100,100] 0 

!! ! ! !! ! !!
!

!!!

!

!!!
 30 [-10,10] 0 

!! ! ! !!
!

!!!

!!

!!!
 30 [-100,100] 0 

!! ! ! !"#! !! ! ! ! ! ! !  30 [-100,100] 0 

!! ! ! !""!!!!! ! !!!!! ! !!! ! !!!
!!!

!!!
 30 [-30,30] 0 

!! ! ! ! !! ! !!! !!
!

!!!
 30 [-100,100] 0 

!! ! ! !!!! ! !"#$%& !!!
!

!!!
 30 [-128,128] 0 

!! ! ! !!!!"# !!
!

!!!
 30 [-500,500] -12569.5 

!! ! ! !!! ! !" !"# !!!! ! !"
!

!!!
 30 [-5.12, 5.12] 0 

!!" ! !!"!"# !!!! !
! !!!

!

!!!
! !"# !

! !"#!!!!
!

!!!

! !" ! ! 

30 [-32, 32] 0 

!!! !
!

!""" !!! ! !"# !!
!

!

!!!

!

!!!
! ! 30 [-600,600] 0 

!!" !
!
! !"!"#! !!! ! !! ! ! ! !

!!!

!!!

! !"!"#! !!!!! ! !! ! ! !

! ! !! ! !"!!""!! !
!

!!!
 

!! ! ! ! !! !!! ! !! 

! !! ! !! !!! !
! !" ! ! ! ! !! ! !
!!!! ! !! ! !!

!!!!! ! !!! ! !! ! !!
 

30 [-50, 50] 0 
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!!" ! !!! !"#! !!!!

! !! ! ! ! ! ! !"#! !!!!!!
!!!

!!!

! !! ! ! !! ! !"#! !!!!

! !!!! ! !! !""!!!
!

!!!
 

30 [-50,50] 0 

!!" !
!
!"" !

!
! ! !! ! !!"

!!
!!!

!"

!

!!

 2 [-65.536, 
65.536] 0.998004 

!!" ! !! !
!! !!! ! !!!!
!!! ! !!!! ! !!

!!!

!!!
 4 [-5,5] 0.0003075 

!!" ! !!!! ! !!!!!! !
!
! !!

! ! !!!! ! !!!! ! !!!! 2 [-5,5] -
1.0316285 

!!" ! !! !
!!!
!!! !!

! ! !
! !! ! !

!
! !" ! ! !

!! !"#!!
! !" 

2 [-
5,10]x[0,15] 0.397887 

!!" ! ! ! !! ! !! ! ! ! !" ! !"!! ! !!!! ! !"!!
! !!!!! ! !!!!
! !" ! !!! ! !!! ! !" ! !"!!
! !"!!! ! !"!! ! !"!!!! ! !"!!!  

2 [-2,2] 3 

!!" ! ! !!!"# ! !!" !! ! !!"
!!

!!!

!

!!!
 3 [0,1] -3.86278 

!!" ! ! !!!"# ! !!" !! ! !!"
!!

!!!

!

!!!
 6 [0,10] -3.32237 

!!" ! ! ! ! !! ! ! !! ! ! !! !!
!

!!!
 4 [0,10] -10.1532 

!!! ! ! ! ! !! ! ! !! ! ! !! !!
!

!!!
 4 [0,10] -10.4029 

!!" ! ! ! ! !! ! ! !! ! ! !! !!
!"

!!!
 4 [0,10] -10.5364 

!!" ! !!! ! !!!!"!
!

!!!

!!

!!!
! !!!!"!

!

!!!

!

 30 [-5, 10] 0 

!!" ! ! !"# !! !"#!!!!!!"# ! !! ! ! ! ! !! ! ! !  2 [-10, 10] -1 
 
 
Frequency modulation sound parameter identification. [Das et al., 2009] 

Frequency-modulated (FM) sound synthesis plays an important role in several modern 
music systems. Here we consider a system that can automatically generate sounds similar 
to the target sounds. It consists of an FM synthesizer, a DE optimizer, and a feature 
extractor. The DE algorithm initializes a set of parameters and the FM synthesizer 
generates the corresponding sounds. In the feature extraction step, the dissimilarities of 
features between the target sound and synthesized sound are used to compute the fitness 
value. The process continues until synthesized sounds become very similar to the target. 
The specific instance considered in this paper involves determination of six real 
parameters X = {a1, w1, a2, w2, a3, w3} of the FM sound wave given by 

( )( )( )1 1 2 2 3 3( ) sin sin siny t a w t a w t a w t! ! != " " " + " " " + " " "  for approximating it to 
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the sound wave given as
( )( )( )0 ( ) 1.0 sin 5.0 1.5 sin 4.8 2.0 sin 4.9y t t t t! ! != " " " + " " " + " " "

where!! ! !!!"". The parameters are defined in the range     [-6.4, 6.35]. The fitness 
function is defined as minimizing the sum of square error between the evolved data and 
the model data as follows: 
 ( ) ( )

100
2

1 1 2 2 3 3 0
0

, , , , , ( ) ( )
t

f a w a w a w y t y t
=

= !"
 

It is a highly complex multimodal problem with a strong interrelation among the 
variables. The optimum value of the problem is zero. 
 
The spread spectrum radar poly- phase code design problem. [Das et al., 2009] 

A famous problem of optimal design arises in the field of spread spectrum radar poly-
phase codes. Such a problem is very well suited for validating a global optimization 
algorithm like DE. A formal definition of the problem can be given as:                                        

1 2min ( ) max{ ( ),..., ( )}mf X f X f X=  
Where 

 1{( ,..., ) |0 2 , 1,..., }n
n jX x x R x j n!= " # # =   

and m=2n-1, 

With        
2 1

|2 1| 1

( ) cos , 1,2,...,
jn

i k
j i k i j

f X x i n!
= = ! ! +

" #
= =$ %

& '
( (

 

2
1 |2 1| 1

( ) .5 cos , 1,2,..., 1
jn

i k
j i k i j

f X x i n
= + = ! ! +

" #
= + = !$ %

& '
( (

 
( ) ( ), 1,2,...,m i if X f X i m+ = ! =  

Here the objective is to minimize the module of the biggest among the samples of the so-
called autocorrelation function which is related to the complex envelope of the 
compressed radar pulse at the optimal receiver output, while the variables represent 
symmetrized phase differences.  

The objective function of this problem for the dimension n=2 is illustrated in Fig. 1. 
The problem belongs to the class of continuous min–max global optimization problems. 
They are characterized by the fact that the objective function is piecewise smooth. 
 
Transistor Modeling [Price, 1983] 

The mathematical model of the transistor design is given by, 

Minimize !
=

++=
4

1

222 )()(
k

kkxf "#$  

Where 3
7315321 10({exp[)1( !"!!= xggxxxx kkk# 245

3
85 }1)]10 xggxg kkk +!"! !  

3
73216421 10({exp[)1( !"!!!= xgggxxxx kkkk# kkk gxgxg 415

3
94 }1)]10 +!"+ ! . 

4231 xxxx !="  

Subject to: 0!ix and the numerical constants ikg  are given by the matrix. 
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!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

4823.2113884.1348467.1115132.28
267.191461.111779.1013037.23
2153.209274.220677.102095.5
455.1703.0254.1369.0
982.0869.0752.0485.0

 

This objective function provides a least-sum-of-squares approach to the solution of a 
set of nine simultaneous nonlinear equations, which arise in the context of transistor 
modeling.

 

 
Figure 1: Objective function of spread spectrum radar poly- phase code design problem for n=2. 

 

C. Nontraditional Benchmark Problems of CEC 2008 
We validated the efficiency of proposed MDE on a selected set of recently proposed 
benchmark test suite for CEC 2008 special session and competition on large scale global 
optimization [Tang et al., 2007]. This test suite was specially designed to test the 
efficiency and robustness of a global optimization algorithm like DE. We considered 
seven problems from this test suite and tested them for dimension 500. It includes the two 
unimodal (F1 and F2) and five multimodal (F3- F7) functions among which four are non-
separable (F2, F3, F5, F7) and three separable (F1, F4, F6). Name of the functions and their 
properties are listed in Table II (B).   

 
TABLE II (B) 

SELECTED BENCHMARK PROBLEMS PROPOSED IN CEC2008 [65]. ALL PROBLEMS ARE EXECUTED FOR 
DIMENSION 500. 

Fun Name Properties Search Space 
F1 Shifted Sphere Unimodal, Separable , scalable [!100, 100] 
F2 Shifted Schwefel’s  2.21 Unimodal, Non-separable [!100, 100] 

F3 Shifted Rosenbrock’s Multi-modal, Non-separable. A narrow valley 
 from local optimum to global optimum. [!100, 100] 
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F4 Shifted Rastrigin’s Multi-modal, Separable Huge number of local  
optima [!5, 5] 

F5 Shifted Griewank’s Multi-modal, Non-separable [!600, 600] 
F6 Shifted Ackley’s Multi-modal, Separable [!32, 32] 
F7 FastFractal DoubleDip Multi-modal, Non-separable [-1, 1] 

7. RESULTS AND DISCUSSIONS 
A. Comparison of MDE and its parent algorithms with DE 

 The proposed MDE algorithm is a fusion of three other algorithms MDE1, ODE and 
DERL. Therefore first of all we compared the performance of all these algorithms with 
the basic DE in terms of the various performance criteria mentioned in the previous 
section. In Table III (A) we have recorded the performance of all the four algorithms in 
terms of error and standard deviation. From this table we can see that out of 25 test cases 
MDE outperformed the other three algorithms in 10 cases in terms of both error and 
standard deviation. In 13 cases all the algorithms gave similar results while in the 
remaining two cases MDE1 and DERL gave the best performance.  
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TABLE III (A) 

COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD 
BENCHMARK PROBLEMS IN TERMS OF ERROR AND STANDARD DEVIATION (Std.). THE BEST 

RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. EACH ALGORITHM IS RUN FOR 
MAXIMUM NFE = 10000*n, n is DIMENSION OF THE PROBLEM 

 
 

Fun n Error  (Std.) 
DE MDE MDE1 ODE DERL 

f1 30 5.24848e-32 
(2.50302e-32) 

1.77622e-76 
6.41905e-78 

3.43423e-48 
8.43943e-50 

6.34393e-41 
2.40300e-43 

3.15789e-63 
8.92424e-65 

f2 30 
7.64876e-16 

(5.96538e-16) 
9.76428e-38 
6.74634e-38 

4.23421e-25 
3.45932e-26 

3.44593e-21 
3.49532e-25 

2.10125e-31 
7.48388e-34 

f3 30 
1.77664e-30 

(1.04434e-30) 
1.07703e-75 
4.44153e-77 

3.45543e-38 
1.38309e-40 

7.43932e-34 
4.30094e-35 

1.56214e-62 
3.40335e-60 

f4 30 
2.57862e-04 

(1.51977e-07) 
1.22089e-09 
6.95936e-09 

9.23275e-04 
2.48839e-05 

4.49593e-04 
6.43490e-04 

6.54522e-04 
5.30902e-04 

f5 30 
1.74229e-01 

(1.43011e+00) 
1.14867e-25 
1.52704e-26 

2.34439e-02 
1.24943e+00 

7.32341e-01 
1.82344e+01 

4.13605e-14 
8.49383e-17 

f6 30 
0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

f7 30 7.08548e-03 
(6.67423e-03) 

1.91822e-03 
2.51635e-03 

3.43094e-03 
3.40023e-03 

5.39234e-03 
4.30893e-03 

3.32073e-03 
3.49588e-03 

f8 30 6.81866e+01 
7.72931e+01 

2.02660e+00 
1.18452e+01 

1.34393e-02 
1.29922e+01 

1.10366e+01 
1.39020e+01 

1.42086e+02 
1.44324e+01 

f9 30 1.49594e+02 
1.70130e+02 

4.92040e+01 
1.49244e+01 

1.30031e+02 
2.30439e+01 

1.13584e+02 
3.00283e+02 

1.24723e+02 
9.43885e+01 

f10 30 3.69735e-15 
0 

3.69735e-15 
0 

3.69735e-15 
0 

3.69735e-15 
0 

3.69735e-15 
0 

f11 30 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

f12 30 1.35360e-19 
0 

1.35360e-31 
0 

4.49594e-21 
0 

1.04493e-19 
0 

3.54594e-23 
0 

f13 30 1.29115e-19 
0 

1.29115e-29 
0 

3.45943e-20 
0 

1.03113e-19 
0 

5.43222e-22 
0 

f14 2 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

f15 4 0 
4.84870e-20 

0 
3.57137e-20 

0 
4.59043e-20 

0 
4.59043e-20 

0 
4.59043e-20 

f16 2 0 
2.22045e-16 

0 
2.22045e-16 

0 
2.22045e-16 

0 
2.22045e-16 

0 
2.22045e-16 

f17 2 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

f18 2 0 
4.44089e-16 

0 
4.44089e-16 

0 
4.44089e-16 

0 
4.44089e-16 

0 
4.44089e-16 

f19 3 3.00012e-06 
4.44089e-16 

3.00012e-06 
4.44089e-16 

3.00011e-06 
4.44089e-16 

3.00011e-06 
4.44089e-16 

3.00011e-06 
4.44089e-16 

f20 6 4.75550e-02 
5.82455e-02 

3.56650e-02 
5.44837e-02 

3.75550e-02 
5.44837e-02 

3.8675e-02 
5.44837e-02 

3.2675e-02 
5.44837e-02 

f21 4 0 
1.58882e-15 

0 
1.58882e-15 

0 
1.58882e-15 

0 
1.58882e-15 

0 
1.58882e-15 

f22 4 0 
1.48621e-15 

0 
1.68520e-15 

0 
1.68520e-15 

0 
1.68520e-15 

0 
1.68520e-15 

f23 4 0 
1.77636e-15 

0 
1.77636e-15 

0 
1.77636e-15 

0 
1.77636e-15 

0 
1.77636e-15 

f24 30 1.95165e-32 
2.06563e-32 

1.47748e-76 
5.93376e-77 

5.32332e-42 
8.34993e-43 

3.32494e-38 
7.39920e-41 

1.12489e-64 
5.94992e-67 

f25 2 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 
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However, on the basis of the number of function evaluations (NFE) taken by all the 
algorithms for which the results are given in Table III(B) we see that MDE gave a 
superior performance in comparison to other algorithms in 24 out of 25 cases. DE, ODE 
and MDE1 were not able to solve the fifth function f5, while none of the algorithms were 
able to reach the desired accuracy of 10-8 for the function f9 and were therefore terminated 
when the maximum NFE (= 10*n) was reached. On an average the NFE taken by the 
proposed MDE algorithm for solving 25 problems is only 40318.7. While the average 
NFE taken by DE, ODE, DERL and MDE1 are 74840.4, 72770.1, 44803.7 and 70861.6 
respectively. The performance graphs of few selected functions are illustrated in Figure 2. 
These graphs are drawn according to the fixed accuracy and not according to fixed NFE. 

The faster convergence rate of the proposed MDE is also justified with the help of the 
acceleration rate (AR). We calculated the %AR of MDE, ODE, DERL and MDE1 against 
DE and recorded the results in Table III(C). From this Table we can clearly see that for 
11 test problems the % AR of MDE in comparison to DE is more than 50%. For 7 test 
problems the % AR is more than 40% and for 4 test problems it is more than 30%. In 
case of f9, AR is not recorded because none of the algorithms were able to meet the 
desired accuracy criteria. In case of f5, AR is not recorded because DE was not able to 
solve it successfully. On an average the AR of MDE vs. DE is 46.12%. When we 
compare ODE against DE we see that the % AR is less than 10% for all the test problems 
with ODE performing worse than DE for 4 test cases. On an average the AR for ODE vs. 
DE is 1.15%. The performance of DERL is closest to the performance of MDE with 
DERL giving % AR of more than 45% in 9 test cases and more than 50% in 1 case. In 9 
cases DERL gave an AR of more than 30% and in 4 cases the % AR is more than 20%. 
In case of MDE1 and DE, the %AR of MDE1 is less than 10% for 10 test cases, while in 
2 cases the performance of MDE1 is worse than DE. For 10 cases the % AR for MDE1 is 
more than 20%.  

The successful performance of all the algorithms is summarized in Table III (D). Here 
we see that on an average, the success rate of the proposed MDE algorithm is 94%, while 
for DE, ODE, DERL and MDE1, the average success rate is 88, 88, 90 and 87 % 
respectively. DE and ODE were not able to reach the desired accuracy for function f5 and 
none of the algorithm was able to meet the desired accuracy criteria for function f9.  

 
TABLE III (B) 

COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD 
BENCHMARK PROBLEMS IN TERMS OF NFE. THE BEST RESULTS OBTAINED ARE HIGHLIGHTED 

IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02. 
MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM. ‘- -’ 

REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY. 
Ave. REPRESENTS AVERAGE 

Fun n 
NFE 

DE MDE ODE DERL MDE1 
f1 30 104310 45980 101040 56700 94700 
f2 30 173850 77830 165570 93890 160240 
f3 30 110700 48600 102400 59700 101400 
f4 30 274150 258886 263140 245250 297600 
f5 30 -- 190600 -- 257100 -- 
f6 30 31890 14850 30030 17080 28770 
f7 30 131640 70680 130680 80660 137370 
f8 30 226850 101067 222033 108800 210986 
f9 30 -- -- -- -- -- 
f10 30 163020 72800 162310 87430 149200 
f11 30 108930 48077 106300 58430 99600 
f12 30 95400 43340 94460 50910 85600 
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f13 30 104310 46680 104060 55110 91100 
f14 2 5220 3330 5260 3640 5360 
f15 4 11220 6050 11800 7780 9750 
f16 2 5720 3330 5690 4020 4810 
f17 2 6930 4790 7050 4970 6750 
f18 2 4470 2850 4460 3200 3930 
f19 3 5010 2870 4950 3410 4390 
f20 6 14400 7050 13560 8825 13100 
f21 4 11990 6640 11920 7570 10350 
f22 4 11290 6220 11260 7430 9380 
f23 4 11330 6190 11090 7440 10090 
f24 30 104540 46580 100300 55050 91500 
f25 2 4160 2640 4350 3190 3840 

Ave  74840.4 40318.7 72770.1 44803.7 70861.6 
 

TABLE III (C) 
COMPARISON OF PROPOSED MDE, MDE1, ODE AND DERL FOR 25 STANDARD BENCHMARK 

PROBLEMS AGAINST DE IN TERMS OF AR. THE BEST RESULTS OBTAINED ARE HIGHLIGHTED 
IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02. 

MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM. ‘- -‘ IN f5 
AND f9 INDICATES THAT AR CANNOT BE CALCULATED FOR THEM. Ave. REPRESENTS 

AVERAGE 

Fun n 
Acceleration Rate (AR) 

MDE vs. DE ODE vs. DE DERL vs. DE MDE1 vs. DE 
f1 30 55.92 3.13 45.64 9.21 
f2 30 55.24 4.76 45.99 7.83 
f3 30 56.1 7.50 46.07 8.40 
f4 30 5.57 4.01 10.54 -8.55 
f5 30 -- -- -- -- 
f6 30 53.44 5.83 46.44 9.78 
f7 30 46.31 0.73 38.73 -4.35 
f8 30 55.45 2.12 52.04 6.99 
f9 30 -- -- -- -- 
f10 30 55.35 0.44 46.37 8.48 
f11 30 55.87 2.41 46.36 8.57 
f12 30 54.58 0.99 46.64 10.27 
f13 30 55.25 0.24 47.17 12.66 
f14 2 36.21 -0.77 30.27 -2.68 
f15 4 46.08 -5.17 30.66 13.10 
f16 2 41.79 0.52 29.72 15.91 
f17 2 30.89 -1.73 28.28 2.60 
f18 2 36.25 0.22 28.41 12.08 
f19 3 42.72 1.20 31.94 12.38 
f20 6 51.05 5.83 38.72 9.03 
f21 4 44.63 0.58 36.86 13.68 
f22 4 44.91 0.27 34.19 16.92 
f23 4 45.37 2.12 34.33 10.94 
f24 30 55.45 4.06 47.34 12.47 
f25 2 36.54 -4.57 23.31 7.69 
Ave  46.12 1.51 37.65 8.41 

 
Analysis of results – Although on the basis of error and standard deviation no concrete 
conclusion can be drawn on the performance of the proposed MDE algorithm but if we 
look at other performance criteria we can clearly observe the efficient performance of 
MDE. The improvement in NFE taken by ODE, MDE1 and DERL in comparison to DE 
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is 2.8%, 5.3% and 40.1% respectively, whereas for MDE this improvement is 46.1% 
justifying the effect of synergy. A similar trend can be observed in terms of % AR and 
SR. On an average the % AR for MDE is 46.12% while for ODE, DERL and MDE1 it is 
1.5, 37.65 and 8.5% respectively in comparison to DE. Further MDE emerges as the most 
successful algorithm with an average SR of 94%. 

 
TABLE III (D) 

 COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD 
BENCHMARK PROBLEMS IN TERMS OF SR.THE BEST RESULTS OBTAINED ARE HIGHLIGHTED 

IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02. 
MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM. 

AVERAGE SR IS RECORDED IN THE LAST ROW.  
Fun n Success Rate (SR) 

  DE MDE ODE DERL MDE1 
f1 30 1 1 1 1 1 
f2 30 1 1 1 1 1 
f3 30 1 1 1 1 1 
f4 30 0.36 0.75 0.52 0.44 0.52 
f5 30 0 1 0 1 0 
f6 30 1 1 1 1 1 
f7 30 1 1 1 1 1 
f8 30 0.9 0.88 0.88 0.72 0.76 
f9 30 0 0 0 0 0 
f10 30 1 1 1 1 1 
f11 30 1 1 1 1 1 
f12 30 1 1 1 1 1 
f13 30 1 1 1 1 1 
f14 2 1 1 1 1 1 
f15 4 1 1 1 1 1 
f16 2 1 1 1 1 1 
f17 2 1 1 1 1 1 
f18 2 1 1 1 1 1 
f19 3 1 1 1 1 1 
f20 6 0.84 0.78 0.62 0.44 0.48 
f21 4 1 1 1 1 1 
f22 4 1 1 1 1 1 
f23 4 1 1 1 1 1 
f24 30 1 1 1 1 1 
f25 2 1 1 1 1 1 
Ave  0.88 0.94 0.88 0.90 0.87 

 
TABLE III (E) 

 RESULTS OF FRIEDMAN TEST BASED ON ERROR 
N Friedman value df p-value 
25 30.384 4 <0.001 
df – Degrees of Freedom N - Total No of functions 
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TABLE III (F) 
RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD) CALCULATED 

THROUGH BONNFERRONI-DUNN’S PROCEDURE 
Algorithm Mean Rank 

DE 3.82 
MDE 2.18 
MDE1 3.00 
ODE 3.32 

DERL 2.68 
CD for " = 0 .05 1.11714 
CD for " = 0.10 1.002206 

 
TABLE III (G)  

RESULTS OF PAIRWISE COMPARISON BASED ON ERROR 
MDE 
Vs. 

paired t-test Wilcoxon test 
Stat p-value +ve -ve tie Stat p-value 

DE -1.419 0.196 12 0 13 -2.803 0.005 
MDE1 -0.974 0.340 11 2 12 -1.852 0.044 
ODE -1.147 0.263 12 1 12 -2.691 0.007 
DERL -1.279 0.181 11 2 12 -1.852 0.064 

 
 

TABLE III (H) 
RESULTS OF FRIEDMAN TEST BASED ON NFE   

N Friedman value df p-value 
25 85.849 4 <0.001 
df – Degrees of Freedom N - Total No of functions 

 
TABLE III (I) 

RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD) CALCULATED 
THROUGH BONNFERRONI-DUNN’S PROCEDURE 

Algorithm Mean Rank 
DE 4.60 

MDE 1.12 
MDE1 4.00 
ODE 3.28 

DERL 2.00 
CD for " = 0 .05 1.11714 
CD for " = 0.10 1.002206 

 
TABLE III (J)  

RESULTS OF PAIRWISE COMPARISON BASED OF NFE 
MDE 
Vs. 

paired t-test Wilcoxon test 
Stat p-value +ve -ve tie Stat p-value 

DE -4.584 0.000 24 0 1 -4.286 0.000 
MDE1 -4.581 0.000 24 0 1 -4.286 0.000 
ODE -4.472 0.000 24 0 1 -4.286 0.000 
DERL -2.438 0.023 23 1 1 -3.686 0.002 

B. Statistical Analysis  
Error values included in Table III (A) allow us to carry out a rigorous statistical study in 

order to check whether the results of the algorithms are rather significant for considering 
them different in terms of quality on approximation of continuous functions. Our study 
will be focused on the algorithm that had the lowest average error rate in the comparison, 
MDE. We studied the behaviour of this algorithm with respect to the remaining ones, and 
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determined if the results it offered are better than the ones offered by the rest of 
algorithms, computing the p-value on each comparison. Table III (E) shows the result of 
applying Friedman’s tests in order to see whether there are global differences in the 
results. Given that the p-value of Friedman test is lower than the level of significance 
considered ! = 0.05, there are significant differences among the observed results. 
Attending to these results, a post-hoc statistical analysis is done to detect concrete 
differences among algorithms. First of all, we employed Bonferroni-Dunn’s test to detect 
significant differences for the control algorithm MDE. Table III (F) summarizes the 
ranking obtained by Friedman’s test and the critical difference (CD) of Bonferroni-
Dunn’s procedure. In Figure 3(a), Bonferroni-Dunn’s graphic illustrates difference 
among rankings obtained for each algorithm. In this, we draw a horizontal cut line which 
represents the threshold for the best performing algorithm, the one with the lowest 
ranking bar, in order to consider it better than other algorithms. A cut line is drawn for 
each level of significance considered in the study at height equal to the sum of the 
ranking of the control algorithm and the corresponding Critical Difference computed by 
the Bonferroni-Dunn method. The bars which exceed this line are associated to an 
algorithm with worse performance than the control algorithm. The application of 
Bonferroni-Dunn’s test informs us of the following significant differences with MDE as 
control algorithm: 

• MDE is better than DE and ODE with ! = 0.05 and ! = 0.10 (2/4 algorithms). 
Until now, we used procedures for performing multiple comparisons in order to check 

the behaviour of the algorithms. We then compared MDE with the rest of the algorithms 
pair wise using Wilcoxon and paired t-test. The corresponding results are given in Table 
III (G). It displays the statistics, p-value and number of +ve ranks (where control 
algorithm performed better than comparing algorithm), -ve ranks (where control 
algorithm performed worse than comparing algorithm) and tie (both algorithms 
performed equivalently). 

From this Table we see that in case of DE, for 12 problems MDE performed better 
than it, while for 13 cases both the algorithms performed similarly. In case of MDE1, for 
11 test cases MDE performed better than it while for 2 cases MDE1 performed better 
than MDE. In the remaining two cases both algorithms performed equivalently. MDE 
outperformed ODE in 12 cases and ODE outperformed MDE in 1 case. In the remaining 
12 cases both algorithms gave a similar performance. MDE performed better than DERL 
in 11 cases, in 12 cases there was a tie i.e. both algorithms performed equivalently while 
in 2 cases DERL outperformed MDE. In an interesting observation we see that according 
to t-test there is no significant difference between MDE and other algorithms but 
according to Wilcoxon test we see that although there is no difference between MDE and 
DERL, but there is a significant difference between MDE and other algorithms.  

Following the procedure given above we did a similar analysis for NFE given in Table 
III (B). The statistical results based on it are summarized in Tables III (H)-III (J). From 
these Tables and from the graphical illustration given in Figure 3(b), we see that in an 
overall comparison MDE and DERL are at par with each other while the remaining 
algorithms perform worse than MDE. However, when we perform a pair wise 
comparison for which the results are given in Table III (J), we see that there is a 
significant difference between MDE and other algorithms. 

The performance of MDE and other algorithms in terms of NFE is also shown with the 
help of box-plot given in Figure 3(c). 
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Analysis of results – on the basis of error once again we cannot make a concrete 
judgment about the performance of MDE. But if we observe NFE we can see that MDE 
performs better than other algorithms. 

C. Influence of dimensionality 
In order to investigate the effect of dimensionality on the performance the proposed 

MDE algortihm we considered the scalable problems and varied their dimension as n/2 
(=15) and 2n (=60). The corresponassociatedding results in terms of average NFE and 
Success Rate are reported in Table IV.  For problems of dimension 15, MDE 
outperfromed DE by a significant difference for all the functions except f9, for which 
neither of the algorithms were able to reach the desired accuracy and were therefore 
terminated when the maximum NFE was reached. The average NFE taken by DE for 15 
dimensions problem is 61315 which is almost twice the average NFE taken by MDE 
which is 30588.75. further the average success rate for DE is 0.80 only whereas for MDE 
the average success rate is 0.90. 

When we increased the dimension to 60, the performance of DE further deteriorated in 
comparison to MDE. DE was not able to solve problems f4 and f5 for dimension 60 under 
the given parameter settings. Once again neither of the algorithms were able to solve 
function f9. The average NFE taken by DE comes out to be 259429.1 while the NFE 
taken by MDE comes out to be 162934.5, which is half the NFE taken by DE. The 
average success rate of DE and MDE are 0.74 and 0.83 respectively. 

Analyisis of results – for smaller dimension (15) as well as for larger dimension (60) we see 
that in terms of NFE, MDE shows an improvement of around 50% for problems of dimension 
both 15 and 60. The SR of MDE is 10% better than the SR of DE for problems of dimension 
15 and is 9% better than DE for problems of dimension 60.  

D. Influence of varying the population size (NP)  
In order to observe the effect of varying population size on the proposed MDE 

algortihm, we considered two different population sizes NP/2 (=50) and 2NP (=200) and 
recorded the NFE and SR for DE and MDE algorithms. The corresponding results are 
given in Table V. For NP=100, the average NFE for DE and MDE was 74840.43 and 
40318.7 respectively, which reduced to 29008.14 and 16580.91 respectively when the 
population size was reduced to NP=50. However the success rate also reduced from 0.88 
to 0.85 for DE and from 0.94 to 0.86 for MDE. Likewise when we increased the 
population size to 200, the success rate incresed to 0.90 and 0.95 at the cost of higher 
NFE, which shot up to 174273.3 (for DE) and 101195.3 (for MDE). 

Anaysis of Results – for smaller population size (NP=50) both DE and MDE 
performed reasonably well in terms of NFE with MDE being almost 50% faster than DE. 
However the success rate deteriorated by 3% and 8% for DE and MDE repsectively in 
comparison to the success rate for population size 100. For larger population (NP=200), 
the SR improve by 2% and 1% respectively for DE and MDE at the cost of more than 
50% increase in NFE for both DE and MDE. This is an expected outcome as most of the 
population based search techniques are sensitive to the population size. This also shows 
that NP=100 is quite effecient for solving problems up to dimension 30. 
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(j) 
Figure 2 Sample graphs (best solution versus NFE) for performance comparison between DE and MDE. (a) – (j) 

represents functions f1, f2, f3, f4, f7, f10, f11, f12, f13, and f24 
 

!.!!,/!!"
#.!!,/!)"
$.!!,/!)"
%.!!,/!)"
&.!!,/!)"
'.!!,/!)"
(.!!,/!)"
).!!,/!)"
*.!!,/!)"
0.!!,/!)"
#.!!,/!*"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s 

No of function evaluations 

+,"

-+,"



Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms 
 

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: **** 

 
Figure 3(a) Bonferroni-Dunn’s graphic corresponding to the error 

 
Figure 3(b) Bonferroni-Dunn’s graphic corresponding to NFE 
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Figure 3(c) Box-plot corresponding to the average NFE 
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TABLE IV 
INFLUENCE OF DIMENSIONALITY – COMPARISON OF MDE WITH DE IN TERMS OF NFE AND SR 
FOR SCALABLE PROBLEMS. THE DIMENSIONS ARE TAKEN AS n/2(=15) AND 2n (=60). THE BEST 
RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. WHEN NO RESULT IS HIGHLIGHTED IT 

INDICATES THAT ALL THE ALGORITHMS HAVE SAME RESULTS. ACCURACY IS SET AS 10-08 
FOR ALL FUNCTION EXCEPT NOISY f7 FUNCTION WHERE IT IS 10-02. MAXIMUM NFE IS SET AS 
10000*n. Ave REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT 

ABLE TO ACHIEVE THE DESIRED ACCURACY. 

Fun 
NFE Success Rate (SR) 

n=15 n=60 n=15 n=60 
DE MDE DE MDE DE MDE DE MDE 

f1 49050 23250 192400 85800 1 1 1 1 
f2 80440 39350 305120 134890 1 1 1 1 
f3 52900 24100 215700 96800 1 1 1 1 
f4 123210 60400 -- 528000 0.65 1 0 0.52 
f5 -- 62550 -- 546000 0 1 0 0.87 
f6 14310 7040 57000 26990 1 1 1 1 
f7 43740 29580 451600 432000 1 1 1 1 
f8 57960 40155 594000 516000 0.92 0.95 0.9 0.71 
f9 -- -- -- -- 0 0 0 0 
f10 77990 37750 288800 125900 1 1 1 1 
f11 98700 39200 184600 85500 0.57 0.65 0.47 0.5 
f12 44640 21450 165000 90400 1 1 1 1 
f13 47460 23240 191400 102000 1 1 1 1 
f24 45380 21550 208100 96000 1 1 1 1 

Ave 61315 30588.75 259429.1 162934.5 0.80 0.90 0.74 0.83 
 

TABLE V 
INFLUENCE OF VARYING POPULATION SIZES – COMPARISON OF MDE WITH DE IN TERMS OF 
NFE AND SR FOR ALL THE 25 PROBLEMS. THE POPUALTION SIZES ARE TAKEN AS NP/2 (=50) 

AND 2NP (=200). THE BEST RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. ACCURACY 
IS SET AS 10-08 FOR ALL FUNCTION f7 WHERE IT IS 10-02. MAXIMUM NFE IS SET AS 1000000. Ave. 

REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO 
ACHIEVE THE DESIRED ACCURACY 

 
Fun n 

NFE Success Rate (SR) 

NP=50 NP=200 NP =50 NP =200 
DE MDE DE MDE DE MDE DE MDE 

f1 30 40310 19770 286200 128800 1 1 1 1 
f2 30 61460 29170 397000 223940 1 1 1 1 
f3 30 42350 21445 352000 138000 1 1 1 1 
f4 30 -- -- 897000 447920 0 0 0.65 0.89 
f5 30 -- 363000 -- 385200 0 1 0 1 
f6 30 12320 6165 87000 39800 1 1 1 1 
f7 30 70455 65195 260000 245600 1 1 1 1 
f8 30 96650 75362 335855 296244 0.65 0.52 0.93 0.96 
f9 30 -- -- -- -- 0 0 0 0 
f10 30 62650 32450 385282 202600 1 1 1 1 
f11 30 41450 20350 297000 133120 0.87 0.70 1 1 
f12 30 42177 20438 208321 118560 1 0.9 1 1 
f13 30 65218 27255 186323 123600 1 0.9 1 1 
f14 2 2572 1690 6521 5820 1 1 1 1 
f15 4 6721 3450 18723 11440 1 1 1 1 
f16 2 2577 1540 8723 6740 1 1 1 1 
f17 2 3572 2000 13272 9660 1 1 1 1 
f18 2 2466 1405 9832 5320 1 1 1 1 
f19 3 2943 1485 8734 5560 1 1 1 1 
f20 6 6823 3350 19838 14688 0.72 0.43 0.89 0.93 
f21 4 6282 3050 18923 12900 1 1 1 1 
f22 4 7132 2970 20223 12120 1 1 1 1 
f23 4 6980 3005 19890 11920 1 1 1 1 
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f24 30 52287 21840 165328 128000 1 1 1 1 
f25 2 2784 1395 6299 5140 1 1 1 1 

Ave  29008.14 16580.91 174273.3 101195.3 0.85 0.86 0.90 0.95 
 

TABLE VI 
EFFECT OF JUMPING ON PROPOSED MDE ALGORITHM WITH JUMPING RATES AS 0.1 AND 0.3. 

THE RESULTS ARE TABULATED FOR NUMBER OF FUNCTION EVALUATIONS (NFE) AND 
SUCCESS RATE (SR). Ave. REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE 

ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY 

Fun 
 

n 
NFE SR 

DE MDE MDEj0.3 MDEj0.1 DE MDE MDEj0.
3 

MDEj0.
1 

f1 30 104310 45980 48870 48270 1 1 1 1 
f2 30 173850 77830 80960 78540 1 1 1 1 
f3 30 110700 48600 53400 50700 1 1 1 1 
f4 30 274150 258886 267000 261000 0.36 0.75 0.32 0.46 
f5 30 -- 190600 248300 212000 0 1 1 1 
f6 30 31890 14850 15540 14670 1 1 1 1 
f7 30 131640 70680 82000 75420 1 1 1 1 
f8 30 226850 101067 -- -- 0.9 0.88 0 0 
f9 30 -- -- -- -- 0 0 0 0 
f10 30 163020 72800 76670 73200 1 1 1 1 
f11 30 108930 48077 52383 49444 1 1 0.62 0.84 
f12 30 95400 43340 43811 43280 1 1 0.88 1 
f13 30 104310 46680 48744 46920 1 1 0.92 1 
f14 2 5220 3330 3265 3290 1 1 1 1 
f15 4 11220 6050 6234 6540 1 1 1 1 
f16 2 5720 3330 3243 3510 1 1 1 1 
f17 2 6930 4790 4840 4520 1 1 1 1 
f18 2 4470 2850 2983 3070 1 1 1 1 
f19 3 5010 2870 3045 3560 1 1 1 1 
f20 6 14400 7050 7143 7620 0.84 0.78 0.44 0.52 
f21 4 11990 6640 6538 6930 1 1 1 1 
f22 4 11290 6220 6458 6510 1 1 1 1 
f23 4 11330 6190 6245 6350 1 1 1 1 
f24 30 104540 46580 48300 47700 1 1 1 1 
f25 2 4160 2640 6560 2960 1 1 1 1 

Ave  67930.9 37557.4 39737.8 38363.8 0.88 0.94 0.85 0.87 
 

TABLE VII 
 COMPARISON OF PROPOSED MDE ALGORITHM WITH DE AND ODE [50] ON 7 

NONTRADITIONAL SHIFTED FUNCTIONS IN TERMS OF ERROR (BEST MEDIAN, WORST AND 
MEAN) AND STANDARD DEVIATION (Std). DIMENSION (n) OF ALL THE PROBLEMS IS TAKEN AS 

500. MAXIMUM NFE IS SET AS 5000*n 
 

Problem n Error value DE ODE [50] MDE 

F1 

 
 
500 

Best 2, 636.54 15.66 3.48 
Median 3, 181.45 36.61 5.32 
Worst 4, 328.80 292.65 7.57 
Mean 3, 266.24 80.17 4.86 
Std 409.68 79.24 4.34 

F2 

 

500 Best 79.74 3.60 19.82 
Median 82.39 4.86 11.88 
Worst 85.92 11.91 12.26 
Mean 82.93 5.78 11.87 
Std 2.09 2.37 1.93 

F3 

 

500 Best 76, 615, 772.08 39, 718.90 727, 996.00 
Median 119, 733, 049.20 137, 279.03 731, 546.21 
Worst 169, 316, 779.50 407, 661.64 732, 763.93 
Mean 123, 184, 755.70 154, 306.34 730, 473.25 
Std 29, 956, 737.58 114, 000.53 116,325.43 



Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms 
 

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: **** 

F4 

500 Best 5, 209.99 2, 543.51 1, 155.15 
Median 5, 324.57 4, 279.56 3, 243.87 
Worst 5, 388.24 6, 003.94 4, 478.90 
Mean 5, 332.59 4, 216.34 4, 212.76 
Std 43.82 1, 017.94 58.60 

F5 

 

500 Best 24.29 1.25 0.31 
Median 24.71 1.55 0.87 
Worst 27.59 2.13 0.96 
Mean 25.16 1.75 0.56 
Std 1.10 0.37 0.05 

F6 

 

500 Best 4.66 2.49 1.18 
Median 4.97 4.12 1.47 
Worst 5.15 6.73 1.56 
Mean 4.94 4.51 1.25 
Std 0.17 1.44 0.07 

F7 

 

500 Best -3683.07 -3957.85 -3992.76 
Median -3575.13 -3834.07 -3836.65 
Worst -3565.73 -3830.36 -3833.21 
Mean -3593.75 -3851.82 -3863.59 
Std 32.74 38.80 29.31 
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E. Effect of jumping on the proposed MDE algorithm  
In [14], the authors proposed the concept of jumping in their algorithm ODE. We 

applied the same concept on the proposed MDE algorithm, taking jumping rates as 0.1 
and 0.3 and recorded the results in terms of NFE and SR in Table VI. From this Table it 
can be seen that by applying the concept of jumping, the modified MDE algorithms 
(MDEj0.3 and MDEj0.1) were not able to solve function f8 besides f9. Also, the average 
NFE increased and the SR deteriorated (0.85 for MDEj0.3 and 0.872 for MDEj0.1).  

Analysis of result: The idea of jumping is not beneficial for the MDE algorithm. The 
success rate for MDE which is 0.94 came down to 0.85 when jumping rate was kept as 
0.3. This shows a deterioration of around 10%. When jumping was reduced to 0.1, there 
was an improvement in the average success rate (0.87) but still it was 7% lesser than the 
SR of MDE algorithm. Going by these results we can say that the idea of jumping is not 
favorable for MDE algorithm. 

F. Numerical results for nontraditional benchmark problems  
The performance of MDE is also validated on a set of 7 nontraditional benchmark 

functions and the corresponding numerical results are reported in Table VII in terms of 
best, median, worst and mean error and standard deviation. From these results we see that 
MDE outperforms basic DE for all the test problems in terms of error and standard 
deviation by a significant difference. In comparison to ODE [50], we see that MDE 
outperformed it in 5 out of 7 cases in terms of error as well as standard deviation. In the 
remaining two cases ODE [Rahnamayan and Wang, 2008] performed better than MDE.  
Analysis of Results – MDE performed better than DE for all the test cases with an 
improvement of up to 99% in the best function value for F1, F3 and F5 and an 
improvement up to 75% for F2, F4 and F6. For the last function F7, the improvement is 
around 8%. In case of ODE, for the 5 function in which MDE gave a better performance, 
the improvement in F1 and F5 is more than 75%. For F4 and F6, the improvement is 
more than 50% and for F7, the improvement is around 1%. These results show the 
efficiency of MDE for solving large scale problems. 

G. Numerical results of real life problems 
The numerical results of three real life problems are recorded in Tables VIII (A), VIII 

(B) and VIII (C). In Table VIII (A), MDE is compared with DE and DEGL for frequency 
modulation problem in terms of average fitness function value and standard deviation 
(Std.). It can be clearly observed from the Table that MDE outperforms both DE and 
DEGL by a significant difference.  Result for transistor modeling problem is given in 
Table VIII (B). Here MDE is compared with DE in terms objective function value which 
is clearly better for MDE. In Table VIII (C) results for spread spectrum radar poly phase 
code design problem are given in terms of average fitness function value and standard 
deviation. Here MDE is compared with DE and DEGL. The numerical results taken for 
dimensions 19 and 20 show that for 19 variables problem, MDE outperformed DE and 
DEGL in terms of average fitness function value and for 20 dimensions problem MDE 
performed better than both the other algorithms in terms of average fitness function value 
and standard deviation.   

Analysis of results – from these results we can say that the proposed MDE is 
competent for solving the real life problems. 
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TABLE VIII (A) 

AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS FOR 
50 RUNS ON THE FREQUENCY 

MODULATOR SYNTHESIS PROBLEM. EACH ALGORITHM WAS RUN FOR 105  NFEs 

DE MDE DEGL[64] 

4.70081e-04 
(3.4345e-05) 

1.24148e-28 
(7.3288e-31) 

4.81520e-09 
(6.2639e-09) 

 
TABLE VIII(B) 

AVERAGE AND PARAMETER VALUES OF THE BEST-OF-RUN SOLUTIONS FOR 50 RUNS OVER THE 
TRANSISTOR MODELING PROBLEM EACH ALGORITHM WAS RUN UP TO 5 # 105 NFEs 

 
 DE MDE 

x1 0.901340 0.901337 
x2 0.891164 0.891043 
x3 3.87857 3.87943 
x4 3.94653 3.94663 
x5 5.32623 5.32509 
x6 10.6267 10.6171 
x7 0.0 0.0 
x8 1.08924 1.08832 
x9 0.705675 0.706734 

f(X) 0.0937829 0.0643636 
 

Table VIII(C) 
AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS 

FOR 50 RUNS OVER THE SPREAD 
SPECTRUM RADAR POLY-PHASE CODE DESIGN PROBLEM (NUMBER OF DIMENSIONS ARE n=19 

AND n=20). FOR ALL CASES 
EACH ALGORITHM WAS RUN UP TO 5 # 105 NFEs 

Dim DE MDE DEGL[64] 

19 3.80121e-01 
(2.3434e-02) 

2.50000e-01 
(3.0993e-03) 

7.44390e-01 
(5.8400e-04) 

20 4.57939e-01 
(4.3874e-03) 

2.50483e-01 
(1.3290e-04) 

8.03040e-01 
(2.7300e-03) 

 

8. STATE OF THE ART DE ALGORITHMS USED FOR COMPARISON 
In this section we give a brief description of other state of the art DE algorithms used in 
this paper. These are recently proposed algorithms and have reportedly given good 
performance on a set of various benchmark problems. 

 SaDE - SaDE [Qin et al., 2009] was proposed by Qin and Suganthan to 
simultaneously implement two mutation strategies “DE/rand/1” and “DE/current-to-
best/1.” It adapts the probability of generating offspring by either strategy based on their 
success ratios in the past 50 generations. It is believed that this adaptation procedure can 
gradually evolve the most suitable mutation strategy at different learning stages for the 
problem under consideration. In SaDE, the mutation factors are independently generated 
at each generation according to a normal distribution with mean 0.5, standard deviation 
0.3, and truncated to the interval (0, 2]. To speed up the convergence of SaDE, the 
authors further applied a local search procedure (quasi-Newton method) to some good 
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individuals after 200 generations. SaDE has been applied to both constrained and 
unconstrained problems. 

 jDE - Brest et al. [Brest et al., 2007], [Brest et al., 2006] proposed a new adaptive DE, 
jDE, based on the classic DE/rand/1/bin. Similar to other schemes, jDE fixes the 
population size during the optimization while adapting the control parameters F and Cr 
associated with each individual. It is believed that better parameter values tend to 
generate individuals which are more likely to survive and thus these values should be 
propagated to the next generation. Experimental results suggest that jDE performs 
remarkably better than the classic DE/rand/1/bin, and many other adaptive and non 
adaptive algorithms.  

JADE – was proposed by Zhang and Sanderson [Zhang and Sanderson, 2009]. They 
implemented a new mutation strategy named “DE/current-to-pbest” with an optional 
external archive and updated control parameters in an adaptive manner. Their strategy is 
a generalization of the classic “DE/current-to-best,” while the optional archive operation 
utilizes historical data to provide information of progress direction. The parameter 
adaptation automatically updates the control parameters to appropriate values and avoids 
a user’s prior knowledge of the relationship between the parameter settings and the 
characteristics of optimization problems. In JADE, the crossover probability Cr and 
scaling factor F are generated independently for each individual using normal and 
Cauchy distribution. They validated their algorithm on a set of 20 benchmark problems 
and compared it with other adaptive and non adaptive algorithms. 

A. Comparison of MDE with other state of the art algorithms 
The proposed MDE is compared with three other state of the art DE algorithms given 

in the previous section on the basis of average fitness, standard deviation (Std.), number 
of function evaluations and success rate (SR). Here we fixed the number of generations 
as given in Table IX (A). The remaining parameters are kept same as discussed in the 
earlier section V. From Table IX (A) which gives the results on the basis of fitness and 
standard deviation we see that JADE performed better than MDE and other algorithms in 
5 cases, while MDE gave the best performance in 8 cases. In the remaining cases all the 
algorithms performed in a similar manner. On the basis of NFE the results are given in 
Table IX (B). From this Table we see that JADE took lesser NFE than other algorithms in 
8 cases, while MDE outperformed other algorithms in 5 cases. On an average JADE took 
38012 NFE for solving 25 test problems while MDE took 46580 NFE which is slightly 
worse than JADE. However, in comparison to jDE and SaDE which took on an average 
82012 and 71365 NFE respectively, the performance of MDE is quite good. 

The success rate of JADE comes out to be 97% while for MDE the success rate comes 
out to be 96% for SaDE and jDE, the success rates are 94% each.    

We also compared the algorithms statistically on the basis of NFE for which the results 
are given in Tables IX(C)-IX(E). Once again we followed the same procedure given in 
Section VII-B. An overall comparison of algorithms is given in Table IX (C) and IX(D). 
Table IX(C) shows that there is a significant difference between the algorithms. From 
Table IX (D) we see that MDE and JADE are at par with each other while the remaining 
two algorithms jDE and SaDE do not perform as well as MDE. This is illustrated 
graphically in Figure 4(a). Pairwise comparison of MDE with JADE, jDE and SaDE is 
summarized in Table IX(E). From this Table we see that, though the paired t-test shows 
that there is no significant difference between MDE and other algorithms, Wilcoxon test 
shows that there is a significant difference between MDE and jDE and SaDE, while there 
is no difference between MDE and JADE. 
This result can also be verified from Figure 4(b) which gives the box plot of algorithms 
on the basis of NFE. 

Analysis of results –On the basis of fitness we cannot make a concrete judgment on 
the working of MDE. On the basis of success rate we see that JADE performs marginally 
better (1%) than MDE. On the basis of NFE, we see that MDE on an average took more 
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NFE than JADE but its performance was significantly better than jDE and SaDE. 
However, statistically we see that MDE and JADE are at par with each other on the basis 
of NFE. 
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TABLE IX (A)  

COMPARISON OF MDE WITH jDE, JADE, AND SaDE IN TERMS OF FITNESS FUNCTION VALUE. 
Std. REPRESENTS THE STANDARD DEVIATION AND n REPRESENTS THE DIMENSION OF THE 

PROBLEMS. FOR ALL CASES EACH ALGORITHM IS RUN UP TO MXIMUM # OF GENERATIONS. 

Fun 
 

n #Gen 
Fitness (Std.) 

jDE JADE SaDE MDE 

f1 30 1500 2.34343e-28 
1.92383e-28 

1.73443e-60 
7.34344e-60 

3.54533e-20 
5.79432e-20 

2.74298e-36 
3.94901e-36 

f2 30 2000 3.09343e-23 
8.38772e-24 

2.38353e-25 
8.47876e-25 

1.02398e-14 
1.83421e-15 

1.10654e-24 
8.28990e-25 

f3 30 5000 3.39041e-14 
3.82921e-14 

4.44584e-61 
1.32743e-60 

9.04322e-37 
3.44302e-37 

4.81002e-131 
0 

f4 30 5000 0 
0 

8.43245e-24 
4.20037e-23 

6.49202e-11 
1.63430e-10 

5.92984e-11 
8.36854e-10 

f5 30 20000 0 
0 

8.94840e-02 
5.97326e-01 

2.34993e-01 
2.33498e-01 

0 
0 

f6 30 1500 0 
0 

0 
0 

0 
0 

0 
0 

f7 
30 3000 2.31545e-03 

7.38443e-04 
8.54564e-04 
2.32534e-04 

3.58832e-03 
1.62992e-03 

2.05093e-04 
1.04551e-03 

f8 
30 9000 -12569.5 

8.00132e-12 
-12569.5 

0 
-12569.5 

8.43901e-08 
-12569.5 

1.09766e-10 

f9 
30 5000 0 

0 
0 
0 

0 
0 

8.95493e+00 
1.59359e+01 

f10 
30 1500 7.09431e-15 

1.72928e-15 
5.65784e-15 

0 
7.38286e-14 
3.48321e-14 

4.05954e-15 
0 

f11 
30 2000 0 

0 
0 
0 

0 
0 

0 
0 

f12 
30 1500 5.93708e-30 

2.32384e-30 
1.06754e-32 
3.43503e-48 

2.43748e-19 
0 

1.35993e-35 
0 

f13 
30 1500 6.90221e-29 

3.84204e-29 
4.65656e-32 
4.14394e-48 

2.83043e-19 
0 

1.29390e-32 
0 

f14 
2 100 0.998004 

1.90023e-16 
0.998004 
0.998004 

0.998004 
1.32943e-16 

0.998004 
1.21077e-16 

f15 
4 4000 4.29044e-04 

3.28494e-04 
6.78786e-05 
3.07102e-04 

8.43984e-04 
4.54989e-08 

3.07102e-05 
9.71256e-09 

f16 
2 100 -1.03163 

8.43843e-12 
-1.03163 
-1.03163 

-1.03163 
1.48430e-16 

-1.03163 
2.22875e-16 

f17 
2 100 0.397887 

4.43492e-08 
0.397887 
0.397887 

0.397887 
0 

0.397887 
0 

f18 
2 100 3.0 

1.98237e-15 
3.0 

          3.0 
3.0 

2.43493e-16 
3.0 

1.61278e-16 

f19 
3 100 -3.8623 

9.32384e-15 
-3.8626 

7.76755e-14 
-3.8623 

7.34399e-15 
-3.8623 

4.44089e-16 

f20 
6 100 -3.2863 

6.34934e-06 
-3.2986 

5.75433e-05 
-3.3182 

6.34348e-03 
-3.2807 

2.39493e-03 

f21 
4 100 -10.1532 

3.34321e-06 
-10.1532 

4.88743e-13 
-10.1532 

4.23484e-15 
-10.1532 

1.77532e-15 

f22 
4 100 -10.4029 

5.25234e-07 
-10.4029 

8.57584e-13 
-10.4029 

2.43438e-15 
-10.4029 

1.25879e-15 

f23 
4 100 -10.5364 

5.02913e-06 
-10.5364 

8.76765e-11 
-10.5364 

7.43483e-14 
-10.5364 

1.94865e-15 

f24 
30 10000 3.49941e-51 

7.34301e-53 
6.67607e-61 
8.57008e-63 

7.38393e-58 
3.45843e-60 

1.47748e-76 
5.93376e-77 

f25 
2 100 -1 

0 
-1 
0 

-1 
0 

-1 
0 
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TABLE IX (B)  

COMPARISON OF MDE WITH jDE, JADE, AND SaDE IN TERMS OF FUNCTION EVALUATION. 
MAXIMUM NFE IS TAKEN AS 10000*n. WHERE n DENOTE THE DIMENSION OF THE PROBLEM. 

Ave. REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO 
ACHIEVE THE DESIRED ACCURACY 10-08 FOR ALL FUNCTIONS EXCEPT f7 FOR WHICH IT IS 10-02. 

Fun 
 

n 
NFE SR 

JADE MDE jDE SaDE JADE MDE jDE SaDE 
f1 30 29900 45980 60100 73490 1 1 1 1 
f2 30 52550 77830 83220 118932 1 1 1 1 
f3 30 94840 48600 339399 181673 1 1 1 1 
f4 30 170890 258886 300650 290380 0.92 1 0.8 0.86 
f5 30 151000 190600 575990 278890 0.9 1 0.6 0.29 
f6 30 11560 14850 24860 28410 1 1 1 1 
f7 30 30000 70680 98000 128764 1 1 1 1 
f8 30 130480 101067 88940 121830 1 1 0.68 0.81 
f9 30 131000 -- 118630 170765 1 0 1 1 
f10 30 45610 72800 90620 119090 1 1 1 1 
f11 30 34000 48077 64270 80688 1 1 1 1 
f12 30 26950 43340 54310 72346 1 1 1 1 
f13 30 30988 46680 61287 73432 1 1 1 1 
f14 2 3455 3330 3578 3672 1 1 1 1 
f15 4 6532 6050 6648 6438 1 1 1 1 
f16 2 3310 3330 3298 3320 1 1 1 1 
f17 2 4520 4790 4872 4810 1 1 1 1 
f18 2 3080 2850 3389 3010 1 1 1 1 
f19 3 2990 2870 3154 3080 1 1 1 1 
f20 6 7000 7050 7410 7832 0.47 0.95 0.41 0.44 
f21 4 6745 6640 6829 6770 1 1 1 1 
f22 4 6389 6220 6194 6395 1 1 1 1 
f23 4 6090 6190 6530 6672 1 1 1 1 
f24 30 50380 46580 71290 89372 1 1 1 1 
f25 2 3050 2640 3456 3480 1 1 1 1 

Ave  38012.9 46580.4 82012.2 71365.7 0.97 0.96 0.94 0.94 
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Table IX (C) 
RESULTS OF FRIEDMAN TEST BASED ON NFE  

N Friedman value df p-value 
25 34.776 3 <0.001 

df – Degrees of Freedom N - Total No of functions 
 

Table IX (D) 
RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD) 

CALCULATED THROUGH BONNFERRONI-DUNN’S PROCEDURE 
Algorithm Mean Rank 

JADE 1.68 
MDE 1.84 
jDE 3.00 

SaDE 3.84 
CD for "=0.05 0.874165 
CD for "=0. 01 0.777036 

 
Table IX (E) 

RESULTS OF PAIRWISE COMPARISON BASED OF NFE 

Algo. 
paired t-test Wilcoxon test 

Stat Sig. +ve -ve tie Stat Sig. 
JADE 1.852 0.076 10 15 0 -1.493 0.135 
jDE -1.304 0.205 21 4 0 -3.269 0.001 

SaDE -2.092 0.047 23 2 0 -3.700 0.000 
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Figure 4(a) Bonferroni-Dunn’s graphic corresponding to NFE 

 
Figure 4(b) Box-plot corresponding to the average NFE 

9. CONCLUSIONS 
In the present study we presented a simple and efficient variant of DE, called Modified 

Differential Evolution (MDE). The proposed MDE is a fusion of three schemes; 
opposition based learning for generating the initial population, tournament best method 
for mutation and one population DE structure. The parent algorithms (ODE, DERL and 
MDE1) using these schemes individually have reportedly given very good performance. 

While the OBL helps in proving an efficient start to the DE algorithm, the use of 
tournament best base vector induces a localized effect in the search procedure. Both these 
features help in enhancing the exploratory and exploitation capabilities of the DE 
algorithm which in turn helps in preventing premature convergence. The third feature 
which is the use of a single population DE structure (in contrast to the two set structure 
used in basic DE) helps in faster convergence. 

As expected, these schemes when combined together produce a synergized effect 
which was better than any of the scheme used separately.   

The performance of the proposed MDE algorithm is investigated on a set of traditional 
benchmark problems, nontraditional benchmark problems and real life problems. Its 
performance is compared with DE and its parent algorithms ODE, MDE1 and DERL. 

Numerical results show that on the basis of error all the algorithms performed more or 
less in a similar manner. However, on the basis of NFE, %AR and SR we can clearly see 
that the combined effect of ODE, DERL and MDE1 in MDE makes it superior not only 
to DE but also to its parent algorithms.   

These results are also validated with the help of statistical analysis using an overall and 
pairwise comparison of algorithms. 

MDE is further compared with JADE, SaDE and jDE. Although these algorithms are 
adaptive in nature and their comparison with MDE may not be completely justified but 
these are some of the recent variants of DE and have given good performance in 
comparison to both adaptive and nonadaptive algorithms. Numerical results using 
standard performance measures showed that JADE performed better than MDE in terms 
of NFE, though the performance of MDE was much better than jDE and SaDE. Statistical 
analysis however showed that JADE and MDE are at par with each other.  
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The objective of this study is not to defeat DE or any of its variants but is to present an 
algorithm which is simple to understand and easy to apply by fusing together some of the 
efficient schemes available in literature. However, claiming that MDE will outperform 
every other variant of DE for every optimization problem, with any degree of complexity, 
does not sound justified. There are several other variants which may be successfully 
combined to produce an algorithm which is better than the proposed MDE. Even the 
performance of many existing versions of DE can be improved further by judicious 
tuning of parameters alone.  

The only case where MDE was not able to perform successfully was function f9. This 
indicates that some further fine tuning is needed in MDE so that it can solve all types of 
problems. 

At this stage the conclusion that can be drawn from the present study is that the 
proposed MDE version can serve as an attractive alternative for a wide range of 
optimization problems. The paper can be extended in several directions. Fine tuning of 
parameters for MDE can be replaced with some suitable adaptive technique. Effects of 
adding some local search technique can also be observed. 
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f15:  
i ai bi

-1 

1 0.1957 0.25 
2 0.1947 0.5 
3 0.1735 1 
4 0.1600 2 
5 0.0844 4 
6 0.0627 6 
7 0.0456 8 
8 0.0342 10 
9 0.0323 12 

10 0.0235 14 
11 0.0246 16 

f19: 
i ci 

aij pij 

j=1       2         3 j=1          2              3 
1 
2 
3 
4 

1 
1.2 
3 

3.2 

3         10       30 
.1        10       35 
3         10       30 
.1        10       35 

0.3689    0.1170   0.2673 
0.4699    0.4387   0.7470 
0.1091    0.8732   0.5547 

0.3815   0.5743   0.8828 
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 f21,   f22 and f23: 

i aij     j=1,…,4 ci 

1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 
7 5 5 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 
 
f20: 

i ci aij     j=1,…,6 pij     j=1,…,6 
1 1 10 3 17 3.5 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 
2 1.2 .05 10 17 0.1 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 
3 3 3 3.5 1.7 10 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 
4 3.2 17 8 .05 10 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 
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