
ACM Transactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date:****

Improving Differential Evolution Algorithm by
Synergizing Different Improvement Mechanisms

M. ALI and M. PANT
Indian Institute of Technology Roorkee, India
AND
A. ABRAHAM
Machine Intelligence Research (MIR) labs, USA

Abstract— Differential Evolution (DE) has emerged as a popular and efficient population based meta-heuristic
for solving global optimization problems. Practical experiences however show that DE is vulnerable to
problems like slow and/ or premature convergence. Several attempts have been made in literature to improve its
performance. In this paper we propose a simple and modified DE framework, called MDE which is a fusion of
three recent modifications in DE (1) opposition based learning (OBL) (2) tournament method for mutation and
(3) single population structure of DE. These features have a specific role which helps in improving the
performance of DE. While OBL helps in giving a good initial start to DE, the use of tournament best base
vector in the mutation phase helps in preserving the diversity besides maintaining the convergence. Finally the
single population structure helps in faster convergence. The fusion of the three produces a synergized effect
which helps in balancing the two antagonist factors exploitation and exploration, without compromising with
the solution quality or the rate of convergence. The proposed MDE is validated on a set of 25 standard
benchmark problems with varying degrees of complexities, 7 nontraditional shifted benchmark functions
proposed at the special session of CEC2008, and three engineering design problems. To justify the effect of
synergy, MDE is compared with algorithms that use these schemes separately namely ODE, DERL and MDE1
and also with other DE variants; JADE, SaDE and jDE. Numerical results and statistical analysis show that the
proposed MDE is better than or at least comparable with these algorithms.

Categories and Subject Descriptors: I.2.8 [Artificial Intelligence]: Problem Solving, Control. Methods, and
Search—Heuristic methods; G.1.6 [Numerical Analysis]: Optimization—Global optimization

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Differential Evolution, Evolutionary Algorithms, Synergy

__

Authors’ addresses: Musrrat Ali, Department of Paper Technology of Indian Institute of Technology,
Roorkee, India. (Ph.No. +91-132-2714356; fax: +91-132-2714011; e-mail: musrrat.iitr@gmail.com). Millie
Pant, Department of Paper Technology of Indian Institute of Technology, Roorkee, India.(e-mail:
millidma@gmail.com). Ajith Abraham, Machine Intelligence Research Labs (MIR Labs), Scientific Network
of Innovation and research excellence, Auburn, Washington, 98071-2259, USA (e-mail:
ajith.abraham@ieee.org).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Permissions may be requested from Publications
Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
© 2010 ACM 1556-4665/2010/02-ART1 $10.00
ACM Reference Format:

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

1. INTRODUCTION
Differential Evolution (DE), proposed by [Storn and Price, 1995] is relatively a new
optimization technique in comparison to Evolutionary Algorithms (EAs) such as Genetic
Algorithms [Goldberg, 1989], Evolutionary Strategy [Back et al., 1991], and Evolutionary
Programming [Fogel 1994 4]. Within a short span of around fifteen years, DE has
emerged as one of the simple and efficient technique for solving global optimization
problems. It has been successfully applied to diverse domains of science and engineering,
such as mechanical engineering design [Rogalsky et al, 1999], [Joshi and Sanderson
1999], signal processing [Das and Konar 2006], chemical engineering [Wang and Jang,
2000], [Lampinen 1999], machine intelligence, and pattern recognition [Omran et al.,
2005], [Das et al., 2008] etc.

Practical experience, however, shows that DE is not completely flawless. As pointed
out by [Lampinen and Zelinka, 2000] DE may occasionally stop proceeding towards the
global optimum even though the population has not converged to a local optimum or
any other point. Occasionally, even new individuals may enter the population, but the
algorithm does not progress by finding any better solutions. This situation is usually
referred to as stagnation. DE also suffers from the problem of premature convergence,
where the population converges to some local optima of a multimodal objective
function, losing its diversity. The probability of stagnation depends on how many
different potential trial solutions are available and also on their capability to enter into
the population of the subsequent generations [Lampinen and Zelinka, 2000]. Further,
like other evolutionary computing algorithms, the performance of DE deteriorates with
the growth of the dimensionality of the search space as well.

Several instances are available in literature which aims at improving the performance
of DE. A brief review of some of the modifications suggested on the basic structure of
DE is given in Section III.

The modifications show that even a slight variation in the basic structure of DE helps a
lot in improving its performance. Our objective in this study is to observe the combined
effect of some of these variations. We have concentrated on three aspects of DE namely:
initial population, mutation and DE structure which is based on two populations; current
population and advance population.

(i) Generation of initial population is a crucial task in a population based search
technique. In case no a priori information about the solution is available, random
initialization is the most popular method of generating the initial population. Maaranen et
al. [Maaranen et al., 2004] introduced quasi random sequences for population initialization
in Genetic Algorithms. Their results showed that though there is an improvement in the
quality of solution, there is no noticeable change in the convergence rate while using
quasi random numbers to generate the initial population. Moreover, from the
programming point of view, the generation of quasi random numbers is quite difficult.
An interesting method to generate the initial population was suggested by [Rahnamayan
et al., 2008], where they used opposition based learning (OBL) [Tizhoosh, 2005] to
generate the initial population. This method not only improves the quality of solution but
also it helps in faster convergence. Further, it is very easy to program. The basic idea
behind OBL is the simultaneous consideration of an estimate and its corresponding
opposite estimate to achieve a better approximation for the current candidate solution.
Mathematically, it has been proven in [Rahnamayan et al., 2008] that the opposite
numbers are more likely to be closer to the optimal solution than purely random ones. We

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

have considered ODE [Rahnamayan et al., 2008], in which this scheme is used, as one of
the parent algorithm.

(ii) The second aspect which is the focus of this study is mutation. It is the most
important operator of DE. The mutation operation utilizes the vector differences between
the current population members for determining both the degree and direction of
perturbation applied to the individual subject of this operation. Besides the basic mutation
schemes of DE some other variants of mutation are also available in literature (please see
Section III). In the present study we have considered a tournament best process [Kaelo
and Ali, 2006] to select the base vector for the process of mutation. The corresponding
DERL algorithm [Kaelo and Ali, 2006] is taken as the second parent algorithm. The
rationale of using tournament best process is to prevent the search from becoming a
purely random search or a purely greedy search.

(iii) The third aspect is the general structure of DE which maintains two populations;
current population and an advance population. In the present study we have considered a
single population structure of DE [Babu and Angira, 2006, Thompson, 2004]. For the
purpose of comparison we have used the algorithm given in [18] as a parent algorithm for
MDE. In [Babu and Angira, 2006], the algorithm is named as MDE. In order to avoid
confusion we shall refer to it as MDE1 in the present study.

We can say that MDE is motivated by the law of synergy which states that a combined
effort is always better than the individualistic effort.

As already mentioned there are several modified versions of DE available in literature.
The idea of the present study is to build a DE framework which is simple to understand
and easy to apply, therefore we selected three simple but efficient modifications which
have reportedly given good performance over the other contemporary optimization
algorithms.

Here we would like to mention that a preliminary version of this work has already been
presented in a conference [Ali et al., 2009]. However, in the present study we present its
elaborated version. Here we provide a comprehensive set of experimental verifications of
the proposed MDE. Specifically, we have investigated the convergence speed and
robustness, effect of dimensionality and population size, effect of jumping on the
proposed MDE and its comparison with other algorithms. The numerical experiments are
conducted on a comprehensive set of 25 standard benchmark problems, 7 nontraditional
shifted functions and three real life problems.

In order to investigate the effect of fusion, the proposed MDE is compared with DE
and with its parent algorithms ODE, DERL and MDE1. We have discussed the
improvements made by the parent algorithms over DE, individually and the improvement
made when they are fused together in MDE.

Further, MDE compared with some of the other latest modifications of DE namely
jDE, JADE and SaDE. The comparison of algorithms is done using the standard
performance measures like error, number of function evaluations (NFE) etc. The
performance of the algorithms is also analyzed statistically using various tests like
Wilcoxon test, Bonferrani Dunn test etc.

The remainder of the paper is structured as follows. Section II describes the basic
Differential Evolution. In Section III we give a brief review of the work done in the past
to improve the performance of basic DE. In Section IV we explain the proposed MDE
algorithm. Performance metrics and experimental settings are given in Section V.
Problems used in the present study are listed in Section VI. Section VII provides results

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

and discussions for MDE, DE, ODE, DERL and MDE1. A brief description of other state
of the art algorithms (jDE, JADE and SaDE) used in the present study and their
comparison with MDE is given in Section VIII. Finally the conclusions based on the
present study are drawn in Section IX.

2. A BRIEF INTRODUCTION TO DIFFERENTIAL EVOLUTION
Like all other population based search algorithms, DE starts with a population S of NP

candidate solutions: Xi,G, i = 1, . . . ,NP, where the index i denotes the ith individual of the
population and G denotes the generation to which the population belongs. The three main
operators of DE are mutation, crossover and selection which may be defined as follows:

Mutation: Once the initialization is complete, DE enters the mutation phase. In this
phase a donor vector is created corresponding to each member or target vector Xi,G in the
current generation. The method of creating donor vector differentiates one DE scheme
from another. The most often used mutation strategies implemented in the DE codes are
listed below.
DE/rand/1:)(* ,,,, 321 GrGrGrGi XXFXV !+=

DE/rand/2:)(*)(* ,,,,,, 54321 GrGrGrGrGrGi XXFXXFXV !+!+=
DE/best/1:)(* ,,,, 21 GrGrGbestGi XXFXV !+=

DE/best/2:)(*)(* ,,,,,, 4321 GrGrGrGrGbestGi XXFXXFXV !+!+=
DE/rand-to-best/1:)(*)(* ,,,,,, 4321 GrGrGrGbestGrGi XXFXXFXV !+!+=

The indices r1, r2, r3, r4 and r5 are mutually exclusive integers randomly chosen from
the range [1, NP] and all are different from the base index i. these indices are randomly
generated once for each vector. The scaling factor F is a positive control parameter and is
used for scaling the difference vectors. Xbest,G is the individual having the best fitness
function value in the population at generation G.

Frequently referred strategies implemented in the public-domain DE codes for
producing the donor vectors are also available online at:
http://www.icsi.berkeley.edu/~storn/code.html.

 Crossover: once the donor vector is generated in the mutation phase, the crossover
phase of DE is activated. The crossover operation of DE helps in increasing the potential
diversity of the DE population. The DE family of algorithms may use two types of
crossover schemes; exponential (exp) and binomial (bin). During the crossover operation,
the donor vector exchanges its components with the target vector Xi,G to form a trial
vector Ui,G+1 = (u1,i,G+1, . . . , un,i,G+1) . In the present study we shall follow the binomial
scheme. According to this scheme, the trial vectors are generated as follows:

, . 1
, . 1

, .

j i G j r
j i G

j i G

v if rand C j k
u

x otherwise
+

+

! " =#
= $
%

 (2)

Where, j = 1. . . n, k ! {1, . . . , n} is a random parameter’s index, chosen once for each i.
Cr is a positive control parameter set by the user.

A general DE scheme may be defined as DE/X/Y/Z, where DE denotes the Differential
Evolution algorithm; X represents a string denoting the vector to be perturbed; Y
indicates the number of difference vectors considered for perturbation of X and Z stands
for the type of crossover being used.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Throughout the present study we shall follow DE/rand/1/bin version of DE which is
perhaps the most frequently used version and shall refer to it as basic version.

Selection: The final phase of the DE algorithm is that of selection, which determines
whether the target or the trial vector generated in the mutation and crossover phases will
survive to the next generation. The population for the next generation is selected from the
individual in current population and its corresponding trial vector according to the
following rule:

. 1 . 1 .
. 1

.

() ()i G i G i G
i G

i G

U if f U f X
X

X otherwise
+ +

+

!"
= #
$

 (3)

Thus, each individual of the advance (trial) population is compared with its counterpart
in the current population. The one with the lower objective function value will survive
from the tournament selection to the population of the next generation. As a result, all the
individuals of the next generation are as good as or better than their counterparts in the
current generation. In DE trial vector is not compared against all the individuals in the
current generation, but only against its counterpart in the current generation.

The computational steps of basic DE are as follows:
Step 1: Randomly generate a population set S of NP vectors, each of dimension n as

follows: xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j), where xmin,j and xmax,j are lower and
upper bounds for jth component respectively, rand(0,1) is a uniform random
number between 0 and 1.

Step 2: Calculate the objective function value f(Xi) for all Xi.
Step 3: Select three points from population and generate perturbed individual Vi using

equation (1).
Step 4: Recombine each of the target vector Xi with perturbed individual generated in

step 3 to generate a trial vector Ui using equation (2).
Step 5: Check whether each variable of the trial vector is within the specified range. If

yes, then go to step 6 otherwise bring it within range using ui,j =2* xmin,j - ui,j ,if
ui,j < xmin,j and ui,j =2* xmax,j - ui,j , if ui,j> xmax,j, and go to step 6.

Step6: Calculate the objective function value for trial vector Ui.
Step 7: Choose better of the two (function value at target and trial point) using equation

(3) for next generation.
Step 8: Check whether convergence criterion is met if yes then stop; otherwise go to step

3.

3. A BRIEF REVIEW OF PREVIOUS WORK
Several attempts have been made to improve the ultimate performance of DE. These

variations may broadly be classified as (1) investigating optimum choice of DE control
parameters (2)its hybridization with other search techniques (3) development/
modification in the mutation/ crossover/ selection operators of DE and (4)other
variations. In this section we give a brief review of some of the modifications suggested
in the structure of DE.

DE has three main control parameters namely population size, crossover rate Cr and
scaling factor F. A number of investigations have been carried out to determine the
optimum settings of these parameters. Storn and Price [1] indicated that a reasonable
population size could be between 5n and 10n, where n denotes the dimensionality of the
problem. They also recommended that a good initial choice of F can be 0.5. Gamperle et

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

al. in [Gamperle et al., 2002] suggested that the population size should be between 3n and
8n, scaling factor F should be 0.6 and the crossover rate Cr should be in the range of [0.3,
0.9] for best results. [Ronkkonen et al., 2005] suggested using F values between [0.4,
0.95] with F=0.9 being a good initial choice. They further pointed out that the Cr values
should lie in [0, 0.2] when the function is separable while it should lie in [0.9, 1] when
the function’s parameters are dependent. However, a drawback in their analysis is that in
case of real life problems, it is very difficult to examine in advance the true nature of the
function. Thus we can see that there is no concrete proof/ discussion available in
literature for the selection of parameters. The researchers rely either on fine-tuning of
parameters for a particular problem or consider self-adaptation techniques to avoid
manual tuning of the parameters of DE. Liu and Lampinen introduced Fuzzy Adaptive
Differential Evolution (FADE) [Liu and Lampinen, 2005] using fuzzy logic controllers,
Qin et al. proposed a Self-adaptive DE (SaDE) [Qin et al., 2009] algorithm. In this
algorithm, the trial vector generation strategies and their associated parameters are
gradually self-adapted by learning from their previous experiences of generating
promising solutions. [Zaharie 2003] proposed a parameter adaptation strategy for DE
(ADE) based on the idea of controlling the population diversity, and implemented a
multi-population approach. Later, [Zaharie and Petcu, 2004] designed an adaptive Pareto
DE algorithm for multi-objective optimization and analyzed its parallel implementation.
[Abbass, 2002] self-adapted the crossover rate Cr for multi-objective optimization
problems, by encoding the value of Cr into each individual and simultaneously evolving
it with other search variables. The scaling factor F was generated for each variable from a
Gaussian distribution N (0, 1). [Omran et al., 2005] proposed an algorithm called SDE in
which they introduced a self-adaptive scaling factor parameter F and generated the value
of Cr for each individual from a normal distribution N (0.5, 0.15). Recently, [Brest et al.,
2007] proposed jDE algorithm using adaptive F and Cr. Although, most of the self
adaptive versions of DE, involve adaption of Cr and F, work has also been done on the
adaption of the population size. [Teng et al., 2009] proposed DE with Self Adapting
Populations for DE in DESAP.

Other class of modification in DE involves its hybridization with some other
techniques. [Yang et al., 2008] proposed hybridization of DE with Neighborhood Search
(NS) and called their algorithm, NSDE. In this algorithm mutation is performed by
adding a normally distributed random value to each target-vector component. Later,
[Yang et al., 2008] used Self-adaptive NSDE in the cooperative coevolution framework
for optimizing large scale non-separable problems (up to 1000 dimensions). [Hendtlass,
2001] hybridized DE with Particle Swarm Optimization (PSO). He used the DE
perturbation approach to adapt particle positions. Particles’ positions are updated only if
their offspring have better fitness.
At the specified intervals, the swarm serves as the population for DE algorithm, and the
DE is executed for a number of generations. After execution of DE, the evolved
population is further optimized using PSO. [Zhang and Xie, 2003] and [Talbi and
Batchoue, 2004] used the DE operator to provide mutations in PSO. [Kannan et al., 2004]
applied DE to each particle of the swarm for a number of iterations, and replaced the
particle with the best individual obtained from the DE process. [Omran et al., 2008]
proposed a hybrid version of Bare Bones PSO and DE called BBDE. In their approach,
they combined the concept of barebones PSO with self adaptive DE strategies. [Zhang et
al., 2009] proposed a DE-PSO algorithm in which a random moving strategy is proposed

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

to enhance the algorithm’s exploration abilities and modified DE operators are used to
enhance each particle’s local tuning ability. [Wu and Gu, 2009] proposed Particle Swarm
Optimization with prior crossover differential evolution (PSOPDE). [Caponio et al.,
2009] proposed a hybridization of DE with three metaheuristics viz. PSO and two local
search methods. A Free Search DE (FSDE) was proposed by [Omran and Engelbrecht,
2009]. In their algorithm they hybridized DE with a newly developed ‘Free Search
Algorithm’ and Opposition Based Learning. Hybridization of Nelder Mead algorithm
with DE for solving constrained optimization problems was suggested in [Andriana and
Coello Coello 2009].

Besides optimum choice for parameters and hybridization of DE, some other
modifications in DE include development of new mutation schemes. [Fan and Lampinen,
2003] proposed a Trigonometric Mutation Operator (TMO). In TMO, the donor to be
perturbed is taken to be the centre point of the hypergeometric triangle. Parent Centric
and Laplace Mutation were suggested by [Pant et al. 2009] and [Pant et al. 2009]
respectively. The parent centric mutation operator is inspired by the PCX operator given
by Deb et al. in [Deb, 2005], while in Laplace mutation the scaling factor F was replaced
by a random number following Laplace distribution and an absolute weighted difference
between the vectors was used. [Pant et al. 2009] suggested a mixed strategy DE (MSDE)
in which two mutation strategies were used in a competitive game environment. More
recently a new mutation operator based on wavelet theory was suggested by [Lai et al.,
2009]. A crossover based local search method for DE was proposed in [Noman and Iba
2008, 2009].

Some other interesting modifications in DE include the use of opposition based
learning (OBL) for generating the initial population by [Rahnamayan et al. 2008].
[Rahnamayan and Wang, 2008] also applied it for solving large scale optimization
problems. [Yang et al. 2009] developed an adaptive coevolutionary DE. They applied
their algorithm, called JACC-G, for solving large scale global optimization problems.
[Brest et al., 2009] performed dynamic optimization using DE, [Ting and Huang, 2009]
varied the number of difference vectors in DE, [Epitropakis et al. 2009] suggested
evolutionary adaption of the control parameters of differential evolution. [Tasgetiren et
al. 2009] included of variable parameter search in DE. Some variants and applications of
DE can also be found in [Montgomery, 2009], [Wang et al., 2009], [Peng et al., 2009],
[Chakraborty, 2008].

4. STRATEGIES USED IN THE PROPOSED MDE ALGORITHM
In this section we describe the strategies / concepts used in the proposed MDE

algorithm which are: opposition based initial population, random localization and one
population DE framework. To make the proposed algorithm self explanatory, first we
will describe the three schemes briefly.

A. Opposition based initial population
It is based on the concept of opposite numbers. We can say that if ! ! !!! !! is a real

number, then its opposite number x’ is defined as
 ! ! ! ! ! ! ! ! (4)
This definition can be extended for higher dimensions also as suggested in [14]. If
! ! !!!! !!!! ! !!! is a point in n-dimensional space, where !!! !!!! ! !! ! ! and!!! !

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

!! ! !! !!!! ! !!!!! ! ! , then the opposite point ! ! ! !!!! ! !!! !! ! !!! ! is
completely defined by its components
 ! !! ! !! ! !! ! !! (5)
Now, by employing the opposite point definition, the opposition- based initial population
can be generated in three simple steps:

• Generate a point ! ! !!!! !!!! ! !!! and its opposite ! ! ! !!!! ! !!! !! ! !!! !
in an n-dimensional search space (i.e., a candidate solution).

• Evaluate the fitness of both points f (X) and f(X’)
• If ! ! ! ! !!!! (for minimization problem), then replace X with X’; otherwise,

continue with X.
Thus, we see that the point and its opposite point are evaluated simultaneously in order to
continue with the fitter one.

B. Randomized Localization
According to this rule, three distinct points Xr1, Xr2 and Xr3 are selected randomly from

the population corresponding to target point Xi. A tournament is then held among the
three points and the region around the best point is explored. That is to say if Xr1 is the
point having the best fitness function value then the region around it is searched with the
hope of getting a better solution. For the sake of convenience we will denote the
tournament best point as (say) Xtb. Assuming that Xtb = Xr1, the mutation equation (1)
becomes:

!!!!!! ! !!"!! ! !!!!!!!! ! !!!!!!
This variation gradually transforms itself into search intensification feature for rapid

convergence when the points in S form a cluster around the global minima.
 In order to see the effect of tournament best method for mutation, we shall first discus
in brief two common strategies of DE; DE/best/1/bin and DE/rand/1/bin. In DE/best/1/bin
the base vector is always selected as the one having the best fitness function value. We
can see that here the probability of selecting the best vector as the base vector is always 1.
This strategy may provide a fast convergence in the initial stages. However, as the search
procedure progresses it may lead to the loss of diversity in the population due to its
greedy nature resulting in premature convergence. On the other hand, the strategy
DE/rand/1/bin is completely random in nature. Here all the points for mutation are
randomly selected and the best point of the point of the population may or may not be
included in them. This strategy, due to its random nature helps in preserving the diversity
but may lead to a slower convergence. Now, if we look at the tournament best method we
see that although the three points for mutation are randomly selected, the base vector is
always chosen as the one having the best fitness. This makes it neither purely greedy nor
purely random in nature, but provides a localized effect which helps in exploring the
different regions of the search space around the potential candidates.

Making use of hypergeometric distribution, we can say that the probability of getting
the best vector among the three chosen points for mutation is !

! ! !"!!
!!! ! !"

! , where
M is the number of best points in the population. Initially, it is very much likely that there
is one best point but as the evaluation process proceeds the number of best points keeps
on increasing.

In case of strategy, DE/rand/1/bin the probability that the best point of the population
is among the three chosen points for mutation is !

! ! !"!!
!!! ! !"

! and the probability
that the best point is also selected as the base vector is !! !

!
! ! !"!!

!!! ! !"
! When

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

we apply the tournament best strategy the probability selecting the best point from the
three chosen will be 1. Thus the probability that the selected base vector is the best
solution of the population becomes ! ! !

! ! !"!!
!!! ! !"

! .
Thus we see that the probability of selecting the best point of the population as base

vector, for tournament best strategy lies between the probabilities of DE/rand/1/bin and
DE/best/1/bin.
 !! !

!
! ! !"!!

!!! ! !"
! ! !

! ! !"!!
!!! ! !"

! ! !. This helps in maintaining the
exploration and exploitation capabilities of the proposed MDE ensuring fast convergence
and balanced diversity.

C. Concept of single population
It was suggested in [Babu and Angira, 2006, Thompson, 2004]. They have discussed in

their work that in the basic structure of DE, two populations (current and advance) are
considered simultaneously in all the iterations which results in the consumption of extra
memory and CPU time leading to higher number of function evaluations. On the other
hand in a single population DE, only one population is maintained and the individuals are
updated as and when a better solution is found. Also, the newly found better solutions can
take part in mutation and crossover operation in the current generation itself as opposed
to basic DE (where another population is maintained and the better solutions take part in
mutation and crossover operations in next generation). Updating the single population
continuously enhances the convergence speed leading to lesser number of function
evaluations as compared to basic DE.

Based on the above modifications we will now discuss the computational steps of

MDE which are same as that of basic DE given in Section II and differ from it only in the
following steps:
1. initialization
2. mutation
3. populations structure

A point to point comparison of working two algorithms DE and MDE is given in Table
I.

5. PERFORMANCE METRICES AND EXPERIMENTAL SETUP
In order to authenticate the viability of the proposed MDE algorithm we conducted a

series of experiments following various criteria to test its efficiency, robustness and
reliability. These criteria have been widely used to analyze the performance of an
algorithm.

Performance Metrics I

• Number of function evaluations (NFE)
• Average error = known global optimum – value to reach VTR (desired

accuracy)
• Percentage Acceleration rate (AR) = ratio of the NFE of the algorithm to be

compared and the NFE of the algorithm to which we want to compare
[Rahnamayan et al., 2008]. Thus the %AR of MDE in comparison to DE will
be:

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

%AR = ! ! !!"#!!"#
!!"#!!" ! !""

• Average AR = !! !"!!
!!!

• Success rate (SR) = !"!!!!"!!"#$%!!"#!!"#$%&'(!"#$%!!"!!"!!"#$%&

• Average SR = !! !"!!
!!!

Where N denotes the number of problems.

Performance Metrics II

The proposed algorithm is also analyzed statistically using various tests like Wilcoxon
test, Friedmann test and Bonferrani Dunn test etc [Garcia et al., 2009]. Using these tests,
we performed multiple-problem analysis, a comparison of algorithms over more than one
problem simultaneously. In the multiple-problem analysis, due to the dissimilarities in the
results obtained and the small size of the sample to be analyzed, a parametric test (paired
t-test) may reach erroneous conclusions so we have analyzed the results by both,
parametric and non parametric tests.

All the tests used here obtain the associated p-value, which represents the dissimilarity
of the sample of results. Hence, a low p-value points out a critical difference. In this
study, we have considered a level of significance ! = 0.05 and 0.1. A p-value greater than
! indicates that there is no significant difference between the algorithms.

Experimental Settings – after conducting several experiments and referring to various
literatures, we took the following settings for all the experiments unless otherwise
mentioned.

• Population Size (NP) = 100 for traditional benchmark problems and 500 for
nontraditional problems [Zhang and Sanderson, 2009], [Rahnamayan and Wang,
2008].

• Scaling/ amplitude Factor F = 0.5 [Rahnamayan et al., 2008].
• Crossover Rate Cr = 0.9 [Rahnamayan et al., 2008].
• Maximum NFE = 10000*n, where n is the dimension of the problem [Noman

and Iba, 2008].
• VTR = 10-8 for all the test problems except noisy function (f7) for which it is set

as 10-2 [Zhang and Sanderson, 2009].
Software used for statistical analysis – we used the following softwares for analyzing the
proposed algorithm.

• SPSS
• MATLAB

PC configuration – All the algorithms have been executed on dual core processor with
1GB RAM. The programming language used is DEV C++. The random numbers are
generated using inbuilt rand () function with same seed for every algorithm.

In order to have a fair comparison for all the experiments, the parameter settings are
kept same and the reported values are the average of the results of 50 independent runs.

6. PROBLEMS USED IN THE PRESENT STUDY
In the present study we used three types of problems given below in order to

investigate the effectiveness of the proposed MDE algorithm.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

A. Traditional Benchmark problems
 First of all we scrutinized the performance of the proposed MDE on a test suite of

twenty five standard benchmark problems taken from [Rahnamayan, 2008], [Zhang and
Sanderson, 2009], with varying degrees of complexities and having box constraints. The
test set includes fixed, lower dimension problems as well as scalable problems for which
the dimension can be increased to increase the complexity of the problem. The problem
set though small act as a good launch pad to investigate the effectiveness of an
optimization algorithm. Mathematical models of the functions along with the true
optimum value are given in Table II (A).

B. Real life problems
 The effectiveness of an algorithm can be justified, if it is able to solve the real life
problems with equal ease with which it solved the test problems. Therefore, besides
considering the benchmark functions we have also taken three real life application
problems which are; transistor modeling problem, frequency modulation sound parameter
identification problem and spread spectrum radar poly- phase code design problem from
[Price, 1983] and [Das et al, 2009]. Mathematical model of real life problems are given
below.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE I

 POINT WISE COMPARISON OF WORKING OF MDE AND DE ALGORITHMS
Operation DE MDE

Initialization Construct an initial population
S of NP individuals, dimension
of each vector being n, using
the following rule:
xi,j= xmin,j + rand(0, 1)(xmax,j-
xmin,j),
 Where xmin,j and xmax,j are lower
and upper bound for jth
component respectively and
rand(0,1) is a uniform random
number between 0 and 1.

Randomly construct a population P
of NP individuals, dimension of
each vector being n, using the
following rule:
xi,j= xmin,j + rand(0, 1)(xmax,j-xmin,j),
 Where xmin,j and xmax,j are lower
and upper bound for jth component
respectively and rand(0,1) is a
uniform random number between 0
and 1.
Construct another population OP
of NP individuals using the
following rule:

!!!! ! !!"#!! ! !!"#!! ! !!!!
Where pi,j are the points of
population P.
Construct initial population S
taking NP best individuals from
union of P and OP.

Mutation Select randomly three distinct
individuals Xr1, Xr2 and Xr3 from
population S and perform
mutation using formula:
!! ! !!" ! !!!!!! ! !!!!

Where individual Xr1 is
randomly chosen (i.e. it may be
any one from the three
individuals).

Select randomly three distinct
individuals Xr1, Xr2 and Xr3 from
population S and perform mutation
using formula:

!! ! !!" ! !!!!!! ! !!!!
Where individual Xtb (=Xr1) is the
individual having the best fitness
value among the three individuals.

Crossover: Perform crossover according to
equation (2).

Perform crossover according to
equation (2).

Selection Perform selection of candidates
for the next generation using
equation (3).

Perform selection of candidates for
the next generation using equation
(3).

Structure Maintains two populations;
operations performed in current
population and data stored in
advance population.

All DE operations are performed
on a Single population.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE II (A)
NUMERICAL BENCHMARK FUNCTIONS WITH A VARYING NUMBER OF DIMENSIONS (n).
FUNCTIONS SINE AND COSINE TAKE ARGUMENTS IN RADIANS. THE MATRIX A USED IN

FUNCTION f14, THE VECTORS a AND b USED IN f15 AND THE MATRIX a AND VECTOR c USED IN
f21 – f23 ARE DEFINED IN THE APPENDIX. fmin DENOTES THE MINIMUM VALUE OF THE

FUNCTION.
Test functions n Range fmin

!! ! ! !!!
!

!!!
 30 [-100,100] 0

!! ! ! !! ! !!
!

!!!

!

!!!
 30 [-10,10] 0

!! ! ! !!
!

!!!

!!

!!!
 30 [-100,100] 0

!! ! ! !"#! !! ! ! ! ! ! ! 30 [-100,100] 0

!! ! ! !""!!!!! ! !!!!! ! !!! ! !!!
!!!

!!!
 30 [-30,30] 0

!! ! ! ! !! ! !!! !!
!

!!!
 30 [-100,100] 0

!! ! ! !!!! ! !"#$%& !!!
!

!!!
 30 [-128,128] 0

!! ! ! !!!!"# !!
!

!!!
 30 [-500,500] -12569.5

!! ! ! !!! ! !" !"# !!!! ! !"
!

!!!
 30 [-5.12, 5.12] 0

!!" ! !!"!"# !!!! !
! !!!

!

!!!
! !"# !

! !"#!!!!
!

!!!

! !" ! !

30 [-32, 32] 0

!!! !
!

!""" !!! ! !"# !!
!

!

!!!

!

!!!
! ! 30 [-600,600] 0

!!" !
!
! !"!"#! !!! ! !! ! ! ! !

!!!

!!!

! !"!"#! !!!!! ! !! ! ! !

! ! !! ! !"!!""!! !
!

!!!

!! ! ! ! !! !!! ! !!

! !! ! !! !!! !
! !" ! ! ! ! !! ! !
!!!! ! !! ! !!

!!!!! ! !!! ! !! ! !!

30 [-50, 50] 0

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

!!" ! !!! !"#! !!!!

! !! ! ! ! ! ! !"#! !!!!!!
!!!

!!!

! !! ! ! !! ! !"#! !!!!

! !!!! ! !! !""!!!
!

!!!

30 [-50,50] 0

!!" !
!
!"" !

!
! ! !! ! !!"

!!
!!!

!"

!

!!

 2 [-65.536,
65.536] 0.998004

!!" ! !! !
!! !!! ! !!!!
!!! ! !!!! ! !!

!!!

!!!
 4 [-5,5] 0.0003075

!!" ! !!!! ! !!!!!! !
!
! !!

! ! !!!! ! !!!! ! !!!! 2 [-5,5] -
1.0316285

!!" ! !! !
!!!
!!! !!

! ! !
! !! ! !

!
! !" ! ! !

!! !"#!!
! !"

2 [-
5,10]x[0,15] 0.397887

!!" ! ! ! !! ! !! ! ! ! !" ! !"!! ! !!!! ! !"!!
! !!!!! ! !!!!
! !" ! !!! ! !!! ! !" ! !"!!
! !"!!! ! !"!! ! !"!!!! ! !"!!!

2 [-2,2] 3

!!" ! ! !!!"# ! !!" !! ! !!"
!!

!!!

!

!!!
 3 [0,1] -3.86278

!!" ! ! !!!"# ! !!" !! ! !!"
!!

!!!

!

!!!
 6 [0,10] -3.32237

!!" ! ! ! ! !! ! ! !! ! ! !! !!
!

!!!
 4 [0,10] -10.1532

!!! ! ! ! ! !! ! ! !! ! ! !! !!
!

!!!
 4 [0,10] -10.4029

!!" ! ! ! ! !! ! ! !! ! ! !! !!
!"

!!!
 4 [0,10] -10.5364

!!" ! !!! ! !!!!"!
!

!!!

!!

!!!
! !!!!"!

!

!!!

!

 30 [-5, 10] 0

!!" ! ! !"# !! !"#!!!!!!"# ! !! ! ! ! ! !! ! ! ! 2 [-10, 10] -1

Frequency modulation sound parameter identification. [Das et al., 2009]

Frequency-modulated (FM) sound synthesis plays an important role in several modern
music systems. Here we consider a system that can automatically generate sounds similar
to the target sounds. It consists of an FM synthesizer, a DE optimizer, and a feature
extractor. The DE algorithm initializes a set of parameters and the FM synthesizer
generates the corresponding sounds. In the feature extraction step, the dissimilarities of
features between the target sound and synthesized sound are used to compute the fitness
value. The process continues until synthesized sounds become very similar to the target.
The specific instance considered in this paper involves determination of six real
parameters X = {a1, w1, a2, w2, a3, w3} of the FM sound wave given by

()()()1 1 2 2 3 3() sin sin siny t a w t a w t a w t! ! != " " " + " " " + " " " for approximating it to

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

the sound wave given as
()()()0 () 1.0 sin 5.0 1.5 sin 4.8 2.0 sin 4.9y t t t t! ! != " " " + " " " + " " "

where!! ! !!!"". The parameters are defined in the range [-6.4, 6.35]. The fitness
function is defined as minimizing the sum of square error between the evolved data and
the model data as follows:
 () ()

100
2

1 1 2 2 3 3 0
0

, , , , , () ()
t

f a w a w a w y t y t
=

= !"

It is a highly complex multimodal problem with a strong interrelation among the
variables. The optimum value of the problem is zero.

The spread spectrum radar poly- phase code design problem. [Das et al., 2009]

A famous problem of optimal design arises in the field of spread spectrum radar poly-
phase codes. Such a problem is very well suited for validating a global optimization
algorithm like DE. A formal definition of the problem can be given as:

1 2min () max{ (),..., ()}mf X f X f X=
Where

 1{(,...,) |0 2 , 1,..., }n
n jX x x R x j n!= " # # =

and m=2n-1,

With
2 1

|2 1| 1

() cos , 1,2,...,
jn

i k
j i k i j

f X x i n!
= = ! ! +

" #
= =$ %

& '
((

2
1 |2 1| 1

() .5 cos , 1,2,..., 1
jn

i k
j i k i j

f X x i n
= + = ! ! +

" #
= + = !$ %

& '
((

() (), 1,2,...,m i if X f X i m+ = ! =

Here the objective is to minimize the module of the biggest among the samples of the so-
called autocorrelation function which is related to the complex envelope of the
compressed radar pulse at the optimal receiver output, while the variables represent
symmetrized phase differences.

The objective function of this problem for the dimension n=2 is illustrated in Fig. 1.
The problem belongs to the class of continuous min–max global optimization problems.
They are characterized by the fact that the objective function is piecewise smooth.

Transistor Modeling [Price, 1983]

The mathematical model of the transistor design is given by,

Minimize !
=

++=
4

1

222)()(
k

kkxf "#$

Where 3
7315321 10({exp[)1(!"!!= xggxxxx kkk# 245

3
85 }1)]10 xggxg kkk +!"! !

3
73216421 10({exp[)1(!"!!!= xgggxxxx kkkk# kkk gxgxg 415

3
94 }1)]10 +!"+ ! .

4231 xxxx !="

Subject to: 0!ix and the numerical constants ikg are given by the matrix.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

4823.2113884.1348467.1115132.28
267.191461.111779.1013037.23
2153.209274.220677.102095.5
455.1703.0254.1369.0
982.0869.0752.0485.0

This objective function provides a least-sum-of-squares approach to the solution of a
set of nine simultaneous nonlinear equations, which arise in the context of transistor
modeling.

Figure 1: Objective function of spread spectrum radar poly- phase code design problem for n=2.

C. Nontraditional Benchmark Problems of CEC 2008
We validated the efficiency of proposed MDE on a selected set of recently proposed
benchmark test suite for CEC 2008 special session and competition on large scale global
optimization [Tang et al., 2007]. This test suite was specially designed to test the
efficiency and robustness of a global optimization algorithm like DE. We considered
seven problems from this test suite and tested them for dimension 500. It includes the two
unimodal (F1 and F2) and five multimodal (F3- F7) functions among which four are non-
separable (F2, F3, F5, F7) and three separable (F1, F4, F6). Name of the functions and their
properties are listed in Table II (B).

TABLE II (B)

SELECTED BENCHMARK PROBLEMS PROPOSED IN CEC2008 [65]. ALL PROBLEMS ARE EXECUTED FOR
DIMENSION 500.

Fun Name Properties Search Space
F1 Shifted Sphere Unimodal, Separable , scalable [!100, 100]
F2 Shifted Schwefel’s 2.21 Unimodal, Non-separable [!100, 100]

F3 Shifted Rosenbrock’s Multi-modal, Non-separable. A narrow valley
 from local optimum to global optimum. [!100, 100]

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

F4 Shifted Rastrigin’s Multi-modal, Separable Huge number of local
optima [!5, 5]

F5 Shifted Griewank’s Multi-modal, Non-separable [!600, 600]
F6 Shifted Ackley’s Multi-modal, Separable [!32, 32]
F7 FastFractal DoubleDip Multi-modal, Non-separable [-1, 1]

7. RESULTS AND DISCUSSIONS
A. Comparison of MDE and its parent algorithms with DE

 The proposed MDE algorithm is a fusion of three other algorithms MDE1, ODE and
DERL. Therefore first of all we compared the performance of all these algorithms with
the basic DE in terms of the various performance criteria mentioned in the previous
section. In Table III (A) we have recorded the performance of all the four algorithms in
terms of error and standard deviation. From this table we can see that out of 25 test cases
MDE outperformed the other three algorithms in 10 cases in terms of both error and
standard deviation. In 13 cases all the algorithms gave similar results while in the
remaining two cases MDE1 and DERL gave the best performance.

ACM Transactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date:****

TABLE III (A)

COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD
BENCHMARK PROBLEMS IN TERMS OF ERROR AND STANDARD DEVIATION (Std.). THE BEST

RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. EACH ALGORITHM IS RUN FOR
MAXIMUM NFE = 10000*n, n is DIMENSION OF THE PROBLEM

Fun n Error (Std.)
DE MDE MDE1 ODE DERL

f1 30 5.24848e-32
(2.50302e-32)

1.77622e-76
6.41905e-78

3.43423e-48
8.43943e-50

6.34393e-41
2.40300e-43

3.15789e-63
8.92424e-65

f2 30
7.64876e-16

(5.96538e-16)
9.76428e-38
6.74634e-38

4.23421e-25
3.45932e-26

3.44593e-21
3.49532e-25

2.10125e-31
7.48388e-34

f3 30
1.77664e-30

(1.04434e-30)
1.07703e-75
4.44153e-77

3.45543e-38
1.38309e-40

7.43932e-34
4.30094e-35

1.56214e-62
3.40335e-60

f4 30
2.57862e-04

(1.51977e-07)
1.22089e-09
6.95936e-09

9.23275e-04
2.48839e-05

4.49593e-04
6.43490e-04

6.54522e-04
5.30902e-04

f5 30
1.74229e-01

(1.43011e+00)
1.14867e-25
1.52704e-26

2.34439e-02
1.24943e+00

7.32341e-01
1.82344e+01

4.13605e-14
8.49383e-17

f6 30
0
0

0
0

0
0

0
0

0
0

f7 30 7.08548e-03
(6.67423e-03)

1.91822e-03
2.51635e-03

3.43094e-03
3.40023e-03

5.39234e-03
4.30893e-03

3.32073e-03
3.49588e-03

f8 30 6.81866e+01
7.72931e+01

2.02660e+00
1.18452e+01

1.34393e-02
1.29922e+01

1.10366e+01
1.39020e+01

1.42086e+02
1.44324e+01

f9 30 1.49594e+02
1.70130e+02

4.92040e+01
1.49244e+01

1.30031e+02
2.30439e+01

1.13584e+02
3.00283e+02

1.24723e+02
9.43885e+01

f10 30 3.69735e-15
0

3.69735e-15
0

3.69735e-15
0

3.69735e-15
0

3.69735e-15
0

f11 30 0
0

0
0

0
0

0
0

0
0

f12 30 1.35360e-19
0

1.35360e-31
0

4.49594e-21
0

1.04493e-19
0

3.54594e-23
0

f13 30 1.29115e-19
0

1.29115e-29
0

3.45943e-20
0

1.03113e-19
0

5.43222e-22
0

f14 2 0
0

0
0

0
0

0
0

0
0

f15 4 0
4.84870e-20

0
3.57137e-20

0
4.59043e-20

0
4.59043e-20

0
4.59043e-20

f16 2 0
2.22045e-16

0
2.22045e-16

0
2.22045e-16

0
2.22045e-16

0
2.22045e-16

f17 2 0
0

0
0

0
0

0
0

0
0

f18 2 0
4.44089e-16

0
4.44089e-16

0
4.44089e-16

0
4.44089e-16

0
4.44089e-16

f19 3 3.00012e-06
4.44089e-16

3.00012e-06
4.44089e-16

3.00011e-06
4.44089e-16

3.00011e-06
4.44089e-16

3.00011e-06
4.44089e-16

f20 6 4.75550e-02
5.82455e-02

3.56650e-02
5.44837e-02

3.75550e-02
5.44837e-02

3.8675e-02
5.44837e-02

3.2675e-02
5.44837e-02

f21 4 0
1.58882e-15

0
1.58882e-15

0
1.58882e-15

0
1.58882e-15

0
1.58882e-15

f22 4 0
1.48621e-15

0
1.68520e-15

0
1.68520e-15

0
1.68520e-15

0
1.68520e-15

f23 4 0
1.77636e-15

0
1.77636e-15

0
1.77636e-15

0
1.77636e-15

0
1.77636e-15

f24 30 1.95165e-32
2.06563e-32

1.47748e-76
5.93376e-77

5.32332e-42
8.34993e-43

3.32494e-38
7.39920e-41

1.12489e-64
5.94992e-67

f25 2 0
0

0
0

0
0

0
0

0
0

ACM Transactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date:****

However, on the basis of the number of function evaluations (NFE) taken by all the
algorithms for which the results are given in Table III(B) we see that MDE gave a
superior performance in comparison to other algorithms in 24 out of 25 cases. DE, ODE
and MDE1 were not able to solve the fifth function f5, while none of the algorithms were
able to reach the desired accuracy of 10-8 for the function f9 and were therefore terminated
when the maximum NFE (= 10*n) was reached. On an average the NFE taken by the
proposed MDE algorithm for solving 25 problems is only 40318.7. While the average
NFE taken by DE, ODE, DERL and MDE1 are 74840.4, 72770.1, 44803.7 and 70861.6
respectively. The performance graphs of few selected functions are illustrated in Figure 2.
These graphs are drawn according to the fixed accuracy and not according to fixed NFE.

The faster convergence rate of the proposed MDE is also justified with the help of the
acceleration rate (AR). We calculated the %AR of MDE, ODE, DERL and MDE1 against
DE and recorded the results in Table III(C). From this Table we can clearly see that for
11 test problems the % AR of MDE in comparison to DE is more than 50%. For 7 test
problems the % AR is more than 40% and for 4 test problems it is more than 30%. In
case of f9, AR is not recorded because none of the algorithms were able to meet the
desired accuracy criteria. In case of f5, AR is not recorded because DE was not able to
solve it successfully. On an average the AR of MDE vs. DE is 46.12%. When we
compare ODE against DE we see that the % AR is less than 10% for all the test problems
with ODE performing worse than DE for 4 test cases. On an average the AR for ODE vs.
DE is 1.15%. The performance of DERL is closest to the performance of MDE with
DERL giving % AR of more than 45% in 9 test cases and more than 50% in 1 case. In 9
cases DERL gave an AR of more than 30% and in 4 cases the % AR is more than 20%.
In case of MDE1 and DE, the %AR of MDE1 is less than 10% for 10 test cases, while in
2 cases the performance of MDE1 is worse than DE. For 10 cases the % AR for MDE1 is
more than 20%.

The successful performance of all the algorithms is summarized in Table III (D). Here
we see that on an average, the success rate of the proposed MDE algorithm is 94%, while
for DE, ODE, DERL and MDE1, the average success rate is 88, 88, 90 and 87 %
respectively. DE and ODE were not able to reach the desired accuracy for function f5 and
none of the algorithm was able to meet the desired accuracy criteria for function f9.

TABLE III (B)

COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD
BENCHMARK PROBLEMS IN TERMS OF NFE. THE BEST RESULTS OBTAINED ARE HIGHLIGHTED

IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02.
MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM. ‘- -’

REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY.
Ave. REPRESENTS AVERAGE

Fun n
NFE

DE MDE ODE DERL MDE1
f1 30 104310 45980 101040 56700 94700
f2 30 173850 77830 165570 93890 160240
f3 30 110700 48600 102400 59700 101400
f4 30 274150 258886 263140 245250 297600
f5 30 -- 190600 -- 257100 --
f6 30 31890 14850 30030 17080 28770
f7 30 131640 70680 130680 80660 137370
f8 30 226850 101067 222033 108800 210986
f9 30 -- -- -- -- --
f10 30 163020 72800 162310 87430 149200
f11 30 108930 48077 106300 58430 99600
f12 30 95400 43340 94460 50910 85600

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

f13 30 104310 46680 104060 55110 91100
f14 2 5220 3330 5260 3640 5360
f15 4 11220 6050 11800 7780 9750
f16 2 5720 3330 5690 4020 4810
f17 2 6930 4790 7050 4970 6750
f18 2 4470 2850 4460 3200 3930
f19 3 5010 2870 4950 3410 4390
f20 6 14400 7050 13560 8825 13100
f21 4 11990 6640 11920 7570 10350
f22 4 11290 6220 11260 7430 9380
f23 4 11330 6190 11090 7440 10090
f24 30 104540 46580 100300 55050 91500
f25 2 4160 2640 4350 3190 3840

Ave 74840.4 40318.7 72770.1 44803.7 70861.6

TABLE III (C)
COMPARISON OF PROPOSED MDE, MDE1, ODE AND DERL FOR 25 STANDARD BENCHMARK

PROBLEMS AGAINST DE IN TERMS OF AR. THE BEST RESULTS OBTAINED ARE HIGHLIGHTED
IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02.

MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM. ‘- -‘ IN f5
AND f9 INDICATES THAT AR CANNOT BE CALCULATED FOR THEM. Ave. REPRESENTS

AVERAGE

Fun n
Acceleration Rate (AR)

MDE vs. DE ODE vs. DE DERL vs. DE MDE1 vs. DE
f1 30 55.92 3.13 45.64 9.21
f2 30 55.24 4.76 45.99 7.83
f3 30 56.1 7.50 46.07 8.40
f4 30 5.57 4.01 10.54 -8.55
f5 30 -- -- -- --
f6 30 53.44 5.83 46.44 9.78
f7 30 46.31 0.73 38.73 -4.35
f8 30 55.45 2.12 52.04 6.99
f9 30 -- -- -- --
f10 30 55.35 0.44 46.37 8.48
f11 30 55.87 2.41 46.36 8.57
f12 30 54.58 0.99 46.64 10.27
f13 30 55.25 0.24 47.17 12.66
f14 2 36.21 -0.77 30.27 -2.68
f15 4 46.08 -5.17 30.66 13.10
f16 2 41.79 0.52 29.72 15.91
f17 2 30.89 -1.73 28.28 2.60
f18 2 36.25 0.22 28.41 12.08
f19 3 42.72 1.20 31.94 12.38
f20 6 51.05 5.83 38.72 9.03
f21 4 44.63 0.58 36.86 13.68
f22 4 44.91 0.27 34.19 16.92
f23 4 45.37 2.12 34.33 10.94
f24 30 55.45 4.06 47.34 12.47
f25 2 36.54 -4.57 23.31 7.69
Ave 46.12 1.51 37.65 8.41

Analysis of results – Although on the basis of error and standard deviation no concrete
conclusion can be drawn on the performance of the proposed MDE algorithm but if we
look at other performance criteria we can clearly observe the efficient performance of
MDE. The improvement in NFE taken by ODE, MDE1 and DERL in comparison to DE

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

is 2.8%, 5.3% and 40.1% respectively, whereas for MDE this improvement is 46.1%
justifying the effect of synergy. A similar trend can be observed in terms of % AR and
SR. On an average the % AR for MDE is 46.12% while for ODE, DERL and MDE1 it is
1.5, 37.65 and 8.5% respectively in comparison to DE. Further MDE emerges as the most
successful algorithm with an average SR of 94%.

TABLE III (D)

 COMPARISON OF PROPOSED MDE WITH DE, MDE1, ODE AND DERL FOR 25 STANDARD
BENCHMARK PROBLEMS IN TERMS OF SR.THE BEST RESULTS OBTAINED ARE HIGHLIGHTED

IN BOLDFACE. ACCURACY IS SET AS 10-08 FOR ALL FUNCTION EXCEPT f7 WHERE IT IS 10-02.
MAXIMUM NFE IS SET AS 10000*n, n REPRESENTS THE DIMENSION OF THE PROBLEM.

AVERAGE SR IS RECORDED IN THE LAST ROW.
Fun n Success Rate (SR)

 DE MDE ODE DERL MDE1
f1 30 1 1 1 1 1
f2 30 1 1 1 1 1
f3 30 1 1 1 1 1
f4 30 0.36 0.75 0.52 0.44 0.52
f5 30 0 1 0 1 0
f6 30 1 1 1 1 1
f7 30 1 1 1 1 1
f8 30 0.9 0.88 0.88 0.72 0.76
f9 30 0 0 0 0 0
f10 30 1 1 1 1 1
f11 30 1 1 1 1 1
f12 30 1 1 1 1 1
f13 30 1 1 1 1 1
f14 2 1 1 1 1 1
f15 4 1 1 1 1 1
f16 2 1 1 1 1 1
f17 2 1 1 1 1 1
f18 2 1 1 1 1 1
f19 3 1 1 1 1 1
f20 6 0.84 0.78 0.62 0.44 0.48
f21 4 1 1 1 1 1
f22 4 1 1 1 1 1
f23 4 1 1 1 1 1
f24 30 1 1 1 1 1
f25 2 1 1 1 1 1
Ave 0.88 0.94 0.88 0.90 0.87

TABLE III (E)

 RESULTS OF FRIEDMAN TEST BASED ON ERROR
N Friedman value df p-value
25 30.384 4 <0.001
df – Degrees of Freedom N - Total No of functions

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE III (F)
RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD) CALCULATED

THROUGH BONNFERRONI-DUNN’S PROCEDURE
Algorithm Mean Rank

DE 3.82
MDE 2.18
MDE1 3.00
ODE 3.32

DERL 2.68
CD for " = 0 .05 1.11714
CD for " = 0.10 1.002206

TABLE III (G)

RESULTS OF PAIRWISE COMPARISON BASED ON ERROR
MDE
Vs.

paired t-test Wilcoxon test
Stat p-value +ve -ve tie Stat p-value

DE -1.419 0.196 12 0 13 -2.803 0.005
MDE1 -0.974 0.340 11 2 12 -1.852 0.044
ODE -1.147 0.263 12 1 12 -2.691 0.007
DERL -1.279 0.181 11 2 12 -1.852 0.064

TABLE III (H)
RESULTS OF FRIEDMAN TEST BASED ON NFE

N Friedman value df p-value
25 85.849 4 <0.001
df – Degrees of Freedom N - Total No of functions

TABLE III (I)

RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD) CALCULATED
THROUGH BONNFERRONI-DUNN’S PROCEDURE

Algorithm Mean Rank
DE 4.60

MDE 1.12
MDE1 4.00
ODE 3.28

DERL 2.00
CD for " = 0 .05 1.11714
CD for " = 0.10 1.002206

TABLE III (J)

RESULTS OF PAIRWISE COMPARISON BASED OF NFE
MDE
Vs.

paired t-test Wilcoxon test
Stat p-value +ve -ve tie Stat p-value

DE -4.584 0.000 24 0 1 -4.286 0.000
MDE1 -4.581 0.000 24 0 1 -4.286 0.000
ODE -4.472 0.000 24 0 1 -4.286 0.000
DERL -2.438 0.023 23 1 1 -3.686 0.002

B. Statistical Analysis
Error values included in Table III (A) allow us to carry out a rigorous statistical study in

order to check whether the results of the algorithms are rather significant for considering
them different in terms of quality on approximation of continuous functions. Our study
will be focused on the algorithm that had the lowest average error rate in the comparison,
MDE. We studied the behaviour of this algorithm with respect to the remaining ones, and

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

determined if the results it offered are better than the ones offered by the rest of
algorithms, computing the p-value on each comparison. Table III (E) shows the result of
applying Friedman’s tests in order to see whether there are global differences in the
results. Given that the p-value of Friedman test is lower than the level of significance
considered ! = 0.05, there are significant differences among the observed results.
Attending to these results, a post-hoc statistical analysis is done to detect concrete
differences among algorithms. First of all, we employed Bonferroni-Dunn’s test to detect
significant differences for the control algorithm MDE. Table III (F) summarizes the
ranking obtained by Friedman’s test and the critical difference (CD) of Bonferroni-
Dunn’s procedure. In Figure 3(a), Bonferroni-Dunn’s graphic illustrates difference
among rankings obtained for each algorithm. In this, we draw a horizontal cut line which
represents the threshold for the best performing algorithm, the one with the lowest
ranking bar, in order to consider it better than other algorithms. A cut line is drawn for
each level of significance considered in the study at height equal to the sum of the
ranking of the control algorithm and the corresponding Critical Difference computed by
the Bonferroni-Dunn method. The bars which exceed this line are associated to an
algorithm with worse performance than the control algorithm. The application of
Bonferroni-Dunn’s test informs us of the following significant differences with MDE as
control algorithm:

• MDE is better than DE and ODE with ! = 0.05 and ! = 0.10 (2/4 algorithms).
Until now, we used procedures for performing multiple comparisons in order to check

the behaviour of the algorithms. We then compared MDE with the rest of the algorithms
pair wise using Wilcoxon and paired t-test. The corresponding results are given in Table
III (G). It displays the statistics, p-value and number of +ve ranks (where control
algorithm performed better than comparing algorithm), -ve ranks (where control
algorithm performed worse than comparing algorithm) and tie (both algorithms
performed equivalently).

From this Table we see that in case of DE, for 12 problems MDE performed better
than it, while for 13 cases both the algorithms performed similarly. In case of MDE1, for
11 test cases MDE performed better than it while for 2 cases MDE1 performed better
than MDE. In the remaining two cases both algorithms performed equivalently. MDE
outperformed ODE in 12 cases and ODE outperformed MDE in 1 case. In the remaining
12 cases both algorithms gave a similar performance. MDE performed better than DERL
in 11 cases, in 12 cases there was a tie i.e. both algorithms performed equivalently while
in 2 cases DERL outperformed MDE. In an interesting observation we see that according
to t-test there is no significant difference between MDE and other algorithms but
according to Wilcoxon test we see that although there is no difference between MDE and
DERL, but there is a significant difference between MDE and other algorithms.

Following the procedure given above we did a similar analysis for NFE given in Table
III (B). The statistical results based on it are summarized in Tables III (H)-III (J). From
these Tables and from the graphical illustration given in Figure 3(b), we see that in an
overall comparison MDE and DERL are at par with each other while the remaining
algorithms perform worse than MDE. However, when we perform a pair wise
comparison for which the results are given in Table III (J), we see that there is a
significant difference between MDE and other algorithms.

The performance of MDE and other algorithms in terms of NFE is also shown with the
help of box-plot given in Figure 3(c).

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Analysis of results – on the basis of error once again we cannot make a concrete
judgment about the performance of MDE. But if we observe NFE we can see that MDE
performs better than other algorithms.

C. Influence of dimensionality
In order to investigate the effect of dimensionality on the performance the proposed

MDE algortihm we considered the scalable problems and varied their dimension as n/2
(=15) and 2n (=60). The corresponassociatedding results in terms of average NFE and
Success Rate are reported in Table IV. For problems of dimension 15, MDE
outperfromed DE by a significant difference for all the functions except f9, for which
neither of the algorithms were able to reach the desired accuracy and were therefore
terminated when the maximum NFE was reached. The average NFE taken by DE for 15
dimensions problem is 61315 which is almost twice the average NFE taken by MDE
which is 30588.75. further the average success rate for DE is 0.80 only whereas for MDE
the average success rate is 0.90.

When we increased the dimension to 60, the performance of DE further deteriorated in
comparison to MDE. DE was not able to solve problems f4 and f5 for dimension 60 under
the given parameter settings. Once again neither of the algorithms were able to solve
function f9. The average NFE taken by DE comes out to be 259429.1 while the NFE
taken by MDE comes out to be 162934.5, which is half the NFE taken by DE. The
average success rate of DE and MDE are 0.74 and 0.83 respectively.

Analyisis of results – for smaller dimension (15) as well as for larger dimension (60) we see
that in terms of NFE, MDE shows an improvement of around 50% for problems of dimension
both 15 and 60. The SR of MDE is 10% better than the SR of DE for problems of dimension
15 and is 9% better than DE for problems of dimension 60.

D. Influence of varying the population size (NP)
In order to observe the effect of varying population size on the proposed MDE

algortihm, we considered two different population sizes NP/2 (=50) and 2NP (=200) and
recorded the NFE and SR for DE and MDE algorithms. The corresponding results are
given in Table V. For NP=100, the average NFE for DE and MDE was 74840.43 and
40318.7 respectively, which reduced to 29008.14 and 16580.91 respectively when the
population size was reduced to NP=50. However the success rate also reduced from 0.88
to 0.85 for DE and from 0.94 to 0.86 for MDE. Likewise when we increased the
population size to 200, the success rate incresed to 0.90 and 0.95 at the cost of higher
NFE, which shot up to 174273.3 (for DE) and 101195.3 (for MDE).

Anaysis of Results – for smaller population size (NP=50) both DE and MDE
performed reasonably well in terms of NFE with MDE being almost 50% faster than DE.
However the success rate deteriorated by 3% and 8% for DE and MDE repsectively in
comparison to the success rate for population size 100. For larger population (NP=200),
the SR improve by 2% and 1% respectively for DE and MDE at the cost of more than
50% increase in NFE for both DE and MDE. This is an expected outcome as most of the
population based search techniques are sensitive to the population size. This also shows
that NP=100 is quite effecient for solving problems up to dimension 30.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(a)

(b)

!"

#!!!!"

$!!!!"

%!!!!"

&!!!!"

'!!!!"

(!!!!"

)!!!!"

*!!!!"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluation

+,"

-+,"

!.!!,/!!"

'.!!,/!0"

#.!!,/#!"

#.'!,/#!"

$.!!,/#!"

$.'!,/#!"

%.!!,/#!"

%.'!,/#!"

&.!!,/#!"

&.'!,/#!"

!" $!!!!" &!!!!" (!!!!" *!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(c)

(d)

!"

$!!!!!"

&!!!!!"

(!!!!!"

*!!!!!"

#!!!!!!"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

!"

!.#"

!.$"

!.%"

!.&"

!.'"

!.("

!.)"

!.*"

!" '!!!!" #!!!!!" #'!!!!" $!!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(e)

(f)

!"

$!"

&!"

(!"

*!"

#!!"

#$!"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

!"

'"

#!"

#'"

$!"

!" $!!!!" &!!!!" (!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(g)

(h)

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

!.!!,/!!"
#.!!,/!*"
$.!!,/!*"
%.!!,/!*"
&.!!,/!*"
'.!!,/!*"
(.!!,/!*"
).!!,/!*"
.!!,/!"
0.!!,/!*"
#.!!,/!0"

!" #!!!!" $!!!!" %!!!!" &!!!!"

Fi
tn

es
s

Noof function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(i)

!.!!,/!!"
#.!!,/!*"
$.!!,/!*"
%.!!,/!*"
&.!!,/!*"
'.!!,/!*"
(.!!,/!*"
).!!,/!*"
.!!,/!"
0.!!,/!*"
#.!!,/!0"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

(j)
Figure 2 Sample graphs (best solution versus NFE) for performance comparison between DE and MDE. (a) – (j)

represents functions f1, f2, f3, f4, f7, f10, f11, f12, f13, and f24

!.!!,/!!"
#.!!,/!)"
$.!!,/!)"
%.!!,/!)"
&.!!,/!)"
'.!!,/!)"
(.!!,/!)"
).!!,/!)"
*.!!,/!)"
0.!!,/!)"
#.!!,/!*"

!" #!!!!" $!!!!" %!!!!" &!!!!" '!!!!"

Fi
tn

es
s

No of function evaluations

+,"

-+,"

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Figure 3(a) Bonferroni-Dunn’s graphic corresponding to the error

Figure 3(b) Bonferroni-Dunn’s graphic corresponding to NFE

!"#$

$"%#

! !"!$
$"&#

'

'"(

%

%"(

$

$"(

!

!"(

)

)"(

+ ,+ ,*+-% .*+ *+/0

A
ve

ra
ge

 R
an

k

Control algorithm: MDE

CD=1.11714 !=0.05 - - - -
CD=1.00222 !=0.10

!"#

$"$%

!
&"%'

%

(

(")

$

$")

%

%")

&

&")

!

!")

)

+ ,+ -*+ ,*+.$ *+/0

A
ve

ra
ge

 R
an

k

Control algorithm: MDE

CD=1.11714 !=0.05 - - - -
CD=1.00222 !=0.10

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Figure 3(c) Box-plot corresponding to the average NFE

DE MDE MDE-1 ODE DERL

0

0.5

1

1.5

2

2.5

3

x 105

Nu
mb

er
of

fun
cti

on
 ev

alu
ati

on

Algorithms

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE IV
INFLUENCE OF DIMENSIONALITY – COMPARISON OF MDE WITH DE IN TERMS OF NFE AND SR
FOR SCALABLE PROBLEMS. THE DIMENSIONS ARE TAKEN AS n/2(=15) AND 2n (=60). THE BEST
RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. WHEN NO RESULT IS HIGHLIGHTED IT

INDICATES THAT ALL THE ALGORITHMS HAVE SAME RESULTS. ACCURACY IS SET AS 10-08
FOR ALL FUNCTION EXCEPT NOISY f7 FUNCTION WHERE IT IS 10-02. MAXIMUM NFE IS SET AS
10000*n. Ave REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT

ABLE TO ACHIEVE THE DESIRED ACCURACY.

Fun
NFE Success Rate (SR)

n=15 n=60 n=15 n=60
DE MDE DE MDE DE MDE DE MDE

f1 49050 23250 192400 85800 1 1 1 1
f2 80440 39350 305120 134890 1 1 1 1
f3 52900 24100 215700 96800 1 1 1 1
f4 123210 60400 -- 528000 0.65 1 0 0.52
f5 -- 62550 -- 546000 0 1 0 0.87
f6 14310 7040 57000 26990 1 1 1 1
f7 43740 29580 451600 432000 1 1 1 1
f8 57960 40155 594000 516000 0.92 0.95 0.9 0.71
f9 -- -- -- -- 0 0 0 0
f10 77990 37750 288800 125900 1 1 1 1
f11 98700 39200 184600 85500 0.57 0.65 0.47 0.5
f12 44640 21450 165000 90400 1 1 1 1
f13 47460 23240 191400 102000 1 1 1 1
f24 45380 21550 208100 96000 1 1 1 1

Ave 61315 30588.75 259429.1 162934.5 0.80 0.90 0.74 0.83

TABLE V
INFLUENCE OF VARYING POPULATION SIZES – COMPARISON OF MDE WITH DE IN TERMS OF
NFE AND SR FOR ALL THE 25 PROBLEMS. THE POPUALTION SIZES ARE TAKEN AS NP/2 (=50)

AND 2NP (=200). THE BEST RESULTS OBTAINED ARE HIGHLIGHTED IN BOLDFACE. ACCURACY
IS SET AS 10-08 FOR ALL FUNCTION f7 WHERE IT IS 10-02. MAXIMUM NFE IS SET AS 1000000. Ave.

REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO
ACHIEVE THE DESIRED ACCURACY

Fun n

NFE Success Rate (SR)

NP=50 NP=200 NP =50 NP =200
DE MDE DE MDE DE MDE DE MDE

f1 30 40310 19770 286200 128800 1 1 1 1
f2 30 61460 29170 397000 223940 1 1 1 1
f3 30 42350 21445 352000 138000 1 1 1 1
f4 30 -- -- 897000 447920 0 0 0.65 0.89
f5 30 -- 363000 -- 385200 0 1 0 1
f6 30 12320 6165 87000 39800 1 1 1 1
f7 30 70455 65195 260000 245600 1 1 1 1
f8 30 96650 75362 335855 296244 0.65 0.52 0.93 0.96
f9 30 -- -- -- -- 0 0 0 0
f10 30 62650 32450 385282 202600 1 1 1 1
f11 30 41450 20350 297000 133120 0.87 0.70 1 1
f12 30 42177 20438 208321 118560 1 0.9 1 1
f13 30 65218 27255 186323 123600 1 0.9 1 1
f14 2 2572 1690 6521 5820 1 1 1 1
f15 4 6721 3450 18723 11440 1 1 1 1
f16 2 2577 1540 8723 6740 1 1 1 1
f17 2 3572 2000 13272 9660 1 1 1 1
f18 2 2466 1405 9832 5320 1 1 1 1
f19 3 2943 1485 8734 5560 1 1 1 1
f20 6 6823 3350 19838 14688 0.72 0.43 0.89 0.93
f21 4 6282 3050 18923 12900 1 1 1 1
f22 4 7132 2970 20223 12120 1 1 1 1
f23 4 6980 3005 19890 11920 1 1 1 1

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

f24 30 52287 21840 165328 128000 1 1 1 1
f25 2 2784 1395 6299 5140 1 1 1 1

Ave 29008.14 16580.91 174273.3 101195.3 0.85 0.86 0.90 0.95

TABLE VI
EFFECT OF JUMPING ON PROPOSED MDE ALGORITHM WITH JUMPING RATES AS 0.1 AND 0.3.

THE RESULTS ARE TABULATED FOR NUMBER OF FUNCTION EVALUATIONS (NFE) AND
SUCCESS RATE (SR). Ave. REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE

ALGORITHM WAS NOT ABLE TO ACHIEVE THE DESIRED ACCURACY

Fun

n
NFE SR

DE MDE MDEj0.3 MDEj0.1 DE MDE MDEj0.
3

MDEj0.
1

f1 30 104310 45980 48870 48270 1 1 1 1
f2 30 173850 77830 80960 78540 1 1 1 1
f3 30 110700 48600 53400 50700 1 1 1 1
f4 30 274150 258886 267000 261000 0.36 0.75 0.32 0.46
f5 30 -- 190600 248300 212000 0 1 1 1
f6 30 31890 14850 15540 14670 1 1 1 1
f7 30 131640 70680 82000 75420 1 1 1 1
f8 30 226850 101067 -- -- 0.9 0.88 0 0
f9 30 -- -- -- -- 0 0 0 0
f10 30 163020 72800 76670 73200 1 1 1 1
f11 30 108930 48077 52383 49444 1 1 0.62 0.84
f12 30 95400 43340 43811 43280 1 1 0.88 1
f13 30 104310 46680 48744 46920 1 1 0.92 1
f14 2 5220 3330 3265 3290 1 1 1 1
f15 4 11220 6050 6234 6540 1 1 1 1
f16 2 5720 3330 3243 3510 1 1 1 1
f17 2 6930 4790 4840 4520 1 1 1 1
f18 2 4470 2850 2983 3070 1 1 1 1
f19 3 5010 2870 3045 3560 1 1 1 1
f20 6 14400 7050 7143 7620 0.84 0.78 0.44 0.52
f21 4 11990 6640 6538 6930 1 1 1 1
f22 4 11290 6220 6458 6510 1 1 1 1
f23 4 11330 6190 6245 6350 1 1 1 1
f24 30 104540 46580 48300 47700 1 1 1 1
f25 2 4160 2640 6560 2960 1 1 1 1

Ave 67930.9 37557.4 39737.8 38363.8 0.88 0.94 0.85 0.87

TABLE VII
 COMPARISON OF PROPOSED MDE ALGORITHM WITH DE AND ODE [50] ON 7

NONTRADITIONAL SHIFTED FUNCTIONS IN TERMS OF ERROR (BEST MEDIAN, WORST AND
MEAN) AND STANDARD DEVIATION (Std). DIMENSION (n) OF ALL THE PROBLEMS IS TAKEN AS

500. MAXIMUM NFE IS SET AS 5000*n

Problem n Error value DE ODE [50] MDE

F1

500

Best 2, 636.54 15.66 3.48
Median 3, 181.45 36.61 5.32
Worst 4, 328.80 292.65 7.57
Mean 3, 266.24 80.17 4.86
Std 409.68 79.24 4.34

F2

500 Best 79.74 3.60 19.82
Median 82.39 4.86 11.88
Worst 85.92 11.91 12.26
Mean 82.93 5.78 11.87
Std 2.09 2.37 1.93

F3

500 Best 76, 615, 772.08 39, 718.90 727, 996.00
Median 119, 733, 049.20 137, 279.03 731, 546.21
Worst 169, 316, 779.50 407, 661.64 732, 763.93
Mean 123, 184, 755.70 154, 306.34 730, 473.25
Std 29, 956, 737.58 114, 000.53 116,325.43

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

F4

500 Best 5, 209.99 2, 543.51 1, 155.15
Median 5, 324.57 4, 279.56 3, 243.87
Worst 5, 388.24 6, 003.94 4, 478.90
Mean 5, 332.59 4, 216.34 4, 212.76
Std 43.82 1, 017.94 58.60

F5

500 Best 24.29 1.25 0.31
Median 24.71 1.55 0.87
Worst 27.59 2.13 0.96
Mean 25.16 1.75 0.56
Std 1.10 0.37 0.05

F6

500 Best 4.66 2.49 1.18
Median 4.97 4.12 1.47
Worst 5.15 6.73 1.56
Mean 4.94 4.51 1.25
Std 0.17 1.44 0.07

F7

500 Best -3683.07 -3957.85 -3992.76
Median -3575.13 -3834.07 -3836.65
Worst -3565.73 -3830.36 -3833.21
Mean -3593.75 -3851.82 -3863.59
Std 32.74 38.80 29.31

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

E. Effect of jumping on the proposed MDE algorithm
In [14], the authors proposed the concept of jumping in their algorithm ODE. We

applied the same concept on the proposed MDE algorithm, taking jumping rates as 0.1
and 0.3 and recorded the results in terms of NFE and SR in Table VI. From this Table it
can be seen that by applying the concept of jumping, the modified MDE algorithms
(MDEj0.3 and MDEj0.1) were not able to solve function f8 besides f9. Also, the average
NFE increased and the SR deteriorated (0.85 for MDEj0.3 and 0.872 for MDEj0.1).

Analysis of result: The idea of jumping is not beneficial for the MDE algorithm. The
success rate for MDE which is 0.94 came down to 0.85 when jumping rate was kept as
0.3. This shows a deterioration of around 10%. When jumping was reduced to 0.1, there
was an improvement in the average success rate (0.87) but still it was 7% lesser than the
SR of MDE algorithm. Going by these results we can say that the idea of jumping is not
favorable for MDE algorithm.

F. Numerical results for nontraditional benchmark problems
The performance of MDE is also validated on a set of 7 nontraditional benchmark

functions and the corresponding numerical results are reported in Table VII in terms of
best, median, worst and mean error and standard deviation. From these results we see that
MDE outperforms basic DE for all the test problems in terms of error and standard
deviation by a significant difference. In comparison to ODE [50], we see that MDE
outperformed it in 5 out of 7 cases in terms of error as well as standard deviation. In the
remaining two cases ODE [Rahnamayan and Wang, 2008] performed better than MDE.
Analysis of Results – MDE performed better than DE for all the test cases with an
improvement of up to 99% in the best function value for F1, F3 and F5 and an
improvement up to 75% for F2, F4 and F6. For the last function F7, the improvement is
around 8%. In case of ODE, for the 5 function in which MDE gave a better performance,
the improvement in F1 and F5 is more than 75%. For F4 and F6, the improvement is
more than 50% and for F7, the improvement is around 1%. These results show the
efficiency of MDE for solving large scale problems.

G. Numerical results of real life problems
The numerical results of three real life problems are recorded in Tables VIII (A), VIII

(B) and VIII (C). In Table VIII (A), MDE is compared with DE and DEGL for frequency
modulation problem in terms of average fitness function value and standard deviation
(Std.). It can be clearly observed from the Table that MDE outperforms both DE and
DEGL by a significant difference. Result for transistor modeling problem is given in
Table VIII (B). Here MDE is compared with DE in terms objective function value which
is clearly better for MDE. In Table VIII (C) results for spread spectrum radar poly phase
code design problem are given in terms of average fitness function value and standard
deviation. Here MDE is compared with DE and DEGL. The numerical results taken for
dimensions 19 and 20 show that for 19 variables problem, MDE outperformed DE and
DEGL in terms of average fitness function value and for 20 dimensions problem MDE
performed better than both the other algorithms in terms of average fitness function value
and standard deviation.

Analysis of results – from these results we can say that the proposed MDE is
competent for solving the real life problems.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE VIII (A)

AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS FOR
50 RUNS ON THE FREQUENCY

MODULATOR SYNTHESIS PROBLEM. EACH ALGORITHM WAS RUN FOR 105 NFEs

DE MDE DEGL[64]

4.70081e-04
(3.4345e-05)

1.24148e-28
(7.3288e-31)

4.81520e-09
(6.2639e-09)

TABLE VIII(B)

AVERAGE AND PARAMETER VALUES OF THE BEST-OF-RUN SOLUTIONS FOR 50 RUNS OVER THE
TRANSISTOR MODELING PROBLEM EACH ALGORITHM WAS RUN UP TO 5 # 105 NFEs

 DE MDE

x1 0.901340 0.901337
x2 0.891164 0.891043
x3 3.87857 3.87943
x4 3.94653 3.94663
x5 5.32623 5.32509
x6 10.6267 10.6171
x7 0.0 0.0
x8 1.08924 1.08832
x9 0.705675 0.706734

f(X) 0.0937829 0.0643636

Table VIII(C)
AVERAGE AND STANDARD DEVIATION (IN PARENTHESES) OF THE BEST-OF-RUN SOLUTIONS

FOR 50 RUNS OVER THE SPREAD
SPECTRUM RADAR POLY-PHASE CODE DESIGN PROBLEM (NUMBER OF DIMENSIONS ARE n=19

AND n=20). FOR ALL CASES
EACH ALGORITHM WAS RUN UP TO 5 # 105 NFEs

Dim DE MDE DEGL[64]

19 3.80121e-01
(2.3434e-02)

2.50000e-01
(3.0993e-03)

7.44390e-01
(5.8400e-04)

20 4.57939e-01
(4.3874e-03)

2.50483e-01
(1.3290e-04)

8.03040e-01
(2.7300e-03)

8. STATE OF THE ART DE ALGORITHMS USED FOR COMPARISON
In this section we give a brief description of other state of the art DE algorithms used in
this paper. These are recently proposed algorithms and have reportedly given good
performance on a set of various benchmark problems.

 SaDE - SaDE [Qin et al., 2009] was proposed by Qin and Suganthan to
simultaneously implement two mutation strategies “DE/rand/1” and “DE/current-to-
best/1.” It adapts the probability of generating offspring by either strategy based on their
success ratios in the past 50 generations. It is believed that this adaptation procedure can
gradually evolve the most suitable mutation strategy at different learning stages for the
problem under consideration. In SaDE, the mutation factors are independently generated
at each generation according to a normal distribution with mean 0.5, standard deviation
0.3, and truncated to the interval (0, 2]. To speed up the convergence of SaDE, the
authors further applied a local search procedure (quasi-Newton method) to some good

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

individuals after 200 generations. SaDE has been applied to both constrained and
unconstrained problems.

 jDE - Brest et al. [Brest et al., 2007], [Brest et al., 2006] proposed a new adaptive DE,
jDE, based on the classic DE/rand/1/bin. Similar to other schemes, jDE fixes the
population size during the optimization while adapting the control parameters F and Cr
associated with each individual. It is believed that better parameter values tend to
generate individuals which are more likely to survive and thus these values should be
propagated to the next generation. Experimental results suggest that jDE performs
remarkably better than the classic DE/rand/1/bin, and many other adaptive and non
adaptive algorithms.

JADE – was proposed by Zhang and Sanderson [Zhang and Sanderson, 2009]. They
implemented a new mutation strategy named “DE/current-to-pbest” with an optional
external archive and updated control parameters in an adaptive manner. Their strategy is
a generalization of the classic “DE/current-to-best,” while the optional archive operation
utilizes historical data to provide information of progress direction. The parameter
adaptation automatically updates the control parameters to appropriate values and avoids
a user’s prior knowledge of the relationship between the parameter settings and the
characteristics of optimization problems. In JADE, the crossover probability Cr and
scaling factor F are generated independently for each individual using normal and
Cauchy distribution. They validated their algorithm on a set of 20 benchmark problems
and compared it with other adaptive and non adaptive algorithms.

A. Comparison of MDE with other state of the art algorithms
The proposed MDE is compared with three other state of the art DE algorithms given

in the previous section on the basis of average fitness, standard deviation (Std.), number
of function evaluations and success rate (SR). Here we fixed the number of generations
as given in Table IX (A). The remaining parameters are kept same as discussed in the
earlier section V. From Table IX (A) which gives the results on the basis of fitness and
standard deviation we see that JADE performed better than MDE and other algorithms in
5 cases, while MDE gave the best performance in 8 cases. In the remaining cases all the
algorithms performed in a similar manner. On the basis of NFE the results are given in
Table IX (B). From this Table we see that JADE took lesser NFE than other algorithms in
8 cases, while MDE outperformed other algorithms in 5 cases. On an average JADE took
38012 NFE for solving 25 test problems while MDE took 46580 NFE which is slightly
worse than JADE. However, in comparison to jDE and SaDE which took on an average
82012 and 71365 NFE respectively, the performance of MDE is quite good.

The success rate of JADE comes out to be 97% while for MDE the success rate comes
out to be 96% for SaDE and jDE, the success rates are 94% each.

We also compared the algorithms statistically on the basis of NFE for which the results
are given in Tables IX(C)-IX(E). Once again we followed the same procedure given in
Section VII-B. An overall comparison of algorithms is given in Table IX (C) and IX(D).
Table IX(C) shows that there is a significant difference between the algorithms. From
Table IX (D) we see that MDE and JADE are at par with each other while the remaining
two algorithms jDE and SaDE do not perform as well as MDE. This is illustrated
graphically in Figure 4(a). Pairwise comparison of MDE with JADE, jDE and SaDE is
summarized in Table IX(E). From this Table we see that, though the paired t-test shows
that there is no significant difference between MDE and other algorithms, Wilcoxon test
shows that there is a significant difference between MDE and jDE and SaDE, while there
is no difference between MDE and JADE.
This result can also be verified from Figure 4(b) which gives the box plot of algorithms
on the basis of NFE.

Analysis of results –On the basis of fitness we cannot make a concrete judgment on
the working of MDE. On the basis of success rate we see that JADE performs marginally
better (1%) than MDE. On the basis of NFE, we see that MDE on an average took more

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

NFE than JADE but its performance was significantly better than jDE and SaDE.
However, statistically we see that MDE and JADE are at par with each other on the basis
of NFE.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE IX (A)

COMPARISON OF MDE WITH jDE, JADE, AND SaDE IN TERMS OF FITNESS FUNCTION VALUE.
Std. REPRESENTS THE STANDARD DEVIATION AND n REPRESENTS THE DIMENSION OF THE

PROBLEMS. FOR ALL CASES EACH ALGORITHM IS RUN UP TO MXIMUM # OF GENERATIONS.

Fun

n #Gen
Fitness (Std.)

jDE JADE SaDE MDE

f1 30 1500 2.34343e-28
1.92383e-28

1.73443e-60
7.34344e-60

3.54533e-20
5.79432e-20

2.74298e-36
3.94901e-36

f2 30 2000 3.09343e-23
8.38772e-24

2.38353e-25
8.47876e-25

1.02398e-14
1.83421e-15

1.10654e-24
8.28990e-25

f3 30 5000 3.39041e-14
3.82921e-14

4.44584e-61
1.32743e-60

9.04322e-37
3.44302e-37

4.81002e-131
0

f4 30 5000 0
0

8.43245e-24
4.20037e-23

6.49202e-11
1.63430e-10

5.92984e-11
8.36854e-10

f5 30 20000 0
0

8.94840e-02
5.97326e-01

2.34993e-01
2.33498e-01

0
0

f6 30 1500 0
0

0
0

0
0

0
0

f7
30 3000 2.31545e-03

7.38443e-04
8.54564e-04
2.32534e-04

3.58832e-03
1.62992e-03

2.05093e-04
1.04551e-03

f8
30 9000 -12569.5

8.00132e-12
-12569.5

0
-12569.5

8.43901e-08
-12569.5

1.09766e-10

f9
30 5000 0

0
0
0

0
0

8.95493e+00
1.59359e+01

f10
30 1500 7.09431e-15

1.72928e-15
5.65784e-15

0
7.38286e-14
3.48321e-14

4.05954e-15
0

f11
30 2000 0

0
0
0

0
0

0
0

f12
30 1500 5.93708e-30

2.32384e-30
1.06754e-32
3.43503e-48

2.43748e-19
0

1.35993e-35
0

f13
30 1500 6.90221e-29

3.84204e-29
4.65656e-32
4.14394e-48

2.83043e-19
0

1.29390e-32
0

f14
2 100 0.998004

1.90023e-16
0.998004
0.998004

0.998004
1.32943e-16

0.998004
1.21077e-16

f15
4 4000 4.29044e-04

3.28494e-04
6.78786e-05
3.07102e-04

8.43984e-04
4.54989e-08

3.07102e-05
9.71256e-09

f16
2 100 -1.03163

8.43843e-12
-1.03163
-1.03163

-1.03163
1.48430e-16

-1.03163
2.22875e-16

f17
2 100 0.397887

4.43492e-08
0.397887
0.397887

0.397887
0

0.397887
0

f18
2 100 3.0

1.98237e-15
3.0

 3.0
3.0

2.43493e-16
3.0

1.61278e-16

f19
3 100 -3.8623

9.32384e-15
-3.8626

7.76755e-14
-3.8623

7.34399e-15
-3.8623

4.44089e-16

f20
6 100 -3.2863

6.34934e-06
-3.2986

5.75433e-05
-3.3182

6.34348e-03
-3.2807

2.39493e-03

f21
4 100 -10.1532

3.34321e-06
-10.1532

4.88743e-13
-10.1532

4.23484e-15
-10.1532

1.77532e-15

f22
4 100 -10.4029

5.25234e-07
-10.4029

8.57584e-13
-10.4029

2.43438e-15
-10.4029

1.25879e-15

f23
4 100 -10.5364

5.02913e-06
-10.5364

8.76765e-11
-10.5364

7.43483e-14
-10.5364

1.94865e-15

f24
30 10000 3.49941e-51

7.34301e-53
6.67607e-61
8.57008e-63

7.38393e-58
3.45843e-60

1.47748e-76
5.93376e-77

f25
2 100 -1

0
-1
0

-1
0

-1
0

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

TABLE IX (B)

COMPARISON OF MDE WITH jDE, JADE, AND SaDE IN TERMS OF FUNCTION EVALUATION.
MAXIMUM NFE IS TAKEN AS 10000*n. WHERE n DENOTE THE DIMENSION OF THE PROBLEM.

Ave. REPRESENTS AVERAGE AND ‘- -’ REPRESENTS THAT THE ALGORITHM WAS NOT ABLE TO
ACHIEVE THE DESIRED ACCURACY 10-08 FOR ALL FUNCTIONS EXCEPT f7 FOR WHICH IT IS 10-02.

Fun

n
NFE SR

JADE MDE jDE SaDE JADE MDE jDE SaDE
f1 30 29900 45980 60100 73490 1 1 1 1
f2 30 52550 77830 83220 118932 1 1 1 1
f3 30 94840 48600 339399 181673 1 1 1 1
f4 30 170890 258886 300650 290380 0.92 1 0.8 0.86
f5 30 151000 190600 575990 278890 0.9 1 0.6 0.29
f6 30 11560 14850 24860 28410 1 1 1 1
f7 30 30000 70680 98000 128764 1 1 1 1
f8 30 130480 101067 88940 121830 1 1 0.68 0.81
f9 30 131000 -- 118630 170765 1 0 1 1
f10 30 45610 72800 90620 119090 1 1 1 1
f11 30 34000 48077 64270 80688 1 1 1 1
f12 30 26950 43340 54310 72346 1 1 1 1
f13 30 30988 46680 61287 73432 1 1 1 1
f14 2 3455 3330 3578 3672 1 1 1 1
f15 4 6532 6050 6648 6438 1 1 1 1
f16 2 3310 3330 3298 3320 1 1 1 1
f17 2 4520 4790 4872 4810 1 1 1 1
f18 2 3080 2850 3389 3010 1 1 1 1
f19 3 2990 2870 3154 3080 1 1 1 1
f20 6 7000 7050 7410 7832 0.47 0.95 0.41 0.44
f21 4 6745 6640 6829 6770 1 1 1 1
f22 4 6389 6220 6194 6395 1 1 1 1
f23 4 6090 6190 6530 6672 1 1 1 1
f24 30 50380 46580 71290 89372 1 1 1 1
f25 2 3050 2640 3456 3480 1 1 1 1

Ave 38012.9 46580.4 82012.2 71365.7 0.97 0.96 0.94 0.94

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Table IX (C)
RESULTS OF FRIEDMAN TEST BASED ON NFE

N Friedman value df p-value
25 34.776 3 <0.001

df – Degrees of Freedom N - Total No of functions

Table IX (D)
RANKING OBTAINED THROUGH FRIEDMAN’S TEST AND CRITICAL DIFFERENCE (CD)

CALCULATED THROUGH BONNFERRONI-DUNN’S PROCEDURE
Algorithm Mean Rank

JADE 1.68
MDE 1.84
jDE 3.00

SaDE 3.84
CD for "=0.05 0.874165
CD for "=0. 01 0.777036

Table IX (E)

RESULTS OF PAIRWISE COMPARISON BASED OF NFE

Algo.
paired t-test Wilcoxon test

Stat Sig. +ve -ve tie Stat Sig.
JADE 1.852 0.076 10 15 0 -1.493 0.135
jDE -1.304 0.205 21 4 0 -3.269 0.001

SaDE -2.092 0.047 23 2 0 -3.700 0.000

!"#$!"$%

&

&"$%

'

'"(

!

!"(

)

)"(

&

&"(

%

%"(

*+,- .,- /,- 01,-

A
ve

ra
ge

 R
an

k

Control algorithm: JADE

CD=0.874165 !=0.05 - - - -
CD=0.777036 !=0.10

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Figure 4(a) Bonferroni-Dunn’s graphic corresponding to NFE

Figure 4(b) Box-plot corresponding to the average NFE

9. CONCLUSIONS
In the present study we presented a simple and efficient variant of DE, called Modified

Differential Evolution (MDE). The proposed MDE is a fusion of three schemes;
opposition based learning for generating the initial population, tournament best method
for mutation and one population DE structure. The parent algorithms (ODE, DERL and
MDE1) using these schemes individually have reportedly given very good performance.

While the OBL helps in proving an efficient start to the DE algorithm, the use of
tournament best base vector induces a localized effect in the search procedure. Both these
features help in enhancing the exploratory and exploitation capabilities of the DE
algorithm which in turn helps in preventing premature convergence. The third feature
which is the use of a single population DE structure (in contrast to the two set structure
used in basic DE) helps in faster convergence.

As expected, these schemes when combined together produce a synergized effect
which was better than any of the scheme used separately.

The performance of the proposed MDE algorithm is investigated on a set of traditional
benchmark problems, nontraditional benchmark problems and real life problems. Its
performance is compared with DE and its parent algorithms ODE, MDE1 and DERL.

Numerical results show that on the basis of error all the algorithms performed more or
less in a similar manner. However, on the basis of NFE, %AR and SR we can clearly see
that the combined effect of ODE, DERL and MDE1 in MDE makes it superior not only
to DE but also to its parent algorithms.

These results are also validated with the help of statistical analysis using an overall and
pairwise comparison of algorithms.

MDE is further compared with JADE, SaDE and jDE. Although these algorithms are
adaptive in nature and their comparison with MDE may not be completely justified but
these are some of the recent variants of DE and have given good performance in
comparison to both adaptive and nonadaptive algorithms. Numerical results using
standard performance measures showed that JADE performed better than MDE in terms
of NFE, though the performance of MDE was much better than jDE and SaDE. Statistical
analysis however showed that JADE and MDE are at par with each other.

JADE MDE jDE SaDE

0

1

2

3

4

5

6
x 105

Nu
m

be
r o

f f
un

ct
io

n
ev

al
ua

tio
n

Algorithms

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

The objective of this study is not to defeat DE or any of its variants but is to present an
algorithm which is simple to understand and easy to apply by fusing together some of the
efficient schemes available in literature. However, claiming that MDE will outperform
every other variant of DE for every optimization problem, with any degree of complexity,
does not sound justified. There are several other variants which may be successfully
combined to produce an algorithm which is better than the proposed MDE. Even the
performance of many existing versions of DE can be improved further by judicious
tuning of parameters alone.

The only case where MDE was not able to perform successfully was function f9. This
indicates that some further fine tuning is needed in MDE so that it can solve all types of
problems.

At this stage the conclusion that can be drawn from the present study is that the
proposed MDE version can serve as an attractive alternative for a wide range of
optimization problems. The paper can be extended in several directions. Fine tuning of
parameters for MDE can be replaced with some suitable adaptive technique. Effects of
adding some local search technique can also be observed.

REFERENCES
[1] R. Storn and K. Price 1995. Differential evolution – a simple and efficient adaptive scheme for global

optimization over continuous spaces. Technical Report TR-95-012. Berkeley. CA.
[2] D.E. Goldberg1989. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley.
[3] T.Back, F. Hoffmeister and H. Schwefel 1991. A survey of evolution strategies. In Proc. of the Fourth

International Conference on Genetic Algorithms and their Applications. 2–9.
[4] L.Fogel 1994. Evolutionary programming in perspective: the top-down view. Computational Intellingece:

Imitating Life. Edited by J. M. Zurada. R. J. Marks and C. J. Robinson IEEE Press, Piscataway. 135-146.
[5] T. Rogalsky, R. W. Derksen, and S. Kocabiyik 1999. Differential evolution in aerodynamic optimization.

in Proc. 46th Annu. Conf. Can. Aeronautics Space Inst. 29–36.
[6] R. Joshi and A. C. Sanderson 1999. Minimal representation multi-sensor fusion using differential

evolution. IEEE Trans. Syst. Man. Cybern. Part A, 29, 1. 63–76.
[7] S. Das and A. Konar 2006. Design of two dimensional IIR filters with modern search heuristics: A

comparative study. Int. J. Comput. Intell. Applicat. 6, 3, 329–355,
[8] F. S.Wang and H. J. Jang 2000. Parameter estimation of a bio-reaction model by hybrid differential

evolution, in Proc. IEEE Congr. Evol. Comput. 2000, 1. Piscataway, NJ: IEEE Press 410–417.
[9] J. Lampinen. 1999. A bibliography of differential evolution algorithm. Lappeenranta University of

Technology. Department of Information Technology, Laboratory of Information Processing, Tech. Report
[Online]. Available: http://www.lut.fi/jlampine/debiblio.htm

[10] M. Omran, A. P. Engelbrecht, and A. Salman 2005. Differential evolution methods for unsupervised
image classification, in Proc. 7th Congr. Evol. Comput. (CEC-2005), 2. Piscataway, NJ: IEEE Press, 966–
973.

[11] S. Das, A. Abraham, and A. Konar 2008. Adaptive clustering using improved differential evolution
algorithm, IEEE Trans. Syst., Man, Cybern. A, 38, 1, 218–237.

[12] J. Lampinen and I. Zelinka 2000. On stagnation of the differential evolution algorithm, in Proc. of
MENDEL 2000, 6th International Mendel Conference on Soft Computing, 76 – 83, , Brno, Czech
Republic.

[13] H. Maaranen, K. Miettinen, M.M. Makela 2004. A Quasi-Random Initial Population for Genetic
Algorithms, Computers and Mathematics with Applications, 47 (12), 1885–1895,

[14] S. Rahnamayan, H.R. Tizhoosh, and M. M. A. Salama 2008. Opposition-Based Differential Evolution,
IEEE Transactions on Evolutionary Computation, 12, 1, 64 – 79,

[15] H. R. Tizhoosh 2005, Opposition-based learning: A new scheme for machine intelligence, in Proc. Int.
Conf. Comput. Intell. Modeling Control and automation CIMCA2005, 695-701, Austria.

[16] S. Rahnamayan, H.R. Tizhoosh, M.M.A.Salama 2008. Opposition versus randomness in soft computing
techniques, Applied soft computing, 8, 2, 906-918.

[17] P. Kaelo and M. M. Ali 2006. A numerical study of some modified differential evolution algorithms,
European journal of operational research, 169, 1176-1184.

[18] B.V.Babu and R.Angira 2006. Modified differential evolution (MDE) for optimization of non-linear
chemical processes, computer and chemical engineering, 30, 989-1002,

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

[19] Musrrat Ali, Millie Pant and Ajith Abraham, 2009. A Modified Differential Evolution Algorithm and Its
Application to Engineering Problems, in proc. International conference of soft computing and pattern
recognition (SoCPaR-2009), 196-201.

[20] R. Gamperle, S. D. Muller, and A. Koumoutsakos, 2002. A Parameter study for differential evolution, in
WSEAS NNA-FSFS-EC 2002, Interlaken, Switzerland, 11-15.

[21] J. Ronkkonen, S. Kukkonen and K. V. Price, 2005. Real parameter optimization with differential
evolution, in Proc. of IEEE Congress on Evolutionary Computation (CEC-2005), 1, 506 – 513.

[22] J. Liu and J. Lampinen2005. A fuzzy adaptive differential evolution algorithm, Soft computing, 9, 6, 448-
462.

[23] K. Qin, V. L. Huang, and P. N. Suganthan, 2009. Differential evolution algorithm with strategy adaptation
for global numerical optimization, IEEE Transactions on Evolutionary Computations, 13, 2, 398-417

[24] D. Zaharie, 2003. Control of population diversity and adaptation in differential evolution algorithms, In D.
Matousek, P. Osmera (eds.), Proc. of MENDEL 2003, 9th International Conference on Soft Computing,
Brno, Czech Republic, 41-46

[25] D. Zaharie and D. Petcu, 2004. Adaptive pareto differential evolution and its parallelization, in Proc. of 5th
International Conference on Parallel Processing and Applied Mathematics, Czestochowa, Poland, 3019,
261 – 268

[26] H. Abbass, 2002. The self-adaptive pareto differential evolution algorithm, in Proc. of the 2002 Congress
on Evolutionary Computation, 831-836.

[27] M. Omran, A. Salman, and A. P. Engelbrecht 2005. Self-adaptive differential evolution, in proc.
computational intelligence and security, Lecture Notes In Artificial Intelligence, 3801, 192-199,

[28] Janez Brest, Borko Boskovi, Saso Greiner, Viljem Zumer, Mirjam Sepesy Mau cec. 2007. Performance
comparison of self-adaptive and adaptive differential evolution algorithms, Soft Computing, 11, 7, 617-
129.

[29] Nga Sing Teng, Jason Teo, Mohd. Hanafi A. Hijazi, 2009. Self-adaptive population sizing for a tune-free
differential evolution, Soft Computing, 13, 7, 709-724.

[30] Z. Yang, K. Tang and X. Yao, 2008. Self-adaptive differential evolution with neighborhood search, in
Proc. IEEE Congress on Evolutionary Computation (CEC-2008), Hong Kong, 1110-1116

[31] Z. Yang, K. Tang and X. Yao, 2008. Large Scale Evolutionary Optimization Using Cooperative Co
evolution, Information Sciences, 178, 15, 2985-2999

[32] T.Hendtlass, 2001. A combined swarm differential evolution algorithm for optimization problems, In
proceedings of the Fourteenth International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. Lecture Notes in Computer Science, 2070. Springer-Verlag,
11–18.

[33] W.J.Zhang and X.F Xie, 2003. DEPSO: Hybrid particle swarm with differential evolution operator, In
proc. Of IEEE International Conference on Sys tems, Man, and Cybernetics, 4, 3816–3821.

[34] H. Talbi and M. Batouche, 2004. Hybrid particle swarm with differential evolution for multimodal image
registration. In: Proceedings of the IEEE international conference on industrial technology, 3, 1567–1573.

[35] S. Kannan, S. Slochanal, P. Subbaraj, N. Padhy, 2004. Application of particle swarm optimization
technique and its variants to generation expansion planning, Electric Power Systems Research, 70, 3, 203–
210.

[36] M.G.H. Omran, A.P.Engelbrecht and A.Salman 2008. Bare bones differential evolution, European journal
of operational research, doi:10.1016/j.ejor.2008.02.035.

[37] C.Zhang, J. Ning, S. Lu, D.Ouyang and T.Ding, 2009. A novel hybrid differential evolution and particle
swarm optimization algorithm for unconstrained optimization, Operations Research Letters 37, 117 – 122.

[38] W. Xu, and X. Gu, 2009. A hybrid particle swarm optimization approach with prior crossover differential
evolution. In proc. of GEC09 671 – 677.

[39] Andrea Caponio, Ferrante Neri and Ville Tirronen, 2009. Superfit control adaption in memetic
differential evolution frameworks, Soft Computing, 13, 811-831.

[40] Mohammad G.H. Omran and Andries P Engelbrecht, 2009. Free Search Differential Evolution, in proc.
Of IEEE Congress on Evolutionary Computation, Norway, 110-117.

[41] Adriana Menchaca-Mendez and Carlos A. Coello Coello, 2009. A new proposal to hybridize the Nelder
Mead Differential Evolution Algorithm for Constrained Optimization, in proc. Of IEEE Congress on
Evolutionary Computation, Norway, 2598-2605.

[42] Hui-Yuan Fan and Jouni Lampinen, 2003. A Trigonometric Mutation Operation to Differential Evolution,
Journal of Global Optimization, 27, 105-129.

[43] M.Pant, M.Ali and V.P.Singh, 2009. Parent centric differential evolution algorithm for global
optimization, Opsearch, 46, 2, 153-168.

[44] M.Pant, R.Thangaraj, A.Abraham and C.Grosan, 2005. Differential Evolution with Laplace Mutation
Operator, in proc. Of IEEE Congress on Evolutionary Computation, Norway, 2841-2849.

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

[45] K. Deb 2005. A population-based algorithm-generator for real-parameter optimization, soft Comput J, 9,
236–253.

[46] M.Pant, M.Ali and A.Abraham, 2009. Mixed Strategy Embedded Differential Evolution, in proc. of IEEE
Congress on Evolutionary Computation, Norway, 1240-1246.

[47] Lai, JCY, Leung FHF and Ling SH 2009. A new Differential Evolution Algorithm with Wavelet Theory
based Mutation operation. IEEE Congress on Evolutionary Computation, Norway, 1116-1122.

[48] N. Noman and H. Iba 2005. Enhancing differential evolution performance with local search for high
dimensional function optimization, in Proc. of the 2005 Conference on Genetic and Evolutionary
Computation, 967–974.

[49] N. Noman and H. Iba, 2008. Accelerating Differential Evolution Using an Adaptive Local Search, IEEE
Transactions on Evolutionary Computation, 12, 1, 107 – 125.

[50] S. Rahnamayan and G.G.Wang, 2008. Solving large scale optimization problems by opposition based
differential evolution (ODE), WSEAS transaction on computers, 7 (10), 1792-1804.

[51] Zhenyu Yang, Jingqiao Zhang, Ke Tang, Xin Yao and Arthur C. Sanderson, 2009. An adaptive
Coevolutionary Differential Evolution Algorithm for large Scale optimization, in proc. Of IEEE Congress
on Evolutionary Computation, Norway, 102 – 108.

[52] Janez Brest, Ales Zamuda, Boroko Boskovic, Mirjam Sepesy Maucec and Viljem Zumer, 2009. Dynamic
Optimization using Differential Evolution, in proc. Of IEEE Congress on Evolutionary Computation,
Norway, 415-421.

[53] Chuan Kang Ting and Chih-Hui Huang, 2009. Varying numbers of Difference Vectors in Differential
Evolution, in proc. Of IEEE Congress on Evolutionary Computation, Norway, 1351-1358.

[54] M.G Epitropakis, V.P. Plagianakos and M.N Vrahatis, 2009. Evolutionary Adaption of the Differential
Evolution Control Parameters, in proc. Of IEEE Congress on Evolutionary Computation, Norway, 1359-
1366.

[55] Faith Tasgetiren, M., Quan-Ke Pan, P.N. Suganthan, and Yun Chia Liang, 2009. A Differential Evolution
Algorithm with Variable Parameter Search for Real Parameter Continuous Function Optimization, in
proc. Of IEEE Congress on Evolutionary Computation, Norway, 1247-1254.

[56] James Montgomery, 2009. Differential Evolution: Difference Vectors and Movement in Solution Space,
in proc. Of IEEE Congress on Evolutionary Computation, Norway, 2833-2840.

[57] Yu Wang, Bin Li and Xuexiao Lai 2009. Variance Priority based Cooperative Co-evolution Differential
Evolution for large scale Global Optimization, in proc. Of IEEE Congress on Evolutionary Computation,
Norway, 1232-1239.

[58] Fei Peng, Ke Tang, Guoliang Chen and Xin Yao, 2009. Multistart JADE with Knowledge Transfer for
Numerical Optimization, in proc. Of IEEE Congress on Evolutionary Computation, Norway, 1889-2895

[59] U. K. Chakraborty (Ed.), 2008. Advances in Differential Evolution, Springer-Verlag, Heidelberg.
[60] R. Thomsen, 2004. Multimodal optimization using crowding-based differential evolution, in proc. Of

2004 congress on evolutionary computation CEC2004, 2, 1382-1389.
[61] S. García, D. Molina, M. Lozano and F. Herrera, 2009. A Study on the Use of Non-Parametric Tests for

Analyzing the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on
Real Parameter Optimization, Journal of Heuristics, 15, 617-644.

[62] Jingqiao Zhang and A.C. Sanderson, 2009. JADE: Adaptive differential evolution with optional external
archive, IEEE Transactions on Evolutionary Computation, 13(5), 945–958.

[63] W.L.Price, global optimization by controlled random search, 1983. Journal of optimization theory and
applications, 40, 3, 333-348.

[64] S.Das, A.Abraham, U.K.Chakraborty and A.Konar, 2009. Differential evolution using a neighborhood
based mutation operator, IEEE Transaction on evolutionary computation, 13, 2, 526-553.

[65] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, Z. Yang, 2007. Benchmark
Functions for the CEC’2008 Special Session and Competition on Large Scale Global Optimization,
Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China,
http://nical.ustc.edu.cn/cec08ss.php.

[66] J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer, 2006. Self Adapting Control parameters in
Differential Evolution: A comparative study of numerical benchmark problems, IEEE Transactions on
evolutionary computation, 10, 6, 646 – 657

 Appendix:

f14:

32 16 0 16 32 32 ... 32 16 0 16 32
32 32 32 32 32 16 ... 32 32 32 32 32ija
! ! ! ! !" #

= $ %! ! ! ! ! !& '

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

f15:
i ai bi

-1

1 0.1957 0.25
2 0.1947 0.5
3 0.1735 1
4 0.1600 2
5 0.0844 4
6 0.0627 6
7 0.0456 8
8 0.0342 10
9 0.0323 12

10 0.0235 14
11 0.0246 16

f19:
i ci

aij pij

j=1 2 3 j=1 2 3
1
2
3
4

1
1.2
3

3.2

3 10 30
.1 10 35
3 10 30
.1 10 35

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547

0.3815 0.5743 0.8828

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

 f21, f22 and f23:

i aij j=1,…,4 ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

f20:

i ci aij j=1,…,6 pij j=1,…,6
1 1 10 3 17 3.5 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 1.2 .05 10 17 0.1 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3 3.5 1.7 10 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 3.2 17 8 .05 10 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

Improving Differential Evolution Algorithm by Synergizing Different Improvement Mechanisms

ACMTransactions on Autonomous and Adaptive Systems, Vol. *, No. *, Article *, Publication date: ****

