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Abstract

Our previous research illustrated the design of fuzzy

logic based online risk assessment for Distributed Intru-

sion Prediction and Prevention Systems (DIPPS) [3]. Based

on the DIPPS sensors, instead of merely preventing the at-

tackers or blocking traffic, we propose a fuzzy logic based

online risk assessment scheme. This paper propose a Hi-

erarchical Neuro-Fuzzy online Risk Assessment (HiNFRA)

model to aid the decision making process of a DIPPS. The

fine tuning of fuzzy logic based risk assessment model is

achieved using a neural network learning technique. Pre-

liminary results indicate that the neural learning technique

could improve the fuzzy controller performance and make

the risk assessment model more robust.

1. Introduction

Intrusion prevention systems are proactive defense

mechanisms designed to detect malicious packets embed-

ded in normal network traffic and stop intrusions dead,

blocking the offending traffic automatically before it does

any damage rather than simply raising an alert as, or af-

ter, the malicious payload has been delivered. DIPPS are

simply a superset of the conventional Intrusion Prevention

System (IPS) implemented in a distributed environment.

Basic architecture of a DIPPS element is depicted in Fig-

ure 1. We consider IPS as an integrated Intrusion Detection

System (IDS) with many additional functions. Due to the

distributed nature of IPS, the implementation poses several

challenges. The IDSs are embedded inside software mobile

agents and placed in the network to be monitored [1]. An

individual IDS may be configured to detect a single attack,

or it may detect several types of attacks.

In a large network, each DIPPS element communi-

cates/coordinates with other DIPPS local controllers and/or

a central controller. The Hidden Markov Model (HMM) [7]

model processes the attack data information from the var-

ious mobile agent IDS sensors [6]. Based on the na-

ture of the detected attack, the following actions would be

taken [2]:

1. If the detected attack is simply a port scan or a probe,

the HMM model attempts to make a prediction of a

possible future attack based on the current distributed

attack patterns. Based on this prediction, the central

controller (or administrator) would take precautionary

measures to prevent future attacks. The central con-

troller would also make use of an online risk assess-

ment of the assets subjected to this possible serious at-

tack in the future.

2. If the detected attack is very serious, the central con-

troller would take necessary actions to re-configure

firewall rules or notify the administrator etc. Such se-

rious attacks would bypass the HMM model.

3. At any time any abnormal traffic rate is noted by the

monitor if a predetermined level is reached, the central

controller may take necessary actions to re-configure

firewall rules or notify the administrator etc.

Risk assessment is often done by human experts, because

there is no exact and mathematical solution to the problem.

Usually the human reasoning and perception process can-

not be expressed precisely. Different people have differ-

ent opinions about risk and the association of its dependent

variables, and fuzzy logic provides an excellent framework

to model this [3].

A Fuzzy Inference System (FIS) [9] can utilize human

expertise by storing its essential components in rule base

and database, and perform fuzzy reasoning to infer the over-

all output value. The derivation of if-then rules and cor-

responding membership functions depends heavily on the

a priori knowledge about the system under consideration.

However there is no systematic way to transform experi-

ences of knowledge of human experts to the knowledge base
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Figure 1. Architecture of a DIPPS element

of a FIS. There is also a need for adaptability or some learn-

ing algorithms to produce outputs within the required error

rate.

This paper is focused on the development of neural net-

work learning techniques for the optimization of a fuzzy

risk assessment system. The rest of this paper is organized

as follows. Section 2 presents the proposed neuro-fuzzy

risk assessment model. Experiment results are given in Sec-

tion 3 followed by conclusions towards the end.

2. Neuro-Fuzzy Risk Assessment Model

2.1 Fuzzy modeling of risk

For risk assessment, nine basic linguistic variables are

used that are processed using three Neuro-Fuzzy Con-

trollers (NFC1 − NFC3). The three NFC’s represent

Threat Level, Vulnerability and Asset Value, which are three

derived linguistic variables. Threat level is modeled using

three linguistic variables: intrusion frequency, probability

of threat success and severity. We model vulnerability as

a derived variable from threat resistance and threat capa-

bility. The asset value is derived from three linguistic vari-

ables: Cost, Criticality, Sensitivity and Recovery. The de-

rived linguistic variables are then combined using NFC4 to

compute the net Asset Risk. This forms a hierarchical fuzzy

system as shown in Figure 2.

Asset value

Risk assessment

VulnerabilityThreat level
NFC2 NFC2

Master NFC1

NFC1

Figure 2. Hierarchical architecture of four

fuzzy logic controllers

Values for the input variables are estimated based on the

information from the HMM module, the DIDS and the traf-

fic rate monitor. To simplify the calculation of input val-

ues, we have used the same attack categories as proposed by

MIT Lincoln Laboratory - DARPA IDS evaluation datasets

IDS [5]. The local controller uses information from the

DIDS and the traffic rate monitor to predict which attack

category the next attack will fit into.

2.2 Fuzzy risk model optimization using
neural learning

In an integrated model, neural network learning algo-

rithms are used to determine the parameters of fuzzy in-



ference systems. Integrated neuro-fuzzy systems share data

structures and knowledge representations. A fuzzy infer-

ence system can utilize human expertise by storing its es-

sential components in rule base and database, and perform

fuzzy reasoning to infer the overall output value. The

derivation of if-then rules and corresponding membership

functions depends heavily on the a priori knowledge about

the system under consideration. However there is no sys-

tematic way to transform experiences of knowledge of hu-

man experts to the knowledge base of a fuzzy inference sys-

tem. There is also a need for adaptability or some learn-

ing algorithms to produce outputs within the required error

rate. On the other hand, Artificial Neural Network (ANN)

learning mechanism does not rely on human expertise. Due

to the homogenous structure of ANN, it is hard to extract

structured knowledge from either the weights or the config-

uration of the network. The weights of the neural network

represent the coefficients of the hyper-plane that partition

the input space into two regions with different output val-

ues. If we can visualize this hyper-plane structure from the

training data then the subsequent learning procedures in a

neural network can be reduced. However, in reality, the a

priori knowledge is usually obtained from human experts,

it is most appropriate to express the knowledge as a set of

fuzzy if-then rules, and it is very difficult to encode into a

neural network.

To a large extent, the drawbacks pertaining to these two

approaches seem complementary. Therefore, it seems natu-

ral to consider building an integrated system combining the

concepts of FIS and ANN modeling. A common way to

apply a learning algorithm to a fuzzy system is to represent

it in a special neural network like architecture. However

the conventional neural network learning algorithms (gra-

dient descent) cannot be applied directly to such a system

as the functions used in the inference process are usually

non differentiable. This problem can be tackled by using

differentiable functions in the inference system or by not

using the standard neural learning algorithm. In our simula-

tion, we used the Adaptive Network Based Fuzzy Inference

System (ANFIS) [4]. ANFIS implements a Takagi Sugeno

Kang (TSK) fuzzy inference system [8] in which the con-

clusion of a fuzzy rule is constituted by a weighted linear

combination of the crisp inputs rather than a fuzzy set.

For a first order TSK model, a common rule set with two

fuzzy if-then rules is represented as follows:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

where x and y are linguistic variables and A1, A2,
, B1,

,

B2 are corresponding fuzzy sets and p1 , q1, r1and p2, q2,

r2 ,
are linear parameters.

ANFIS makes use of a mixture of back propagation to

learn the premise parameters and least mean square estima-

tion to determine the consequent parameters. A step in the

Figure 3. Example network showing assets

and IDS agents

learning procedure has two parts: In the first part the input

patterns are propagated, and the optimal conclusion param-

eters are estimated by an iterative least mean square proce-

dure, while the antecedent parameters (membership func-

tions) are assumed to be fixed for the current cycle through

the training set. In the second part the patterns are prop-

agated again, and in this epoch, back propagation is used

to modify the antecedent parameters, while the conclusion

parameters remain fixed. This procedure is then iterated.

3. Experiment Results

In order to illustrate the neuro-fuzzy risk assessment

model, we constructed a small network model as illustrated

in Figure 3. The sample network consists of four differ-

ent assets; a router, a public web server, a file server, and

a database. Five IDS Agents denoted by IDS1, . . . , IDS5

are deployed in the network, and the observations are sent to

the their corresponding HMM. The attack category used for

the risk assessment is based on inputs from the IDS agents

and this value is used to assign values to eight of the nine

input variables. Only the Intrusion Frequency is estimated

based on the output from the HMM module.
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Figure 4. Parameter sensitivity for different attack categories

Table 1. Learning results for NFC1

MF tri gbell gauss psig

Data

set 1

#MF 2 2 2 2

Epochs 49 27 17 28

Test error 0.0969 0.1159 0.1002 0.0881

Train error 0.0203 0.0172 0.0192 0.0211

Data

set 2

#MF 2 2 2 2

Epochs 45 37 22 8

Test error 0.1371 0.1500 0.1091 0.1732

Train error 0.0220 0.0225 0.0228 0.0480

Data

set 3

#MF 2 2 2 2

Epochs 42 14 16 4

Test error 0.1239 0.0694 0.0756 0.0513

Train error 0.0251 0.0379 0.0379 0.0303

3.1 Hierarchical neuro-fuzzy modeling

To avoid any bias in the learning process, we randomly

sampled three sets of data from the master data set. 75 % of

the data was used for training and the remaining for test

data. We implemented a Hierarchical Neuro-Fuzzy Risk

Assessment (HiNFRA) model as illustrated in Figure 2.

The performance of the four controllers for different mem-

bership functions for three different data sets are depicted

Table 2. Learning results for NFC2

MF tri gbell gauss psig

Data

set 1

#MF 2 3 3 3

Epochs 22 1 1 1

Test error 0.0306 0.0392 0.0368 0.0444

Train error 0.0400 0.0256 0.0252 0.0256

Data

set 2

#MF 3 2 2 3

Epochs 1 1 2 1

Test error 0.0473 0.0443 0.0568 0.0528

Train error 0.0214 0.0681 0.0294 0.0184

Data

set 3

#MF 3 3 3 3

Epochs 1 1 1 1

Test error 0.0223 0.0350 0.0348 0.0376

Train error 0.0308 0.0272 0.0267 0.0273

in Tables 1, 2, 3 and 4. We used four different Member-

ship Functions (MF): Triangular (tri), Gaussian bell (gbell),

Gaussian (gauss) and product of two sigmoidal function

(psig). As evident, depending on the membership function

and data set used, different controllers are using varying

number of epochs. In some cases, the NFC was constructed

after 1 learning epoch. The four NFC’s were build individ-

ually and then connected as shown in Figure 2.

The developed HiNFRA model is then tested using two



Table 3. Learning results for NFC3

MF tri gbell gauss psig

Data

set 1

#MF 2 2 2 2

Epochs 1 8 1 22

Test error 0.0840 0.0726 0.0686 0.0788

Train error 0.0342 0.0536 0.0498 0.0557

Data

set 2

#MF 2 2 2 2

Epochs 1 1 1 68

Test error 0.0627 0.1187 0.0665 0.1339

Train error 0.0352 0.0552 0.0470 0.0290

Data

set 3

#MF 2 2 2 2

Epochs 1 20 14 30

Test error 0.2268 0.2206 0.2644 0.1170

Train error 0.0332 0.0344 0.0328 0.0423

Table 4. Learning results for NFC4

MF tri gbell gauss psig

Data

set 1

#MF 2 2 2 2

Epochs 2 7 11 4

Test error 0.1691 0.1488 0.1555 0.1379

Train error 0.0748 0.0829 0.0724 0.1031

Data

set 2

#MF 2 2 2 2

Epochs 51 17 15 19

Testing error 0.1541 0.1557 0.1689 0.2250

Training error 0.0649 0.0603 0.0600 0.0600

Data

set 3

#MF 2 2 2 2

Epochs 39 20 20 24

Testing error 0.1396 0.1122 0.1148 0.1098

Training error 0.0561 0.0508 0.0485 0.0558

sets of data based on an attack situation. Specific informa-

tion about different attack categories are stored in a lookup

table. All values in the lookup table is scaled within the

range 0 − 1. The attack category used for the risk assess-

ment is based on inputs from the IDS agents and this value

is used to assign values to eight of the nine input variables.

Only the Intrusion Frequency is estimated based on the out-

put from the HMM module.

The two lookup tables and final results (asset risk) are

illustrated in Tables 5 and 6.

Figure 4 illustrates the asset risk values for different in-

trusion frequency variations (0-1). For the different param-

eter settings (Tables 5 and 6), as evident from Figure 4, the

asset risk values show clear sensitivity for each attack cate-

gory. This also illustrates that the proposed system is very

adaptive for different attack categories under varying con-

ditions. Figures 5 - 8 illustrates the surface plots of the four

Table 5. Lookup Table1
Attack Categories

Variable DoS U2R R2L PR

Intrusion frequency 0.25 0.25 0.25 0.25

Pr threat success 0.90 0.70 0.70 0.10

Severity 0.40 0.90 0.90 0.30

Threat level 0.38 0.52 0.52 0.29

Threat resistance 0.10 0.60 0.90 0.20

Threat capabilit 0.50 0.85 0.80 0.10

Vulnerability 0.46 0.36 0.15 0.10

Cost 0.30 0.30 0.30 0.30

Criticality 0.70 0.70 0.70 0.10

Sensitivity 0.15 0.85 0.85 0.20

Recovery 0.40 0.85 0.70 0.15

Asset value 0.33 0.52 0.52 0.24

Asset risk 0.27 0.54 0.54 0.19
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Figure 5. Control Surface View of NFC1

developed controllers.

4. Conclusions

This paper presented a detailed implementation of the

Hierarchical Neuro-Fuzzy online Risk Assessment (HiN-

FRA) model to aid the decision making process of DIPPS.

The fine tuning of fuzzy logic based risk assessment model

is achieved using neural network learning technique. Pre-

liminary results indicate that neural learning techniques

could improve the fuzzy controller performance and make

the risk assessment model more robust. Compared to our

previous model [3], where the fuzzy if-then rules were for-

mulated based on expert knowledge, the implementation of

HiNFRA is more simple and adaptive.

Our future research is targeted to further develop and op-



Table 6. Lookup Table2
Attack Categories

Variable DoS U2R R2L PR

Intrusion frequency 0.25 0.25 0.25 0.25

Pr threat success 0.70 0.70 0.50 0.10

Severity 0.50 0.90 0.70 0.45

Threat level 0.42 0.52 0.44 0.31

Threat resistance 0.20 0.80 0.70 0.20

Threat capabilit 0.40 0.80 0.80 0.10

Vulnerability 0.33 0.20 0.26 0.10

Cost 0.40 0.40 0.50 0.30

Criticality 0.60 0.80 0.80 0.10

Sensitivity 0.20 0.80 0.70 0.10

Recovery 0.30 0.80 0.50 0.25

Asset value 0.39 0.59 0.60 0.24

Asset risk 0.39 0.60 0.53 0.20
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Figure 6. Control Surface View of NFC2

timize fuzzy risk models using evolutionary algorithms.
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