
Intelligent Web Caching Using Neurocomputing and Particle Swarm
Optimization Algorithm

Sarina Sulaiman1, Siti Mariyam Shamsuddin2, Fadni Forkan3, Ajith Abraham4

1,2,3 Soft Computing Research Group,
Faculty of Computer Science and Information System, Universiti Teknologi Malaysia,

81310 Skudai, Johor, Malaysia.
4Centre for Quantifiable Quality of Service in Communication Systems,
Norwegian University of Science and Technology, Trondheim, Norway.

sarina@utm.my1, mariyam@utm.my 2, fuelcon@gmail.com3, ajith.abraham@ieee.org4

Abstract

Web caching is a technology for improving network

traffic on the internet. It is a temporary storage of Web
objects (such as HTML documents) for later retrieval.
There are three significant advantages to Web
caching; reduced bandwidth consumption, reduced
server load, and reduced latency. These rewards have
made the Web less expensive with better performance.
In this paper, an Artificial Intelligence (AI) approach
is introduced for Web caching to determine the type of
Web request, either to cache or not, and to optimize
the performance on Web cache. Two methods are
employed in this study; Artificial Neural Network
(ANN), and Particle Swarm Optimization (PSO). The
experimental results have revealed that some
improvements have been accomplished compared to
the existing technique in terms of Web cache size.

1. Introduction

Caching operation can be executed at the client
application, and generally it is embedded in most Web
browsers. There are a number of products that extend
or replace the embedded caches with systems that
contain larger storage, more features, or better
performance. In any cases, these systems only cache
net objects from many servers for a single user.

Caching can also be operated between the client and
the server as a part of proxy cache, which is often
located close to network gateways to decrease the
bandwidth connections. These systems can serve many
users (clients) with cached objects from many servers.
In fact, the usefulness of web caching (reportedly up to

80% for some installations) is in caching objects
requested by one client for later retrieval by another
client. Even for better performance, many proxy
caches are part of cache hierarchies; a cache can appeal
neighboring caches for a requested document to lessen
the need for direct fetching.

Furthermore, caches can be situated directly in front
of a particular server, to reduce the number of requests
that the server must handle. Most proxy caches can be
used in this fashion with different names; reverse
cache, inverse cache, or sometimes httpd accelerator,
to replicate the fact that it caches objects for many
clients but normally from one server [1][8].

The rest of the paper is organized as follows:
Section 2 describes some fundamentals of Artificial
Neural Network (ANN), followed by Particle Swarm
Optimization (PSO) in Section 3. Section 4 discusses
on Intelligent Web caching, while Section 5 illustrates
the performance evaluation of both ANN and PSO.
Finally, Section 6 concludes the article.

2. Artificial Neural Network (ANN)

ANN is comprised of architecture and a learning
algorithm. The architecture is the arrangement of the
neurons within the network, i.e. how they are linked
together. The learning algorithm is the program that
each neuron runs every time the network is executed.

Most artificial neurons are a simple summing
program by taking the sum of their input activations.
Subsequently, the output is activated and it is
depended on their internal state. The internal state
changes in response to input activations over time, as
well as output activations. The supervised learning

paradigm dictates that a network must be informed
whether or not it has produced an acceptable response.
ANN is judged on its ability to successfully produce a
correct output given a certain set of inputs. An
unsuccessful attempt induces a change in the neurons
internal states.

Back-propagation (BP) is the mathematical
technique for calculating errors in a complex
mathematical system [9], such as ANN. It is one of the
several types of gradient descent algorithms, which are
inversely similar to more traditional AI approaches
such as gradient assent algorithms. Such algorithms
map the function onto a three-dimensional surface,
with low land valleys and up land hills. Depending on
the problem, the lower the point on the landscape the
better the output of the function (this situation is
reversed for gradient assent algorithms).

3. Particle Swarm Optimization (PSO)

PSO is an attractive approach due to its easiness in
dealing with very few parameters for weight
adjustment. The first application represents an
approach that can be used for many applications, i.e.,
evolving ANN [3][9]. PSO is being used to optimize
not only the network weights, but also the network
structure. The method is straightforward and efficient,
and generally, it is widely implemented with traditional
ANN training algorithms.

PSO, similar to other evolutionary computation
algorithms, can be applied to solve most optimization
problems and problems that can be converted to
optimization problems. It is a population-based search
algorithm derived from the simulation of the social
behavior of birds within a flock. The initial intent of
the particle swarm concept was to graphically simulate
the graceful and unpredictable choreography of a bird
flock [2]. The aim is to discover the patterns that
govern the ability of birds to fly synchronously, and to
suddenly change direction with a regrouping in an
optimal formation. From the initial objective, the
concept evolved into a simple and efficient
optimization algorithm.

A swarm consists of a set of particles, where each
particle represents a potential solution. Subsequently,
the particles are flown through the hyperspace, and the
position of each particle is changed according to its
own experience and its neighbors.
Let ()txi denotes the position of particle iP in
hyperspace, at time step t. Subsequently, the position
of iP is changed by adding a velocity ()tvi to the
current position.

() () ()= − +1
i i i
x t x t v t

The velocity vector drives the optimization process

and reflects the social exchange information.
Moreover, two main algorithms regularly used in PSO
are a local best algorithm (lbest) and a global best
algorithm (gbest). In the lbest algorithm, each particle
moves towards its previous best position, and also
towards the best particle in its restricted neighborhood
and thus maintains multiple attractors. The gbest
algorithm maintains only a single best solution, and
each particle moves towards its previous best position
and towards the best particle in the whole swarm.
Eventually all particles will converge to this position.

4. Intelligent Web caching

Hammami [4] was the pioneer in investigating the
possibility of using ANN in placing a new cache block
placement. In his work, he adapted the ANN in block
placement strategy in computer cache memory widely
known as Random Access Memory (RAM). Though in
1990’s the setback to this approach is the
computational burden on the CPU processing for the
ANN learning, his study has marked a new era of
caching systems. His promising results on a set of
benchmark data has shown and sparked the
exploitation of ANN in solving caching problems.

Implementing ANN is an added progress towards
improving the performance of Web caching. A
significant performance improvement in employing
ANN in computer cache memory for data clustering
shows that further exploration of executing this
technique in Web caching is possible.

The relative performance of ANN in various
applications is assorted towards different applications
(e.g.: performance analysis, prediction, and data
clustering). Performance of various methods and
policies in Web caching should be visible once
exploring the capabilities of ANN in Web caching.
Selecting the best value for each user predefined
values such as learning rate and error tolerance is
needed in ANN for better results. These selections will
affect the forecasting ability of the network in Web
caching.

By employing BP and PSO algorithm for the
caching scheme analysis in selecting cache objects, a
chosen input need to be set up to visualize and handle
the environment of the Web caching system. In
selecting the best input variables, critical components
and variables of affected server, contemporary caching

approaches, and end users’ are desirable to be
analyzed. The end user perspective is particularly
important for online applications while a perspective
from a single monitoring server is adequate for most
infrastructure applications.

5. Performance evaluation

Several steps are involved to conduct the
performance and evaluation of BP algorithm and PSO
in Web caching. Figure 1 depicts the workflow of the
proposed intelligent Web caching.

Figure 1. Workflow of intelligent Web caching

The number of ANN input nodes correspond to the

number of variables in the input vector used to analyze
the system performance. In this paper, the number of
inputs is based on three attributes proposed by
Mohamed [11]. As well, the number of input nodes is
probably the most critical decision variables since it
contains the important information about the complex
autocorrelation structure in web application
performance.

The hidden layer and nodes play crucial roles in
mapping the precise weight for the network output. It
is the role of the hidden nodes in the hidden layer that

allow ANN to identify the feature, to capture the
pattern in the web performance data, and to perform
complex nonlinear mapping between input and output
variables.

In this paper, the number of hidden nodes is
determined by using 2n+1 [10]. The number of output
nodes is relatively easy to specify as it is directly
related to the undertaken problem. In this study, only
one output node is needed; about the decision to cache
or not to cache the data. BP training parameters for the
Web caching are set as follow:

Learning rate = 0.7
Total error = 0.005
Individual error = 0.005
Number of epoch = 20
Number of hidden layer = 1
Number of nodes in hidden layer = 7
Stopping condition = total error reached or maximum
number of epoch

For the reason a convergent process for BP is time
consuming for this particular data and possibility of
not converge, the number of epoch for BP are limited
to 20 only.

In designing the ANN for Web caching, the
following procedures are determined:
• The pre-processing data
• The number of input nodes
• The number of hidden layers and hidden nodes
• The number of output nodes

The selection of these parameters is basically
problem-dependent. Although there exist many
different approaches that can be applied, such as the
pruning algorithm, the polynomial time algorithm, the
canonical decomposition technique, and the network
information criterion for finding the optimal
architecture of ANN, these methods are usually quite
complex in nature and are difficult to implement.
Furthermore none of these methods can guarantee the
optimal solution for the Web caching problems.

The pre-processing is the key component in Web
cache. At this stage, three attributes are proposed,
which are based on the attributes that are widely used
by the researchers in the area of Web performance
analysis [5][6]. The attributes used in this study are:

1. Time: Time is the counter that observes the time
takes to receive a data. The time stated in seconds.

2. Script Size: The size of the data that is fetched.
The size is expressed in bytes and kilobytes.

3. Numbers of Hit: Observing the number of hits per
data. Where on each request done for a Web file,
the Number of Hit counter for requested file will
be increased.

Each attribute must be multiplied with defined
Priority Value (PV) [11] to get the total of the

 Begin

Fetch data
(log data, client request)

Pre-process data
(no. of hits, time, etc)

Apply BP Network or
PSO method to the data

Cache?

Server array
 full?

Data already
cache?

Eliminate Least
Frequency Used data

Yes

Yes

No

No

Put data to cache

Send data to client

End

Yes

No

attributes for target output generation of the network.
An example is shown as:

Expected target = (size *0.266667) + (hit *0.200000) +

(time *0.066667)

The total value determines the expected target for
current data. The total value is compared to a threshold
number, and this threshold values are dynamic. A new
threshold calculation is proposed based on the latency
ratio on singular hit rate data [7].

The threshold is calculated and updated for every
epoch of the training. If the expected_target is smaller
than the threshold, then the expected target would be 0,
and becomes 1 if the expected_target is equal to the
threshold and greater shown as given below:

The network incorporates simplicity in generating
output for the web caching to cache or not to cache.
For each output generated from the non-training mode,
the outputs can be illustrated by employing sigmoid
function that bounded between 0 and 1. For each
output values that represent between the interval of
[0.5,1], the data will be cached in the caching storage,
and for each output that represent values less than 0.5
the data will be fetched directly from the originating
database resource in case the data is not found in the
cache storage. PSO parameters for web caching are
assigned as:

Number of particle = 7
Global acceleration constant = 1.4
Local acceleration constant = 1.4
Time step = 0.1
Inertia weights = 0.729844
Minimum error = 0.005

In this section, we present a performance
comparison between standard Web cache, ANN Web
cache and PSO Web cache. The standard Web cache
fills requests from the Web server, stores the requested
information locally, and sends the information to the
client. If the Web cache gets a request for the similar
information for the next time, it simply returns the
locally cached data instead of searching over the
Internet. On the other hand, ANN and PSO Web cache
request from the Web server and determine which
request should be stored locally using AI approach.

Figures 1a through Figure 4a depict the BP training
process, while Figure 1b through Figure 4b show the
PSO training process. The testing log data are from
Mosaic clients, which were running at the Boston
University from November 1994 to February 1995.
Three different parameters are chosen for training;
size, retrieval time, and hit rate. The training results

reveal the minimum error, total training iteration,
accuracy in training both of the approach, and total
size in cache (refer to Figures 1a- Figure 4a and Figure
1b- Figure 4b). The minimum error and the accuracy
are generated by ANN and PSO during training in
standard Web cache.

Table 1 illustrates the results of BP network and
PSO. The results are promising in resolving status of
data either to cache or not. It is also stored more than
half of the data in cache, hence improves the
processing time of a server. The advantages of PSO are
due to less iteration during training process and
achieve minimum error faster compare to the BP
network. However, the drawback of PSO is the more
the particles are used, the higher the computational
cost are incurred.

Moreover, from the results (see Figure 5, 6 and 7)
of executing each algorithm, we find the mean squared
error and the total training iteration of BP algorithm is
higher than PSO from November 1994 to February
1995. Therefore, the percentage of accuracy test for
PSO is privileged compare to BP (see Figure 7). This
is because PSO is used to optimize the weight in ANN
and in this case, the training process using PSO
converge faster than BP network. It seems that this
result indicates that PSO is preferred.

Figure1a. BP training process for Nov-94

Figure2a. BP training process for Dec-94

⎧⎪
⎨
⎪⎩

<
= ≥

0 if expected_target ,
 1 if expected_target .

threshold
Expected Network Output threshold

Table 1. Performance on Nov-94 until Feb-95

 BP PSO Standard
November 1994

Error 0.061 0.005 -
Total Iteration 24520 631 -
Accuracy Test 87.68 99.18 -
Total Cache Size (kb) 57409.67 57409.67 74859.44

December 1994
Error 0.042 0.005 -
Total Iteration 63740 470 -
Accuracy Test 91.53 98.96 -
Total Cache Size (kb) 102398.4 102398.4 147668.7

January 1995
Error 0.052 0.0049 -
Total Iteration 67980 533 -
Accuracy Test 89.5 99.441 -
Total Cache Size (kb) 54089.219 54091.349 74779.29

February 1995
Error 0.047 0.005 -
Total Iteration 57960 488 -
Accuracy Test 90.65 99.68944 -
Total Cache Size (kb) 72084.8 72084.8 84963.98

Figure4a. BP training process for Feb-95

Figure 2b. PSO training process for Dec-94

Figure 3b. PSO training process for Jan-95

Figure 4b. PSO training process for Feb-95

Figure3a. BP Training process for Jan-95

Figure 1b. PSO training process for Nov-94

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Nov-94 Dec-94 Jan-95 Feb-95
Months

Er
ro

r

BP
PSO

Figure 5. Mean squared error

0
10000
20000
30000
40000
50000
60000
70000

Nov-94 Dec-94 Jan-95 Feb-95
Months

Ite
ra

tio
n

BP
PSO

Figure 6. Total training iteration

80

85

90

95

100

Nov-94 Dec-94 Jan-95 Feb-95
Months

Pe
rc

en
t

BP
PSO

Figure 7. Accuracy test

6. Conclusion

We presented two approaches to optimize the use of
Web caching in server. Although further extensive
benchmarking is required, there is a strong indication
that these approaches enhance the performance of Web
cache.

Direction for further research to include the
benchmarking with log data from various web and
proxy server, as well as different protocol also
assigned within the training phase (ftp, gopher etc) to
fully optimize the use of intelligent Web cache.

7. Acknowledgement

This work is supported by MOSTI and RMC,
Universiti Teknologi Malaysia, MALAYSIA. Authors
would like to thank Soft Computing Research Group,
Faculty of Computer Science and Information System,

UTM for their continuous support and fondness in
making this study an accomplishment.

8. References

[1]Brain, D. Davison, Web Caching Overview,
http://www.Web-caching.com/welcome.html.

[2]Kennedy, J., and Eberhart, R. C., Particle Swarm
Optimization. Proc. IEEE Int’l Conf. on Neural Networks IV,
Piscataway, 1995, pp.1942 – 1948.

[3]Eberhart, R. C., and Shi Y., Particle Swarm Optimization:
Development, Application and Resources, Evolutionary
Computation, Volume 1, 2001, pp.27-30.

[4]Hammami, O., Towards Self Organizing Cache Memories
Using Neural Networks. University of Aizu, under
Fukushima. Grant, Japan, 1996, pp.965-80.

[5]Rousskov, A., and Soloviev, V., On Performance of
Caching Proxies, Short version appears as poster paper in
ACM SIGMETRIC’98 Conference, 1998.

[6]Liu M., Wang F. Y., Zeng D., and Yang L., An Overview
of World Wide Web Caching. IEEE International Conference
on. Systems, Man, and Cybernatics, Volume 5, 2001,
pp.3045-3050.

[7]Koskela, T., Neural Network Method in Analysing and
Modelling Time Varying Processes, PhD dissertation,
Helsinki University of Technology, 2004.

[8]Sulaiman, S., Shamsuddin S. M., and Abraham, A., An
Implementation of Rough Set in Optimizing Mobile Web
Caching Performance, Tenth International Conference on
Computer Modeling and Simulation, UKSiM/EUROSiM
2008, Cambridge, UK, IEEE Computer Society Press, USA,
2008 (in press).

[9]Forkan, F., Sulaiman, S., and Mohammed, F., Artificial
Life and Artificial Neural Network – A Comparison Study,
The 3rd International Seminar on Information and
Communication Technology, ICTS, Surabaya, Indonesia,
Faculty of Information Technology, Sepuluh Nopember
Institute of Technology, 2007, pp.181-185.

[10]Lippmann, R.P., An Introduction to Computing
with Neural Net, IEEE ASSP Magazine, April, 1987,
pp.4-22.

[11]Mohamed, F., Intelligent Web Caching
Architecture, Master thesis, Faculty of Computer
Science and Information System, Universiti Teknologi
Malaysia, 2007.

