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Abstract
In this paper, we examine the performance of four fuzzy rule generation methods on Wisconsin breast cancer data. The
first method generates fuzzy if-then rules using the mean and the standard deviation of attribute values with 92.2%
correct classification rate. The second approach generates fuzzy if-then rules using the histogram of attributes values
with 86.7% correct classification rate. The third procedure generates fuzzy if-then rules with certainty of each attribute
into homogeneous fuzzy sets with 99.73% correct classification rate. In the fourth approach, only overlapping areas are
partitioned with 62.57% correct classification rate. The first two approaches generate a single fuzzy if-then rule for
each class by specifying the membership function of each antecedent fuzzy set using the information about attribute
values of training patterns. The other two approaches are based on fuzzy grids with homogeneous fuzzy partitions of
each attribute. The performance of each approach is evaluated on breast cancer data sets. Simulation results show that
the simple grid approach has a high classification rate of 99.73 %.
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Introduction

Breast cancer is the most common cancer in women in
many countries. Most breast cancers are detected as a
lump/mass on the breast, or through self-
examination/mammography1. Screening mammography is
the best tool available for detecting cancerous lesions
before clinical symptoms appear. Surgery through a biopsy
or lumpectomy have been also been the most common
methods of removal. Fine needle aspiration (FNA) of breast
masses is a cost-effective, non-traumatic, and mostly
invasive diagnostic test that obtains information needed to
evaluate malignancy. Recently, a new less invasive
technique, which uses super-cooled nitrogen to freeze and
shrink a non-cancerous tumour and destroys the blood
vessels feeding the growth of the tumour, has been
developed2 in the USA. Several Artificial Intelligence (AI)
techniques including neural networks and fuzzy logic3-5 are
successfully applied  to  a  wide  variety of decision-making
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problems in the area of medical diagnosis. In this paper we
examine the performance of four direct rule generation
methods that involve no time-consuming tuning procedures
on breast cancer data6. The first method generates fuzzy if-
then rules using the mean and the standard deviation of
attribute values. The second approach generates fuzzy if-
then rules using the histogram of attributes values. The
third approach generates fuzzy if-then rules with certainty
of each attribute into homogeneous fuzzy sets. In the fourth
approach, only overlapping areas are partitioned. This
approach is a modified version of the third approach. In the
first two approaches, a single fuzzy if-then rule is generated
for each class. That is, the number of fuzzy if-then rules is
the same as the number of classes. These methods were
reported in7-8. The main advantage of fuzzy rule-based
systems is that they do not require large memory storage,
their inference speed is very high and the users can
carefully examine each fuzzy if-then rule. This paper is
organised as follows. Section 2 describes the characteristics
of fuzzy systems. Section 3 describes rule generation
methods. Section 4 provides details of the Wisconsin breast
cancer data, and Section 5 describes simulation and results.
The final section provides some conclusions relating to the
performance of fuzzy systems when applied to the breast
cancer data.

Fuzzy systems
Fuzzy logic was invented by Zadeh9 in 1965 for

handling uncertain and imprecise knowledge in real world
applications. It has proved to be a powerful tool for
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decision-making, and to handle and manipulate imprecise
and noisy data. The first major commercial application was
in the area of cement kiln control. This requires that an
operator monitor four internal states of the kiln, control four
sets of operations, and dynamically manage 40 or 50 "rules
of thumb" about their interrelationships, all with the goal of
controlling a highly complex set of chemical interactions.
One such rule is "If the oxygen percentage is rather high
and the free-lime and kiln-drive torque rate is normal,
decrease the flow of gas and slightly reduce the fuel rate".

The notion central to fuzzy systems is that truth values
(in fuzzy logic) or membership values (in fuzzy sets) are
indicated by a value on the range [0.0, 1.0], with 0.0
representing absolute Falseness and 1.0 representing
absolute Truth. A fuzzy system is characterized by a set of
linguistic statements based on expert knowledge. The
expert knowledge is usually in the form of “if-then” rules.

Definition 1: A fuzzy set A in X is characterized by a
membership function which is easily implemented by fuzzy
conditional statements. For example, if the antecedent is
true to some degree of membership, then the consequent is
also true to that same degree.

If antecedent Then consequent
Rule: If variable1 is low and variable2 is high Then

output is benign Else output is malignant
In a fuzzy classification system, a case or an object can

be classified by applying a set of fuzzy rules based on the
linguistic values of its attributes.

Every rule has a weight, which is a number between 0
and 1, and this is applied to the number given by the
antecedent. It involves 2 distinct parts. The first part
involves evaluating the antecedent, fuzzifying the input and
applying any necessary fuzzy operators. For Example,

Union:

Intersection:

Complement:

where µ is the membership function.
The second part requires application of that result to the

consequent, known as inference. To build a fuzzy
classification system, the most difficult task is to find a set
of fuzzy rules pertaining to the specific classification
problem.

A fuzzy inference system is a rule-based system that
uses fuzzy logic, rather than Boolean logic, to reason about
data. Its basic structure includes four main components (1)
a fuzzifier, which translates crisp (real-valued) inputs into
fuzzy values; (2) an inference engine that applies a fuzzy
reasoning mechanism to obtain a fuzzy output; (3) a
defuzzifier, which translates this latter output into a crisp
value; and (4) a knowledge base, which contains both an
ensemble of fuzzy rules, known as the rule base, and an
ensemble of membership functions known as the database.

The decision-making process is performed by the
inference engine using the rules contained in the rule base.

These fuzzy rules define the connection between input and
output fuzzy variables.

Rule generation procedure
In this section, we explain each of four approaches

examined in this paper. The performance of each approach
is examined in the next section by computer simulations
on breast cancer data sets.

Let us assume that we have an n-dimensional c-class
pattern classification problem whose pattern space is an n-
dimensional unit cube [0,1]n. We also assume that m
patterns xp = (xpl,...,xpn) , p = 1,2,...,m, are given for
generating fuzzy if-then rules where xpi∈  [0,1] for p
=1,2,..., m, i =1,2,...,n. In computer simulations of this
paper, all attribute values are normalized into the unit
interval [0,1].

Rule generation based on the mean and the
standard deviation of attribute values

In this approach10, a single fuzzy if-then rule is
generated for each class. The fuzzy if-then rule for the kth

class can be written as
If x1 is 1A  and ... and xn is nA  then Class k, (1)

where iA  is an antecedent fuzzy set for the ith attribute. The

membership function of iA  is specified as
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where iµ  is the mean of the ith attribute values xpi of Class

k patterns, and iσ  is the standard deviation. Fuzzy if-then
rules for the two-dimensional two-class pattern
classification problem are written as follows:

The membership function of each antecedent fuzzy set
is specified by the mean and the standard deviation of
attribute values. For a new pattern xp = (xp3,xp4), the winner
rule is determined as follows:

{ }( ). ( ) max ( ). ( ) 1, 23 3 2 4 1 3 2 4A x A x A x A x kp p p p= = (3)

For each attribute, 20 membership functions fh(),
h=1,2,...,20 were used. The fuzzy partition was used only
for calculating the histogram.

Rule generation based on the histogram of
attribute values

In this method the use of histogram an antecedent
membership function  and  each  attribute is partitioned into

( ) 1 ( )x xAA
µ µ= −

( ) Min[ ( ), ( )]x x xBA B Aµ µ µ=∩

( ) Min[ ( ), ( )]x x xBA B Aµ µ µ=∩
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Figure 1. Fuzzy partition for calculating the smoothed histogram.

Figure 2. Normalised histogram of class2 patterns.

Figure 3. An example of fuzzy partition.

several fuzzy sets. We used 20 membership functions fh(.),
h=1,2,...,20 for each attribute in computer simulations as
shown in Figure 1.

The smoothed histogram ( )i im x of Class k patterns for
the ith attribute is calculated using the 20 membership
functions fh (.) as follows:

( )1
( )

  k

                         ,  h=1,2,...,20h-1

m x f xi i pihx Classpm

for xi hβ β

∑=
∈

≤ ≤

(4)

where mk is the number of Class k patterns, 1,h hβ β−    is

the hth crisp interval corresponding to the 0.5-level set of
the membership function fh (.):

0,   1,1 20β β= = (5)

1 1
 for h=1,2,...,19

20 1 2
hhβ = −

−

 
 
 

(6)

The smoothed histogram in (4) is normalized so that its
maximum value is 1. An example of such a normalized
histogram is shown in Figure 3, which is the histogram of
Class 2 patterns for the 3rd attribute of breast cancer data.
As in the first approach based on the mean and the standard
deviation, a single fuzzy if-then rule in equation (2) is
generated for each class in the second approach. Figure 2
represents normalized histogram of class 2 patterns.

Rule generation of based on simple fuzzy grid

In the first two approaches, a single fuzzy if-then rule
was generated for each class using the information about
training patterns. On the contrary, many fuzzy if-then rules
are generated in the third approach by partitioning each
attribute into homogeneous fuzzy sets. In Figure 4, we
show an example of such a fuzzy partition where the two
dimensional pattern space is partitioned into 25 fuzzy
subspaces by five fuzzy sets for each attribute (S: small,
MS: medium small, M: medium, ML: medium large, L:
large). A single fuzzy if-then rule is generated for each
fuzzy subspace. Thus, the number of possible fuzzy if-then
rules in Figure 3 is 25.

One disadvantage of this approach is that the number of
possible fuzzy if-then rules exponentially increases with the
dimensionality of the pattern space. For coping with this
difficulty, some GA-based rule selection approaches have
been proposed to find a compact rule set10. The number of
fuzzy if-then rules can be also decreased by feature
selection.

Because the specification of each membership function
does not depend on any information about training patterns,
this approach uses fuzzy if-then rules with certainty grades.
The local information about training patterns in the
corresponding fuzzy subspace is used for determining the
consequent class and the grade of certainty.

In this approach, fuzzy if-then rules of the following
type are used:

In this approach, fuzzy if-then rules of the following
type are used:

If x1 is 1jA  and ... and xn is jnA
Then

Class Cj, with CF = CF j,  j  =1 ,2 , . . . ,  N  (7)

where j indexes the number of rules, N is the total number
of rules, jiA is the antecedent fuzzy set of the ith rule for the
ith attribute, Cj; is the consequent class, and CFj is the grade
of certainty. The consequent class and the grade of certainty
of each rule are determined by the following simple
heuristic procedure:

Attribute Value

M
em

be
rs

hi
p

0 1

1
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small large

(a)

small large

(b)

Figure 4. Fuzzy partition of each attribute. (a) simple fuzzy grid
approach, (b) modified fuzzy grid approach.

Step 1: Calculate the compatibility of each
training pattern xp =(xp1,xp2,…,xpn) with the j-th fuzzy
if-then rule by the following product operation:

( ) ( ) ( )...  , 1 ., 2, ...,1 1x A x A x p mj p jn pnj pπ = × × = (8)

Step 2: For each class, calculate the sum of the
compatibility grades of the training patterns with the
j-th fuzzy if-then rule Rj:

( ) ( ) ,  k=1,2,...,c  

n
R xj pclass k x class kp

β π∑=
∈

where ( ) class k jRβ  is the sum of the compatibility

grades of the training patterns in Class k  with the j-th
fuzzy if-then rule Rj.

Step 3: Find Class jA  that has the maximum

value ( ) class k jRβ (10)

If two or more classes take the maximum value or
no training pattern compatible with the j-th fuzzy if-
then rule (i. e., if βClass k(R j )=0  for k =1,2,..., c  ) ,  the
consequent class Ci can not be determined uniquely.
In this case, let Ci be φ. If a single class takes the
maximum value, the consequent class Cj i s
determined by (7).

Step 4: If the consequent class Ci is φ, let the
grade of certainty CFj be CF j  = 0 .  Otherwise the
grade of certainty CF j i s  determined as follows:
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Rule generation based on fuzzy partition of
overlapping areas

In the third approach, the shape of each membership
function was specified without utilizing any information
about training patterns. A simple modification of the third
approach is to partition only overlapping areas. This
approach is illustrated in Figure 4.

This approach generates fuzzy if-then rules in the same
manner as the simple fuzzy grid approach except for the
specification of each membership function. Because this
approach utilizes the information about training patterns for
specifying each membership function as in the first and
second approaches, the performance of generated fuzzy if-
then rules is good even when we do not use the certainty
grade of each rule in the classification phase. For example,
the classification boundary in Figure 4 was obtained by
generating nine fuzzy if then rules without certainty grades.

In this approach, the effect of introducing the certainty
grade to each rule is not large when compared with the third
approach. In computer simulations of the next section, we
used fuzzy if-then rules with certainty grades in this
approach, as in the third approach.

Wisconsin diagnostic breast cancer data

The Wisconsin breast cancer dataset was obtained from
a repository of a machine-learning database University of
California, Irvine. This data set has 32 attributes (30 real-
valued input features) and 569 instances of which 357 are
of benign and 212 are of malignant class. Table 1 shows the
statistical details of the data.

Class Frequency Percent Valid
Percent

Cumulative
Percent

1 357 62.7 62.7 62.7
2 212 37.3 37.3 100.0

Total 569 100.0 100.0

Table 1. Statistical details of the data.

Several studies have been conducted based on this
database. For example, Wisconsin Breast Cancer Prognosis
Dataset Numerical Testing Results presented in11 using
Knowledge Based vector Machine (KSVM) obtained
66.4% correct results. Bennet and Mangasarian12 used
linear programming techniques, obtaining a 99.6%
classification rate on 487 cases (the reduced database

(9)
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available at the time). However, diagnostic decisions are
essentially black boxes, with no explanation as to how they
were attained.

Ten real-valued features are computed for each cell
nucleus:

a) radius (mean of distances from centre to points on
the perimeter)

b) texture (standard deviation of grey-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f)  compactness (perimeter^2 / area - 1.0)
g) concavity (severity of concave portions of the

contour)
h) concave points (number of concave portions of the

contour)
i) symmetry
j) fractal dimension ("coastline approximation" - 1)

Simulation results and discussions

We examined the performance of four different
approaches, and the empirical results are summarized in
Table 2.

As evident, the performance of simple grid and mean
and standard deviation is comparable. But the performance
of histogram and modified grid approaches is not good
enough with the other approaches. This is because in the
histogram approach a single fuzzy rule is not enough for
each class and the classification of some patterns was
rejected and in the case of the modified grid approach the
number of fuzzy if-then rules is increased exponentially
with the dimensionality of pattern space. Simple grid
approach gave the overall best results with a classification
accuracy of 99.73%. Rule generation using mean and
standard deviation is easy to implement as it depends only
on the mean and standard deviation of the attribute values.

The modified grid approach did not produce the desired
accuracy. Moreover, in the grid-based approach, the
number of fuzzy if-then rules exponentially increased with
the dimensionality of the pattern space. Thus, a large
number of fuzzy if-then rules are usually generated for real-
world pattern classification problems. This leads to several
drawbacks: over-fitting training patterns, large memory
storage requirement, and slow inference speed. On the
contrary, the numbers of fuzzy if-then rules in the first two
approaches are the same as the number of classes.

Mean and standard deviation 92.2%

Histogram 86.7%

Simple grid 99.73%

Modified grid 62.57%

Table 2. Classification rates for breast cancer data.

Conclusion and discussions

In this paper, we examined the performance of four
fuzzy rule generation methods that could generate fuzzy if-
then rules directly from training patterns with no time-
consuming tuning procedures. In the first approach, a single
fuzzy if-then rule was generated for each class using the
mean and the standard deviation of attribute values. In the
second approach, a single fuzzy if-then rule was generated
for each class using the histogram of attribute values. The
third approach generated fuzzy if-then rules by
homogeneously partitioning each attribute. Thus, a pattern
space was partitioned into a simple fuzzy grid. The
information about attribute values was not used for
specifying the membership function of each antecedent
fuzzy set. The local information of training patterns was
utilized when the consequent class and the certainty grade
were specified. The last approach was a modified version of
the simple fuzzy grid approach.

As illustrated in Table 2, simple grid approach gave the
best performance overall while the mean and standard
deviation approach also performed reasonably well.

It may be noted that a single fuzzy if-then rule for each
class is not always sufficient for real-world pattern
classification problems. While each approach is very simple
and has some drawbacks as discussed above, fuzzy rule-
based systems have high classification ability as shown in
this paper. The performance of fuzzy rule based systems
can be further improved by feature selection and optimizing
the rule selection and various rule parameters.
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