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Group/team decision-making is an integral part of almost all failure mode and effects analysis (FMEA) projects. A dys-
functional aspect of this decision-making fashion in fuzzy FMEA is that group/team members’ designs for membership
functions and IF-THEN rules may be overshadowed by a member’s design. This problem is caused by groupthink, a pit-
fall known by the Organisational Behaviour science. This study aims to develop a fuzzy FMEA approach which is
robust to the problem. We applied the Taguchi’s robust parameter design and investigated the effects of various control
parameters namely Defuzzification, Aggregation, And� and Implication operators for the fuzzy inference system (FIS).
Our experiments illustrate that the control parameters, in the above-mentioned order, have the most effect on the
signal-to-noise ratio (SNR). These factors’ optimal setting consists of the Centroid, Sum, Minimum and Minimum levels,
respectively.
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1. Introduction

Increased customers’ expectations today intensify the pressure on almost all companies to enhance their quality level.
Quality improvement endeavours are usually launched by systematic methods such as Failure Mode and Effects Analy-
sis (FMEA).

After its introduction in the 1940s (Su et al. 2014), FMEA is extensively used in the mechanical, chemical, elec-
tronic, medical (Liu, Liu, and Liu 2013) and aerospace industries (Bowles and Peláez 1995). It is capable of analysing
designs, processes, systems or services systematically, to identify potential failures as well as failure causes and effects.
Failure modes are described by Severity (S), Occurrence (O) and Detection (D) factors (hereafter called risk factors).
Estimated according to expert knowledge (Braaksma et al. 2012), the risk factors are converted into a single index
called Risk Priority Number (RPN) (Chen 2013). A list of RPNs shows risk priorities of failures.

Despite its popularity, traditional FMEA has some limitations including (1) ignorance of relative importance weights
of risk factors, (2) computation of RPN through multiplication of risk factors and (3) possibility of obtaining the same
RPN from various combinations of risk factors. A comprehensive list of FMEA drawbacks, including the ones men-
tioned, is presented by Liu, Liu, and Liu (2013). Traditional FMEA, therefore, has almost given way to some modified
versions. Application of fuzzy rule-base system to FMEA (fuzzy FMEA) formed the most popular version during 1992
to 2012 (Liu, Liu, and Liu 2013). This popularity/importance brought us to the conclusion that this method should be
enhanced further.

FMEA usually needs decision-making of a cross-functional team (Liu et al. 2015). Thus, as with other group/team
decision-making-based projects, fuzzy FMEA may suffer from groupthink. Groupthink, an Organisational Behaviour
concept, happens when pressures to achieve consensus override the realistic assessment of alternative solutions (Robbins
and Judge 2013, 292–293). It mainly occurs in highly cohesive groups/teams (McShane and Von Glinow 2010, 257).

An important symptom of groupthink is the dominance of each member’s opinion in group/team discussions. In
FMEA projects, it can be avoided by making the output of fuzzy FMEA robust/insensitive to this dominance. To this
end, the Taguchi’s Robust Parameter Design (RPD) method is applied in this research. RPD is capable of designing con-
trollable parameters in such a way that the response variable becomes robust against uncontrollable factors (Phadke
1995). Here, Defuzzified form of Fuzzy RPN (DFRPN) is considered to be the response variable. The And, Implication,
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Aggregation and Defuzzification parameters of fuzzy FMEA are considered as controllable factors. Moreover, the design
for MFs and IF-THEN rules, given by only one group member and overshadowing the others’ designs, are considered
as a noise level.

2. Literature review

2.1 FMEA and modified FMEA methods

In this subsection, applications of traditional FMEA, modified FMEA methods and, in particular, fuzzy FMEA are
reviewed.

Chen (2013) utilised an integrated form of FMEA and root-cause analysis for total preventive maintenance of a
machine in a semiconductor manufacturing company. Next, the required Autonomous Preventive Maintenance (APM)
actions were obtained. As a result, Overall Equipment Effectiveness (OEE) was improved. Resolving the issues caused
by numerical interpretation and conversion of risk factors, Franceschini and Galetto (2001) developed a new risk mea-
sure called Risk Priority Code (RPC). RPC is of an ordinal scale, which is more compatible with that of risk factors.
They showed effectiveness of the method using a numerical example in design of a cooling fan assembly. Their method
does not need numerical conversion from the originally qualitative scores expressed by the design team. It also consid-
ers risk factors’ importance weights. Braaksma et al. (2012) enhanced FMEA for the maintenance purpose by focusing
on historical failure data. Indeed, they computed the total cost, including the maintenance and failure costs, based on
the failure occurrence probability. The occurrence probability, in turn, was estimated via a logistic regression model.
Applicability of the methodology was illustrated using a gas-field case study and a literature example. As it utilises his-
torical, measured data, it is of high repeatability on a consistent manner. Rather than focusing on the most critical fail-
ures, represented by the highest RPNs, Silvestri, De Felice, and Petrillo (2012) ranked corrective actions according to
multiple criteria and using Analytic Network Process (ANP) and Analytic Hierarchy Process (AHP). The included crite-
ria were RPN, TRPN (Total Risk Priority Number, which is sum of all RPNs) and six more criteria measuring safety,
effectiveness and cost. The approach was implemented in a windscreen-producing company’s wash station. It led to cor-
rection of more than one failure, simultaneously, and to more accident reduction.

Xu et al. (2002) applied Fuzzy Inference System (FIS) to design FMEA in a diesel-engine turbocharger system. The
method investigated the items such as (1) interdependencies amongst failures’ occurrence factors, (2) relationships
amongst failures’ severity factors and combination effect severity factors and (3) relationships amongst failures’ risk fac-
tors and their criticality. Besides considering the interdependencies, the method provided a more realistic interpretation
of the FMEA factors, which are naturally uncertain and linguistic. It also combined knowledge of experts from different
disciplines. Chin, Chan, and Yang (2008) used fuzzy FMEA to build a product design system to facilitate component
and material selection for the design engineers. The approach was utilised in the development project of a printer micro-
motor. It ranked the components and materials based on combination of their risk, reliability and cost scores. In product
architecture, Nepal et al. (2008) applied fuzzy FMEA to analyse the failures caused by component interaction. They
studied a coffeemaker product example, leading to a reduced number of interaction failures on which they focused. Cal-
culating severity and detection using linguistic variables and determining occurrence based on the Cpk index, Yeh and
Chen (2014) computed a new fuzzy RPN. This RPN is the product of the mentioned risk factors. They implemented the
methodology in semiconductor wafer-manufacturing processes. According to the results, the proposed RPN outper-
formed traditional RPN, two-factor sort RPN (S × O) and simple sort RPN (SOD, calculated by putting S, O and D next
to each other).

2.2 Exploration of literature gap

The literature gap was investigated through study of RPD and fuzzy logic simultaneous applications. The most recent
ones are presented next.

Maher et al. (2015) improved quality and productivity in wire-cut electric discharge machining. They conducted a
full-factorial experiment and used RPD to optimise the responses including the speed of cutting, roughness of surface
and heat-affected zone. Data-set of the experiment was next utilised as the training data for Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS). As a result, an ANFIS model was obtained. The ANFIS surface plots were powerful tools to
show and analyse the relationships between the machining parameters and responses. Mariajayaprakash, Senthilvelan,
and Gnanadass (2015) comparatively applied FMEA and fuzzy FMEA to analyse the cogeneration – power and steam
generation at the same time – process failures in a sugar mill boiler. Results of both methods were considerably similar
to each other and their most significant failure modes were optimised through RPD. Finally, the model derived from
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RPD was improved using Genetic Algorithm (GA). The comparison showed that GA remarkably reduced the defect per-
centage figures. Abd, Abhary, and Marian (2016) optimised a dynamic scheduling problem in robotic flexible assembly
cells. An L9 experiment was applied to investigate effects of four parameters on three objective functions, total tardiness,
makespan and number of tardy jobs, namely, and their Signal-to-Noise Ratios (SNRs). Afterwards, the three SNRs were
converted to one performance index. Finally, the performance index was optimised. Huang and Yu (2016) used an L12

experimental design to analyse effects of five control factors on temperature uniformity at eight points of a water-cooled
condenser. In order to more efficiency, they conducted the experiments using a simulation software. Finally, developing
a Multiple-Input, Multiple-Output (MIMO) ANFIS inverse model, they obtained the control factors’ optimal design,
which provided a more temperature uniformity. Tsai and Liukkonen (2016) investigated three hybrid methods for multi-
response optimisation in a stencil printing process. In the first method, the problem was optimised through integration
of Response Surface Methodology (RSM) and a desirability function. In the second method, the multiple responses were
converted into one response via fuzzy logic, which was next optimised by RPD. In the third method, Artificial Neural
Network (ANN) was applied to map the required relationship, which was next optimised by GA. Confirmation experi-
ments indicated that the second method provided the most optimal results.

However, none of these studies addressed the sensitivity of fuzzy FMEA to groupthink. Thus, to the best of the
authors’ knowledge, this subject is original and requires a profound investigation.

3. Theoretical foundations

3.1 Fuzzy logic-based FMEA

In FMEA, RPN is calculated through the Severity × Occurrence × Detection relationship (Silvestri, De Felice, and Pet-
rillo 2012). As mentioned earlier, the relationship is questionable. However, the problem can successfully be resolved
using fuzzy logic (Liu, Liu, and Liu 2013). In fact, the real relationship between the three risk factors and DFRPN is
unknown. There are no historical data for DFRPN, on the other hand. Therefore, the Mamdani Multi-Input, Single-Out-
put (MISO) inference system-based FMEA is the most appropriate technique here, the process of which will be pre-
sented in Section 4.

3.2 Group decision-making and groupthink

In contrast to decisions made by only an individual, group decision-making provides more complete knowledge. It also
increases solution acceptance and diversity of viewpoints, alternatives or approaches (Robbins and Judge 2013). The
diversity reflection capability, however, may be undermined by groupthink. A possible interpretation for this deficiency
is dominance of one member or a few members in group discussions (Robbins and Judge 2013). Groupthink occurs
when there is an unanimity illusion, and abstention is interpreted as a yes vote. It also happens when members who are
going to question group/team consensus avoid expressing their differing viewpoints (Robbins and Judge 2013).

It may simply occur in interacting groups, which are usual groups in which members interact face to face with each
other. However, it can be controlled by techniques for group decision-making including the electronic meeting, nominal
group and brainstorming techniques. It can also be reduced by some other techniques, such as group size monitoring
(Robbins and Judge 2013), which need more mastery of interpersonal skills. The present research, however, aims at
developing a quantitative solution for the groupthink problem in FMEA projects.

3.3 Robust Parameter Design

Taguchi’s RPD, also called Robust Design, is a cost-effective approach for quality improvement. It chooses a combina-
tion of controllable factor levels, technically called setting, that makes the response variable insensitive/robust against
the variation imposed by noise(s). Different parameters/factors of RPD include (Phadke 1995): (1) signal factors, which
are determined by the product user/operator to express the intended value for the response; (2) controllable/control
parameters, which can be controlled and changed by the designer, easily and with a small cost impact; and (3) uncon-
trollable/noise factors, which are expensive/difficult/impossible-to-control by the designer. They cause response deviation
from the target value and, consequently, quality loss.

Each control factor should be assigned some levels covering as extensive a range as possible (Chao and Hwang
1997). Noises, also, are assigned some levels at which they change under experimental conditions. Given m and n set-
tings respectively for control and noise factors, there is a m × n full-factorial experimental design. These too many
experiments are usually inefficient. The efficiency will decline even more once the number of control parameters, noises
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and/or levels rise. In response to this problem, fractional-factorial designs were introduced, which are called standard
Orthogonal Arrays (OAs), technically (Phadke 1995). The OAs used for control parameter experiments are called inner
arrays. However, those applied to uncontrollable factor ones are called outer arrays. The OA which is appropriate for a
given problem has at least k runs (rows), with k denoting the problem Degree of Freedom (DF).

Once the experiments are conducted through a crossed form of appropriate inner and outer arrays, responses will be
observed, recorded and analysed. Then the robust solution is determined using the SNR performance measure. Indeed,
the most insensitive level to noise is indicated by the highest mean (average) SNR value for each control parameter
(Phadke 1995).

SNRs are (usually) threefold: nominal-the-best, larger-the-better and smaller-the-better (Abd, Abhary, and Marian
2014). For a nominal-the-best response, there is a particular target value to be attained under all noise conditions
(Phadke 1995). As DFRPN has only an unknown value to be estimated, the nominal-the-best type of SNR (Equation
(1), with μ and σ denoting the mean and standard deviation, respectively) will be applied in this study.

SNRNTB ¼ 10" log10 ðl2=r2Þ (1)

4. Fuzzy logic-based FMEA robust design

A three-phase framework (Figure 1) is proposed. In the first phase, Identification, the parameter diagram (p-diagram) is
identified. The parameter levels are determined as well. In the second phase, Experimentation, an appropriate OA is
selected, and a design sheet is prepared. The sheet is used for recording the responses observed from experimentation.
In the third phase, Analysis, an appropriate SNR type (nominal-the-best, here) is selected. Afterwards, the control factors
are ranked with respect to the effect they have on mean SNR. For each control parameter, the effect (called delta in
Minitab) is estimated through the difference between the maximum and minimum mean SNRs.

Next, statistical relationships and significance are investigated via a fitted linear model and Analysis of Variance
(ANOVA). The most robust setting – combination of the most insensitive levels to noise – is determined, then. Validity
of the setting, finally, is checked using three confirmation experiments.

Applicability of the methodology is shown using an illustrative example provided based on the case study of Gera-
mian et al. (2017). Primary calculations are made using MATLAB and Minitab.

The p-diagram’s components includes: (1) DFRPN as the response variable; (2) each member’s design for MFs and
IF-THEN rules, overshadowing the other’s designs, as a noise level; (3) the most critical failure mode’s risk factors
determined in the case study of Geramian et al. (2017), i.e. S ¼ 8; O ¼ 8 and D ¼ 7;as signal factors; and (4) the
potential control factors which are specified in Section 4.1.

4.1 Fuzzy logic-based FMEA

A Mamdani FIS usually consists of four building blocks, the Fuzzifier, Fuzzy Rule-base, Inference Engine and Defuzzi-
fier, namely (Camastra et al. 2015). Thus, fuzzy FMEA is of the following process:

Figure 1. General framework of the proposed methodology.
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4.1.1 Fuzzification

Conversion of crisp data to fuzzy values via MFs is called fuzzification (Chanamool and Naenna 2016). Each MF corre-
sponds to a linguistic variable such as medium, high, etc. For fuzzy FMEA, the generic sets needed are shown by Equa-
tions (2) to (5).

Sset ¼
S; 1; 2; :::; 10f g; VLS ; LS ;MS ;HS ;VHSf g;

lVLS sð Þ; lLS sð Þ; lMS
sð Þ; lHS

sð Þ; lVHS
sð Þ

! "
( )

(2)

Oset ¼
O; 1; 2; :::; 10f g; VLO; LO;MO;HO;VHOf g;
lVLO oð Þ; lLO oð Þ; lMO

oð Þ; lHO
oð Þ; lVHO

oð Þ
! "

( )

(3)

Dset ¼
D; 1; 2; :::; 10f g; VLD; LD;MD;HD;VHDf g;
lVLD dð Þ; lLD dð Þ; lMD

dð Þ; lHD
dð Þ; lVHD

Dð Þ
! "

( )

(4)

FRPNset ¼
FRPN; 0; 1; :::; 10f g; VLFRPN; LFRPN;MFRPN;HFRPN;VHFRPNf g;
lVLFRPN rpnð Þ; lLFRPN rpnð Þ; lMFRPN

rpnð Þ; lHFRPN
rpnð Þ; lVHFRPN

rpnð Þ
! "

( )

(5)

Where Sset; Oset;Dset and FRPNset, respectively, denote the sets of Severity (S), Occurrence (O), Detection (D) and
Fuzzy RPN (FRPN). MFs can be selected from VLi; Li;Mi;Hi;VHif g, with i ¼ S;O;D and FRPN: The set includes Very
Low (VLi), Low (Li), Medium (Mi), High (Hi) and Very High (VHi). Through fuzzification, the membership degrees of
crisp data ðs; o; d and rpnÞ are determined (e.g. lMFRPN

rpnð Þ). The MFs tackle the vagueness/uncertainty of human opin-
ions. In this study, only the triangular and trapezoidal MFs are applied. Also, according to Equations (2) to (5), MFs of
the risk factors and FRPN can change in 1; 2; :::; 10f g and 0; 1; :::; 10f g, respectively.

4.1.2 Fuzzy rule-base

A rule-base consists of several rules, with an IF-THEN structure each (Syn et al. 2011). The IF component contains pre-
requisites needed for occurring the THEN part. These components are also called antecedent and consequent, respec-
tively (Camastra et al. 2015). In each antecedent, conjunction of elements, e.g. ðS is VLSÞ; ðO is VLOÞ and ðD is LDÞ, is
necessary; it can be done using an And method such as Minimum (Min) and Product (Prod). These operators are sup-
ported by MATLAB (Syn et al. 2011). The consequent could be, e.g., ðFRPN is VLFRPNÞ:

Rules explain input-output relationships. They are formulated based on relevant knowledge (Syn et al. 2011). If there
are nS ; nO and nD MFs for risk factors, there are nS × nO × nD rules, at most. Nevertheless, some rules may be neither
applicable nor logical in real-life. Once rules are defined, a fuzzy inference engine is built for inputs-to-output mapping.

4.1.3 Fuzzy implication and aggregation

Each rule is fired/activated to a specific degree. The degree indicates the truth value of the rule (Lu and Antony 2002;
Syn et al. 2011). Next, the implication results are aggregated. Maximum (Max), Sum and Probor are common operators
for aggregation (Syn et al. 2011). For simplification, only the first two operators are used here.

4.1.4 Defuzzification

The aggregation output is then defuzzified or transformed into a non-fuzzy output (Lu and Antony 2002). The outcome,
here, is DFRPN. Centroid, Bisector, Middle of Maximum (MoM), Largest of Maximum (LoM) and Smallest of Maxi-
mum (SoM) are common defuzzification methods (Syn et al. 2011). For simplification, only the first three methods are
utilised in the present research.

To sum up, the And, Implication, Aggregation and Defuzzification parameters can easily be changed/controlled to
modify DFRPN. They, therefore, are regarded as the potential control factors of fuzzy FMEA in the p-diagram (Fig-
ure 2).

Furthermore, levels of the control parameters (Table 1) are determined according to the fuzzy FMEA process. For
simplification, the control factors and levels are denoted by codes presented within parentheses. Code A1, for instance,
denotes the Max level/operator of the Aggregation method (A).
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With regard to participation of an assumptive three-member/expert team, there is a three-level noise variable. The
levels are three different sets of assumptive MFs and rule-bases, each of which is made by assumptive dominance of a
member’s design over the others’ designs. As a result, there are three various FISs. For brevity, features of only the first
one are shown in Appendix 1 (A.1–A.5). In this FIS, severity, occurrence, detection and FRPN were designed using
five, five, five and seven triangular MFs, respectively (with the three risk factors being of the same design as those of
Geramian et al. [2017]). We also assumed that the input-output relationships are expressed using four reduced fuzzy
rules. Characteristics of the other two FISs are summarised in Table 2, with Tri and Trap standing for triangular and
trapezoidal MFs.

In regard to Table 1, there are three two-level and one three-level control parameters. According to the authors’
experience, the A × D interaction should be investigated as well. The B × D interaction was also included based on trial
and error. Thus, the degree of freedom equals 10 (DF = 3 × [2 − 1] + 1 × [3 − 1] + 2 × [[2 − 1] × [3 − 1]] + 1 = 10).
According to the Phadke’s (1995) guidelines, the smallest OA at least with 10 runs, being also capable of handling two
and three-level factors, is L18. Facilitating the investigation of A × D, we assigned the first (two-level) column of L18 to
the A parameter. The next two (three-level) columns were assigned to B and C, respectively. Since these two factors are
only of two levels, not three, we used the dummy level technique (Phadke 1995). The B2 and C2 levels were considered
as dummy levels. The two prime (2’) symbol, in Table 3, is to show the dummy levels.

Following the L18 design sheet (Table 3), we carried out the experiments in MATLAB. The results are presented in
Section 5.

5. Findings

We replicated each run three times using the three assumptive FISs, which resulted in 54 ð18" 3 ¼ 54Þ experiments,
overall (Table 3).

Table 4 presents average SNRs for the levels. Moreover, the control factors were ranked with respect to deltas.
Figure 3a illustrates the main effects, and Figure 3b shows the interaction effects (Prod’ denotes the dummy levels

of the B and C factors). Whilst the horizontal pivots represent the levels, the vertical ones show average SNRs. The
other findings, including the ANOVA results and the fitted linear model, are presented and discussed in Section 6.

Figure 2. Parameter diagram for the studied problem.

Table 1. Control parameters and their levels along with their codes.

Control factor (code)

Level (code)

1 2 3

Aggregation method (A) Max (1) Sum (2) –
And method (B) Min (1) Prod (2) –
Implication method (C) Min (1) Prod (2) –
Defuzzification method (D) Centroid (1) Bisector (2) MoM (3)
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6. Discussion

According to Table 3, each FIS, designed by one of the assumptive experts, leads to almost unique DFRPNs. Thus,
viewpoints of other experts will be ignored if groupthink occurs.

Based on Table 4, the D and C parameters have the most and least effects on SNR, respectively. A and B, however,
have the second and third ranks in this regard. These facts are also supported by the ANOVA test, in which D has the
least p-value (0.000), followed by A (0.004), B (0.048) and C (0.423), regardless of p-values of the interactions. This
order is accepted by the fitted linear model as well, in which the D levels’ non-zero coefficients have the least p-values,
i.e. (0.000) for D1 and (0.000) for D2. These are followed by the non-zero coefficients of A1, B1, B2, C2 and C1, with
p-values of 0.004, 0.025, 0.043, 0.257 and 0.292, respectively. Therefore, the order of impacts on SNR is Defuzzifica-
tion (D)>> Aggregation (A)>> And (B)>> Implication (C). This order is also in agreement with Figure 3a where the D,
A, B and C factors, respectively, lead to the most line fracture or slope.

Table 2. Architectures and fuzzy input/output variables of the second and the third FISs.

Architecture
characteristic

The other studied FISs

The second FIS The third FIS

Input The fuzzy set
number

Five (severity)/three (occurrence)/three (detection) Five (severity)/five (occurrence)/three
(detection)

Shapes and
values of fuzzy
set

Severity: {(Trap, VL = [1 1 2 4.5]), (Tri, L = [2
4.5 6.3]), (Tri, M = [5.8 7 9.2]), (Tri, H = [7 9
10]), (Tri, VH = [8.5 10 10])}; Occurrence:
{(Trap, L = [1 1 2.5 4]), (Tri, M = [3 5 7.5]),
(Trap, H = [6 8 10 10])}; and Detection: {(Trap,
L = [1 1 2.8 5.2]), (Trap, M = [2.8 5.2 6.8 8.3]),
(Trap, H = [6.8 8.3 10 10])

Severity: {(Trap, VL = [1 1 3 4.2]), (Tri, L =
[3.5 5.5 6.5]), (Tri, M = [5.8 7.5 8.2]), (Tri,
H = [7.5 8.6 9.8]), (Tri, VH = [8.8 10 10])};
Occurrence: {(Tri, VL = [1 1 4]), (Tri, L = [2.5
4 6.2]), (Tri, M = [5.5 6.5 7.2]), (Tri, H = [6.5
7.5 9.3]), (Tri, VH = [7.8 10 10])}; and
Detection: {(Tri, L = [0 0 5]), (Tri, M = [2 5
8]), (Tri, H = [5 10 10])}

Output The fuzzy set
number

Five (FRPN) Five (FRPN)

Shapes and
values of fuzzy
set

FRPN: {(Tri, VL = [0 1.5 2.5]), (Tri, L = [2.3 3.5
5]), (Tri, M = [3.5 5 6.5]), (Tri, H = [4.5 6.5 8]),
(Tri, VH = [6.5 10 10])}

FRPN: {(Tri, VL = [0 1 3]), (Tri, L = [1 3 5]),
(Tri, M = [3 5 7]), (Tri, H = [5 7 9]), (Tri,
VH = [6.997 10 10])}

Fuzzy
inference
engine

Type and the
rule number of
fuzzy engine

A Mamdani FIS with four reduced rules A Mamdani FIS with eight reduced rules

Table 3. Experimentation results using L18.

Run

Control factor Response

SNRA B C D The 1st FIS The 2nd FIS The 3rd FIS

1 1 1 1 1 7.37 6.14 6.91 20.79019
2 1 2 2 1 7.24 5.98 7.29 19.28511
3 1 2′ 2′ 1 7.24 5.98 7.29 19.28511
4 1 1 1 2 7.10 6.00 7.00 20.83948
5 1 2 2 2 7.10 5.90 7.30 19.02342
6 1 2′ 2′ 2 7.10 5.90 7.30 19.02342
7 1 1 2 3 7.00 5.00 10.00 9.289705
8 1 2 2′ 3 7.00 5.00 10.00 9.289705
9 1 2′ 1 3 7.00 5.00 8.70 11.42404
10 2 1 2′ 1 7.24 6.11 7.01 21.11091
11 2 2 1 1 7.37 5.95 7.06 19.17973
12 2 2′ 2 1 7.24 5.96 7.19 19.43909
13 2 1 2 2 7.10 5.90 7.00 20.01087
14 2 2 2′ 2 7.10 5.80 7.20 18.6682
15 2 2′ 1 2 7.10 5.80 7.20 18.6682
16 2 1 2′ 3 7.00 5.00 7.00 14.78326
17 2 2 1 3 7.00 5.55 8.05 14.75982
18 2 2′ 2 3 7.00 5.00 7.00 14.78326
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The ANOVA test also indicates that the A×D interaction has a significant impact on SNR (p-value = 0.002) in
alpha-level 0.05. B × D, nonetheless, does not so (p-value = 0.119). The results are consistent with outcomes of the fit-
ted model, amongst which the non-zero coefficients of A1 × D1 and A1 × D2 are of the p-values (0.017 and 0.004) less
than alpha-level 0.05. However, the non-zero coefficients of B1 × D1 and B1 × D2 (with p-vales of 0.229 and 0.152) are
insignificant in the alpha-level. The same facts are visible also from Figure 3b, where A × D has an anti-synergistic
interaction, but B × D has an approximately synergistic interaction. In other words, the lines related to A × D are not
parallel nor are they of the same improvement directions. However, those pertaining to B × D are almost parallel and of
the same improvement directions (for more details on the interaction typology, see Phadke [1995]). Therefore, the
A × D interaction has a significant influence and has correctly been taken into consideration.

The p-values of C and B × D, derived from both the ANOVA and the fitted model, show that these factors have no
significant impact on SNR in the mentioned significance level. However, the model still has a high coefficient of deter-
mination (R2), 99.6%. In fact, elimination of either C, B × D or both of them will reduce the R2. Hence, we kept them
in the model.

All in all, well-chosen levels for the D, A, B and C parameters, respectively, can remarkably reduce the groupthink
effect, indirectly. According to Table 4/Figure 3a, the optimal setting is predicted to be A2B1C1D1 in this study. The set-
ting refers to the Centroid level for Defuzzification, Sum for Aggregation, Min for And and Min for Implication, result-
ing in SNR = 21.12140. Unsurprisingly, the SNR is higher than the SNRs of all the 18 experiments conducted.

Table 4. Average SNRs for the levels as well as delta values.

Level Aggregation (A) And (B) Implication (C) Defuzzification (D)

1 16.47 17.80 17.61 19.85
2 17.93 16.70 16.97 19.37
3 – 17.10 17.03 12.39
Delta 1.46 1.10 0.64 7.46
Rank 2 3 4 1

Figure 3a. Main-effect plot.
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7. Practical implications

7.1 Statistical implications

Achieving robustness has been a primary aim in this research, so the most robust setting was called the optimal setting.
More precisely, estimation of DFRPN is a nominal-the-best problem needing two optimisation steps: (1) minimisation
of sensitivity to noise; and (2) adjustment of mean DFRPN on target; however, since the DFRPN’s target value (its
actual value to be estimated) is unknown in FMEA, the later step of the optimisation cannot be carried out.

Furthermore, here where the aim is not to reduce DFRPN, it should not be considered as a smaller-the-better
response, with the zero target value. Strictly speaking, the control parameters included in this research logically affect
only the response robustness, not its reduction. For the reduction purpose, the right factors are failure causes, which are
not investigated here.

Also, we validated the predicted optimal setting using three confirmation experiments. The validation is to investi-
gate to what extent the predicted results, including SNR and the mean response, are close to the actual ones. So, the
three studied FISs were used under the predicted optimal setting, leading to three confirmation experiments. The actual
results for the optimal setting predicted using the L18 are SNR = 20.55496 and mean (average) response ¼ 6:79667.
Thus, the Percentage Prediction Error (PPE) (Abd, Abhary, and Marian 2016) for SNR is 2.76%, and, for the mean
response, it is 0.20%.

PPE ¼ ExperimentalðactualÞvalue% Predictedvalue
Experimental (actual) value

(6)

Since these errors are small, the predicted optimal setting can be adopted for the studied numerical example.
There used to be no systematic method for selecting the studied control factor levels. Therefore, every possible level

combination can be considered as an initial setting. Therefore, regardless of the one optimal setting (A2B1C1D1), there
are potentially 23 (3 × 2^3−1 = 23) initial settings (it was calculated based on the number of the levels and factors). In
terms of robustness (SNR), the confirmation experiments outperform 19 out of the 23 initial settings. In three out of the
four failure situations (23 − 19 = 4), the dominance over the optimal setting (on average, 1.74%) is small and negligi-
ble. Nevertheless, the other failure situation, with 3.55% outperformance relative to the predicted optimal setting, is attri-
butable to a setting not existing in the used L18. The reason is that L18 is a fractional-factorial design, which does not
contain some possible level combinations.

Since this study’s experiments are conducted in MATLAB and are not too costly by nature, we applied a full-facto-
rial design as well. Given the three replications, the design comprises 72 (3 × [3 × 2^3] = 72) experiments, resulting in

Figure 3b. Interaction-effect plot.
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the A1B1C2D1 optimal setting with SNR = 21.28374. This is exactly the setting missing from the L18. To sum up, it is
also important to consider a trade-off between the time-efficiency of the L18 and the accuracy of the full-factorial
design.

Moreover, whenever accuracy of fitted linear models is not satisfactory enough, the backward elimination procedure
should be tried. The procedure is initiated with removing the factor with the highest p-value. Nonetheless, it should be
kept in mind that the procedure may not always improve coefficients of determination (R2). For example, elimination of
the Implication (C) parameter reduces the R2 from 99.6% to 99.4%.

Finally, in this study, there was a hypothesis as to what the potential interaction (A×D) is. However, if there is no
previous knowledge about potential interactions, as many interactions as possible should be included, first. Next, only
the anti-synergistic one(s) should be kept.

7.2 Managerial implications

Despite its advantages, group/team decision-making could result in groupthink, of which managers should be aware. A
reason is that it can undermine the productivity of this decision-making type by reducing the outputs obtained from the
invested inputs. In other words, whilst all members are paid (inputs) for their participation in groups/teams, their techni-
cal decisions/viewpoints (outputs) may be overshadowed by one member or a few members. Their presence, thus, would
be ineffective, in practice (reduced productivity). In this sense, productivity of group/team decision-making in FMEA
projects can be improved by the proposed approach.

Also, those managers in charge of quality in group/team decision-making had better overcome groupthink, particu-
larly in the situations mentioned in sub-section 3.2. In this regard and in FMEA projects, the proposed methodology
could facilitate participation of each group/team member in decision-making, separately. Therefore, group/team pressures
on a member for unanimity/abstention would be reduced. It, in turn, would enable the member to question the dysfunc-
tional consensus of the group/team, which would contribute to more innovation.

The methodology can also enhance the time-efficiency and flexibility of group/team decision-making in FMEA pro-
jects. Indeed, often it is difficult, if not impossible, to bring whole experts/members together at the same time and/or
place. This issue will be more acute where members are from top-management levels and will most often result in frus-
trating project delays. However, allocating separate participation opportunities to each member, the approach can solve
the problem.

With respect to the above advantages, in FMEA projects, the quantitative methodology of this research can be a
powerful complementary approach to the Organisational Behaviour’s qualitative methods for minimising groupthink (for
more information about the qualitative methods see, e.g., Robbins and Judge [2013, 293]). As these qualitative
approaches require mastery of human skills, the fuzzy FMEA robust design method can be an appropriate substitute
where there are a few interpersonal skills. The method would even be preferred in that it minimises groupthink effects
indirectly, in contrast to the direct pressures put by Organisational Behaviour’s qualitative methods during the decision-
making sessions.

8. Conclusions

We enhanced fuzzy FMEA with application of the Taguchi’s method for robustness. Accordingly, calculation of the risk
priorities was made insensitive against groupthink. As most of the FIS parameters played a significant role in robustness
of DFRPN, we did not set them haphazardly. The systematic selection of the levels led to magnificent results. In fact,
through a fractional-factorial design, it was ascertained that the optimum setting included the Centroid, Sum, Min and
Min levels for the Defuzzification, Aggregation and Implication factors respectively. The full-factorial design, however,
resulted in a more robust setting (A1B1C2D1), but at the cost of 18 ð72% 54 ¼ 18Þ more experiments. Thus, a trade-off
is necessary.

Other advantages mentioned for the proposed approach are capability of improving the productivity, time-efficiency
and flexibility in FMEA projects. It would also be a complementary method to Organisational Behaviour’s groupthink-
minimising approaches.

However, we applied the approach only to group/team decision-making in fuzzy FMEA. Moreover, dominance of
only one member over the other group/team members was investigated; the risk factors of only the most critical failure
mode were considered as signal factors; some levels of the Aggregation and Defuzzification factors were not taken into
account; for simplification, the group and team words were used interchangeably, but they are different concepts; and
separate participation of each member in decision-making, would deprive him/her of being informed of the others’ valu-
able technical comments.
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Accordingly, future studies could expand application of the methodology into other real-life problems. However,
four prerequisites should be investigated before any potential application, including: (1) data uncertainty – data are
fuzzy/qualitative/linguistic; (2) unknown inputs-to-output relationships – these relationships are unknown/complex/ques-
tionable and have to be determined by experts; (3) necessity of decision-making by groups/teams; and (4) necessity of
protecting the members’ diverse ideas against groupthink. In short, everywhere a MISO Mamdani FIS can be used for
group/team decision-making, the proposed methodology could be used too.

In addition, other scenarios, i.e. dominance of two, three, … and n − 1 members, different risk factors’ values and
the other levels of Aggregation and Defuzzification could be investigated.

Moreover, given the inherent differences between a group and a team, the methodology may need to be tailored to
each of the concepts. Also, it appears that the field is open to further empirical research on comparison of Organisa-
tional Behaviour’s techniques for groupthink minimisation and that of this study. Finally, both the fuzzy FMEA robust
design and the electronic meeting approaches limit interpersonal discussion and communication and can provide the
opportunity of distance-participating, even from different time zones. These similarities build a basis for possible inte-
gration of these two methods, which may resolve limitations of each of the methods or both of them.
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Appendix 1.

Appendix A.1. Architecture of the first FIS.

Appendix A.2. Severity variable of the first FIS.
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Appendix A.3. Occurrence variable of the first FIS.

Appendix A.4. Detection variable of the first FIS.

Appendix A.5. FRPN variable of the first FIS.
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Appendix 2. Validation using confirmation experiments.

SNR Mean
Optimal setting obtained from the full-factorial design (A1B1C2D1) 21.28374 6.82333
Optimal setting obtained from the L18 (A2B1C1D1) Predicted 21.12140 6.81037

Actual 20.55496 6.79667
Prediction Error 2.76% 0.20%
SNR of the full-factorial design’s optimal setting outperforms those of all the 23 possible initial settings
SNR of the confirmation experiments, which were conducted under the predicted optimal setting, outperforms 19 out of the 23 initial

settings

1344 A. Geramian et al.


	Abstract
	1. Introduction
	2. Literature review
	2.1 FMEA and modified FMEA methods
	2.2 Exploration of literature gap

	3. Theoretical foundations
	3.1 Fuzzy logic-based FMEA
	3.2 Group decision-making and groupthink
	3.3 Robust Parameter Design

	4. Fuzzy logic-based FMEA robust design
	4.1 Fuzzy logic-based FMEA
	4.1.1 Fuzzification
	4.1.2 Fuzzy rule-base
	4.1.3 Fuzzy implication and aggregation
	4.1.4 Defuzzification


	5. Findings
	6. Discussion
	7. Practical implications
	7.1 Statistical implications
	7.2 Managerial implications

	8. Conclusions
	 Disclosure statement
	ORCID
	References
	 Appendix 1.
	 Appendix 2. Validation using confirmation experiments.

