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Abstract - Very recently bacterial foraging has emerged as a 

powerful technique for solving optimization problems. In this 

paper, we introduce a micro-bacterial foraging optimization 

algorithm, which evolves with a very small population 

compared to its classical version. In this modified bacterial 

foraging algorithm, the best bacterium is kept unaltered, 

whereas the other population members are reinitialized. This 

new small population µ-BFOA is tested over a number of 

numerical benchmark problems for high dimensions and we 

find this to outperform the normal bacterial foraging with a 

larger population as well as with a smaller population. 

1.   INTRODUCTION 

In 2002 Kevin M Passino, proposed bacterial foraging as 

a tool for distributed optimization and control. This 

bacterial foraging optimization algorithm (BFOA) [1-4] 

mimics the foraging strategy of E. coli bacteria (those 

living in our intestines) which try to maximize the energy 

intake per unit time. From the very early days it has drawn 

attention of researchers due to its effectiveness in the 

optimization domain. So as to improve its performance a 

large number of modifications have already been 

undertaken. In 2007 Kim et al. came up with BFOA-

Genetic algorithm (GA) hybridization for better 

performance [5]. In the same year authors in [6] proposed 

BFOA-Particle Swarm Optimization (PSO) hybridization, 

BFOA-Differential Evolution (DE) hybridization [7] and 

an adaptive bacterial foraging optimization (ABFOA) [8] 

for function optimization. But this micro bacterial 

foraging optimization is modeled specially for handling 

higher-dimensional problems, where the cost of 

computation becomes a major bottle-neck.  

We took inspirations from similar approaches 

undertaken in GA and PSO.  Initially µ-GA [9] and µ-PSO 

[10] also proved their efficiency over normal GA and PSO 

mainly for higher dimensional problems. We have tried to 

extend this concept for BFOA. The new version BFOA 

deals with a very small population size compared to 

normal BFOA, thus reducing the computational cost. Best 

bacterium in the swarm is kept unaltered after completion 

of iteration and others are scattered to some random 

locations following certain rules. This is done to main 

diversity in the population to avoid premature 

convergence. 

We have tested the efficacy of this algorithm 

over a test bed which contains 5 high dimensional  

numerical benchmarks and it performs better than two 

versions of normal bacterial foraging one with population 

thirty and another with population three, same as the µ -

BFOA. 

The rest of the paper is organized as follows. In 

Section 2, we briefly describe the bacterial foraging 

optimization algorithm. Section 3 introduces the modified 

version of bacterial foraging. Section 4 gives the 

computational results and illustrations. Finally the 

conclusion and future research scopes are enlisted in 

Section 5. 
  

    
II.   THE CLASSICAL BACTERIAL FORAGING OPTIMIZATION ALGORITHM 

 

The bacterial foraging system consists of four principal 

mechanisms, namely chemotaxis, swarming, reproduction 

and elimination-dispersal [1]. A brief description of each 

of these processes along with the pseudo-code of the 

complete algorithm is described below. 

i)    Chemotaxis: This process simulates the movement 

of an E.coli cell through swimming and tumbling via 

flagella. Biologically an E.coli bacterium can move in 

two different ways. It can swim for a period of time in 

the same direction or it may tumble, and alternate 

between these two modes of operation for the entire 

lifetime. Suppose ),,( lkjiθ represents i-th bacterium 

at j-th chemotactic, k-th reproductive and l-th 



 

 

elimination-dispersal step. C(i) is the size of the step 

taken in the random direction specified by the tumble 

(run length unit). Then in computational chemotaxis 

the movement of the bacterium may be represented 

by     
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     where ∆  indicates a vector in the random direction   

whose elements lie in [-1, 1].  

 

ii) Swarming: An interesting group behavior has been 

observed for several motile species of bacteria 

including E.coli and S. typhimurium, where stable 

spatio-temporal patterns (swarms) are formed in 

semisolid nutrient medium. A group of E.coli cells 

arrange themselves in a traveling ring by moving 

up the nutrient gradient when placed amidst a 

semisolid matrix with a single nutrient chemo-

effecter. The cells when stimulated by a high level 

of succinate, release an attractant aspertate, which 

helps them to aggregate into groups and thus move 

as concentric patterns of swarms with high bacterial 

density. The cell-to-cell signaling in E. coli swarm 

may be represented by the following function. 
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            where )),,(,( lkjPJ cc θ is the objective function 

value to be added to the actual objective function 

(to be minimized) to present a time varying 

objective function,  S is the total number of 

bacteria, p is the number of variables to be 

optimized, which are present in each bacterium and 
T

p ][ ,..........,.........2,1 θθθθ =  is a point in the p-

dimensional search domain. 

repellantrepellantattractantaatractant ,,, whwd  are different 

coefficients that should be chosen properly. 

iii) Reproduction: The least healthy bacteria 

eventually die while each of the healthier 

bacteria (those yielding lower value of the 

objective function) asexually split into two 

bacteria, which are then placed in the same 

location. This keeps the swarm size constant. 

 

 

 iv) Elimination and Dispersal: Gradual or sudden 

changes in the local environment where a 

bacterium population lives may occur due to 

various reasons e.g. a significant local rise of 

temperature may kill a group of bacteria that are 

currently in a region with a high concentration 

of nutrient gradients. Events can take place in 

such a fashion that all the bacteria in a region 

are killed or a group is dispersed into a new 

location. To simulate this phenomenon in 

BFOA some bacteria are liquidated at random 

with a very small probability while the new 

replacements are randomly initialized over the 

search space. 

III. THE MICRO - BFOA 

A three bacteria population evolves through iterations in 

this proposed modification. We have used chemotactic 

operator for updating position of individual bacterium. In 

this algorithm the population size is very small. So, 

reproduction is not carried out to avoid saturation and 

premature convergence. Elimination dispersion step of 

original algorithm is adopted without any modification. 

After one complete chemotaxis loop, bacteria in 

population move to some new foraging locations. At this 

point, the population may be ranked according to 

objective function values. The best bacterium (rank 1) of 

the population retains its position. The second best 

bacterium (rank 2) is moved to a position very close to the 

best one. Worst bacterium (rank 3) is initialized at a 

random position. Fig.1 depicts a three bacteria system 

scattered over a single dimensional objective function 

landscape and steps undertaken after chemotaxis are 

shown. After each complete chemotaxis operation best 

bacterium contains most valuable information about the 

fitness landscape. So, by retaining its position we 

conserve the best discovered location. Now, second best 

bacterium is liquidated to a position close to the best 

bacterium in order to facilitate local search during next 

chemotactic loop execution. The worst bacterium is 

utilized in maintaining population diversity and avoiding 

premature convergence.  Figure 2 provides a flow-chart 

for the algorithm. 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: A SIMPLIFIED SCHEMATIC DIAGRAM FOR THREE BACTERIA 

MICRO SYSTEM OPTIMIZING SINGLE DIMENSIONAL OBJECTIVE FUNCTION. 

 

 
IV. ANALYTICAL BASIS OF MICRO-BF 

 

Two main driving forces of the algorithm are exploration 

of entire functional landscape by worst bacterium and 

local search around best discovered location on fitness 

landscape. Let us denote bacteria triplet as bestθ
r

, mediumθ
r

 

, worstθ
r

 according to their objective function value. 

 

Theorem: Probability that worstθ
r

 will fall within the 

hypercube including bestθ
r

 and mediumθ
r

 decays 

exponentially with problem dimension.  

 

Proof: At any instant of time in a particular dimension p  

, εθθ =− )()(max pp mediumbest

rr
 

Let us assume dimensionality of the optimization problem 

be N . Hence maximum volume of the hypercube 

including bestθ
r

, and mediumθ
r

 is
Nε .  

 

Total volume of the hyperspace including entire search 

space is NN Range=− min)(max . 

Let, saturationP = Probability that worstθ
r

 will fall within the 

hypercube including bestθ
r

 and mediumθ
r

. 

=∴ saturationP  Ratio of volume of two hyperspaces 

N

N

N
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Now, we have taken range×= 06.0ε  

N
saturationP 06.0=∴  

0→∴ saturationP  as N becomes very large. 

 

Explanation: 

 

saturationP  denotes the probability that worstθ
r

 will fall 

within the hypercube including bestθ
r

 and mediumθ
r

. In this 

case population diversity decreases and there is a chance 

for premature convergence. But probability of its 

occurrence is very small. In most of the time population 

diversity is maintained. So, the global search is almost 

never hampered.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: FLOW-CHART OF MICRO-BFOA. 

 



 

 

 
TABLE 1:  DESCRIPTION OF BENCHMARK FUNCTIONS USED 

 

 

TABLE 2:  PARAMETRIC SET-UP FOR µ-BF 

Parameters Parameter Values 

S ( Population size) 3 

cN _ (Chemotactic loop counter) 50 

edN _ ( elimination dispersal counter) 20 

edp _ ( elimination dispersal probability) 0.25 

ε ( distance parameter) range×06.0  

)(iC , .,.....,1 Si = (Step size) range×2.0  

 

V. EXPERIMENTAL RESULTS 

 

To test the efficiency of the proposed micro bacterial 

foraging the following five numerical benchmark test 

functions have been chosen and are described in Table 1. 

The dimension for all test problems have been taken to be 

500.The parameters taken for the µ BFOA algorithm is 

given in Table.2. In Table 2 range  signifies difference 

between maximum and minimum value of the variable. 

The parameter ε  is the maximum separation introduced 

at a particular dimension between bacterium of rank 1 and  

 

 

2 after chemotaxis. Step-size and ε  are scaled so that 

bacterium can have access to all parts of fitness landscape. 

We have compared the proposed algorithm with normal 

bacterial foraging with population size 30 and 3.For all 

these algorithms the maximum cut-off function 

evaluations is set to be 5000.We take results for 50 

independent runs and report the minimum ,mean and 

standard deviation of the final objective function values 

for the three competitive algorithms. Performance is 

illustrated in Figure 3. 
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TABLE 3: CONVERGENCE DATA FOR FIVE BENCHMARK FUNCTIONS 

Name 

of 

function 

Statistical 

Measurements 

 

Micro Bacterial 

Foraging (pop=3) 

Bacterial 

Foraging(pop=30) 

Bacterial 

Foraging(pop=3) 

 

 

Ackley 

Minimum 3.5924 4.4981 4.0712 

Mean 3.8175 4.6555 4.3383 

Std. dev. 0.1128 0.0583 0.1549 

 

 

Griewank 

Minimum 2.5401 3.5872 3.6338 

Mean 2.7074 3.7690 3.7693 

Std. dev. 0.0394 0.0426 0.0459 

 

 

Rastrigin 

Minimum 2151.2082 3077.7121 2892.6204 

Mean 2285.0032 3052.8201 3102.7995 

Std. dev. 36.5299 27.6755 56.7978 

 

 

Rosenbrock 

Minimum 45748.2570 62805.2019 67669.1890 

Mean 49035.5738 66463.91399 71454.2668 

Std. dev. 1745.5252 777.7251 884.7100 

 

 

Schwefel 

Minimum -96558.5871 -98661.0729 -97528.9802 

Mean -93079.6066 -93905.7658 -92945.7018 

Std. dev. 2067.9320 1904.1674 1905.7137 
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                                            (c)                                                                                                                                  (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                      (e) 

FIGURE 3: A COMPARATIVE STUDY OF MICRO-BF WITH CLASSICAL BFO OVER VARIOUS FUNCTIONS FOR DIMENSION=500. ACKLEY FUNCTION, (B) 

GRIEWANGK  FUNCTION, (C) RASTRIGIN FUNCTION, (D) ROSENBROCK FUNCTION, AND (E) SCHWEFEL FUNCTION. 

 

 

VI. CONCLUSIONS 

This paper presents a new version of bacterial foraging 

optimization which evolves with a very small population 

of size three and designed specially for tackling higher -

dimensional problems. The major advantage of this 

algorithm lies in the reduction of computational cost and 

computational time. The newly developed algorithm is 

highly suitable for real time computing. Performance of 

the proposed algorithm is tested on a test bed of five 

benchmark functions where it performed well enough 

compared to the normal bacterial foraging with population 

size thirty and with population size three. Further research 

work may focus on developing some new algorithms 

related to bacterial foraging to decrease the computational 

cost and time during global optimization. Also some 

modifications of the normal bacterial foraging 
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optimization can be undertaken to enhance the 

performance of the said algorithm near global optima.                                
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