
Self Adaptive Cluster Based and Weed Inspired
Differential Evolution Algorithm For Real World

Optimization

Udit Halder1, Swagatam Das1, Dipankar Maity1, Ajith Abraham2, 3 and Preetam Dasgupta1
1Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700 032, India

2Faculty of Computer Science and Electrical Engineering, VSB – Technical University of Ostrava, Czech Republic
3Machine Intelligence Research Labs (MIR Labs), Seattle, WA, USA

ajith.abraham@ieee.org

Abstract— In this paper we propose a Self Adaptive Cluster based
and Weed Inspired Differential Evolution algorithm (SACWIDE),
the total population is divided into several clusters based on the
positions of the individuals and the cluster number is dynamically
changed by the suitable learning strategy during evolution. Here
we incorporate a modified version of the Invasive Weed
Optimization (IWO) algorithm as a local search technique. The
algorithm strategically determines whether a particular cluster
will perform Differential Evolution (DE) or the IWO algorithm
(modified). The number of clusters in a particular iteration is set
by the algorithm itself self-adaptively. The performance of
SACWIDE is reported on the set of 22 benchmark problems of
CEC-2011.

Keywords - Differential Evolution; Evolutionary Algorithm; real world
optimization; weed colony optimization; self-adaptive optimization
algorithm.

I. INTRODUCTION
 Scientist and engineers from all branches have to deal with
the global optimization problem where the main target is to find
a set of model parameters or state-variables, which will provide
a globally maximum or minimum value for a specified
objective or cost function. The Differential Evolution (DE)
Algorithm proposed by Storn and Price [1] is a simple but very
effective algorithm for global optimization problem. In many
applications such as Pattern Recognition [1], Communication
[4], mechanical engineering [5] the effectiveness and efficiency
has been successfully demonstrated. The Invasive Weed
Optimization (IWO) algorithm [6], is also a very effective
algorithm which has found successful in some application like
design of E-shaped MIMO Antenna [7], design of compact U-
array MIMO antenna [8], encoding sequences for DNA
computing [9], and design of aperiodic thinned array antennas
[10].
 In our proposed algorithm, we have used a modified,
cluster based, self-adaptive Differential Evolution (DE)
algorithm, with a weed inspired technique. In this algorithm,
the total population is divided into some clusters based on their
spatial positions and a modified version of DE is used. In each
generation, the clusters do not share information among them.
The cluster modification technique is totally self adaptive, i.e.
the cluster number and creation of new cluster is determined by

the learning strategy of the algorithm itself. We have used
cluster based technique so that the total population does not get
stuck to a local optimum. When a cluster tends to converge to a
point or any local optimum, a weed inspired technique is
adapted on that cluster. The weed inspired technique helps us in
local searching in the vicinity of each particle. Thus, there is a
chance to find a better position for each particle by its weeds.
Thus the population is improved by the self-adaptive behavior
of the algorithm itself and the simultaneous use of DE and
weed inspired technique.

II. DIFFERENTIAL EVOLUTION ALGORITHM
Differential Evolution (DE) is a very simple but a very

powerful algorithm for optimization problem. Let nRS! be the
search space of the problem under consideration. DE algorithm
starts with an initial population of NP, n dimensional solution
particles. These particles (solution vectors) are initially covering
the search space (S) as much as possible by randomly initializing
them through the search space. The particles are of the form
X
!"

i = (xi1, xi2, xi3,..., xin)! S , where i=1,2,….,NP and are
upgraded from one generation to next generation, where

in2i1i xxx ,....,, are in between their respective upper and lower

bounds lower
j

upper
j xx , respectively. The population undergoes

through Crossover, Mutation at each generation t and produces a
new solution vector Ui,t for each vector X

!"
i,t .

A. Mutation:

 After initialization for each solution vectors X
!"

i,t , a new

vector tiY , is generated at each generation t. The vector

tiY , can be generated by any one of the following five methods:

“DE/rand/1”: Y

!"
i,t = X
!"

r1
i ,t +F.(X

!"
r2
i ,t ! X
!"

r3
i ,t) (1)

“DE/best/1”: Y
!"
i,t = X
!"

best,t +F.(X
!"

r1
i ,t ! X
!"

r2
i ,t)

(2)

“DE/target-to-best/1”
Y
!"
i,t = X
!"

i,t +F.(X
!"

best,t ! X
!"

i,t)+F.(X
!"

r1
i ,t ! X
!"

r2
i ,t) (3)

978-1-4244-7833-0/11/$26.00 ©2011 IEEE

“DE/best/2”:
Y
!"
i,t = X
!"

best,t +F.(X
!"

r1
i ,t ! X
!"

r2
i ,t)+F.(X

!"
r3
i ,t ! X
!"

r4
i ,t) (4)

“DE/rand/2”:
Y
!"
i,t = X
!"

r1
i ,t +F.(X

!"
r2
i ,t ! X
!"

r3
i ,t)+F.(X

!"
r4
i ,t ! X
!"

r5
i ,t) (5)

Where The indices i

4
i
3

i
2

i
1 rrrr ,,, and i

5r are mutually exclusive
integers randomly chosen from the range [1, NP], and all are
different from the base index i. F is a scaling factor for the
differential vectors and X

!"
best,t is the vector with best fitness in

the generation t. The general convention used for naming the
various mutation strategies is DE/a/b/c, where DE stands for
Differential Evolution, a represents a string denoting the vector
to be perturbed and b is the number of difference vectors
considered for perturbation of x. c is the type of crossover being
used.

B. Cross-over:
 After the phase of mutation the crossover phase comes,
which plays a major role to enhance the diversity of the
population. In this phase the generated vector Y

!"
i,t exchanges its

component with its parent vector X
!"

i,t to generate a new vector

U
!"

i,t = (u1i,t,u2i,t,u3i,t,...,uni,t) Where uj,i,t is found by the
following procedure:

uj,i,t =
Yj,i,t , if (randi, j[0,1)<Cr or j = jrand
X j,i,t , otherwise

!
"
#

$#

 Where randi, j[0,1) is a uniformly distributed random

number which is called anew for each thj component of the thi
parameter vector. jrand ! [1, 2,....,n] is a randomly chosen

index, which ensures that tiU , gets at least one component
from tiY , , and Cr is a user defined constant in the range [0,1).

C. Selection Operation:
 In the selection phase, the algorithm determines that which
one between the target vector and generated vector will be kept
for next generation and which one should be deleted from the
population so that the size of the population (no of the solution
vectors) remains unchanged down the generation. The selection
procedure is done by the following way:

 X
!"

i,t+1 =
U
!"

i,t if f (U
!"

i,t)< f (X
!"

i,t)

X
!"

i,t if f (U
!"

i,t)> f (X
!"

i,t)

!
"
#

$#

for minimization problem. Thus after every generation we find
either a new solution which has better fitness (here for
minimization problem) or the previous vector is kept. So after
each generation the population gets better or remains
unchanged but never deteriorates.

III. THE INVASIVE WEED OPTIMIZATION (IWO)

IWO is a population-based algorithm that replicates the
colonizing behavior of weeds. The basic characteristic of a
weed is that it grows its population entirely or predominantly in
a geographically specified area, which can be substantially
large or small. Initially a certain number of weeds are randomly
spread over the entire search space. These weeds will
eventually grow up and execute the following four steps as the
algorithm proceeds. There are four steps of the algorithm as
described below:

1) Initialization: A certain number m of weeds are randomly
spread over the entire D-dimensional search space. This initial
population of each generation will be termed as
X = {

!
X1,
!
X 2,.........,

!
Xm}.

 2) Reproduction: Each member of the population X is allowed
to produce seeds within a specified region centered at its own
position. The number of seeds produced by

!
Xi, i ! {1, 2.....,m}

depends on its relative fitness in the

population with respect to the best and worst fitness. The
number of seeds produced by any weed varies linearly from
seedmin to changemin with seedmin for the worst member and
seedmax for the best member in the population.

3) Spatial distribution: The generated seeds are being
randomly distributed over the d-dimensional search space by
normally distributed random numbers with zero mean and
variance !2. However, the standard deviation ! is made to
decrease over the generations so that the algorithm gradually
moves from exploration to exploitation with increasing
generations. If!max and !min are the maximum and minimum
standard deviation, then the standard deviation in a particular
generation (or iteration) is given by,

! t =!min +
tmax ! t
tmax

"

#
$$

%

&
''

n _m _ i

.(!max !!min), (6)

where n_m_i represents the non-linear modulation index, t is
the current iteration number and tmax is the maximum number of
iterations allowed. This step ensures that the probability of
dropping a seed in a distant area decreases nonlinearly with
iterations, which results in grouping fitter plants and
elimination of inappropriate plants.

4) Competitive Exclusion: There is a need of some kind of
competition between plants to limit the maximum number of
plants in a population. Initially, the plants in a colony will
reproduce fast and all the produced weeds will be included in
the colony, until the number of plants reaches a maximum
value of popmax . However, it is expected that by this time the
fitter plants have reproduced more than undesirable plants.
From then on, only the fittest plants, among the existing ones
and the reproduced ones; are taken in the colony and the steps 1
to 4 are repeated until the maximum number of iterations (or

function evaluations) have been reached. So, in every
generation the population size must be less than or equal
to maxpop . This method is known as competitive exclusion and
is a selection procedure of IWO.

IV. PROPOSED ALGORITHM: SACWIDE
In our proposed algorithm we have used a strategy-based

clustered DE algorithm, which is self-adaptive with a weed
inspired strategy. We initialize the population randomly in the
search region and the population is divided into several clusters
using the K-means clustering algorithm. If clustering is not done
then for multimodal problem there is a high chance to get
trapped in a local minimum and the algorithm will not perform
better afterwards. That’s why the total population is divided into
some clusters based on their spatial distribution. The radius of a
particular cluster is defined as the mean distance (Euclidean)
from the center of the cluster. If the particles of the clusters are

1x
!

, 2x
!

….., nx
!

 then the center(C
!

) is determined as

!
C =

!xi
i=1

n

!
n

 (7)

And the radius, R =

(!xi, j !
!cj)

j=1

d

"
i=1

n

"

n
 (8)

 After clustering is done, in each cluster modified DE is used
separately. In our algorithm we used both the “DE/rand/1” and
“DE/best/1” schemes depending on the FE. Between the two
schemes “DE/rand/1” usually shows good diversity but slower
convergence rate whereas “DE/best/1” shows less diversity but
satisfactory convergence rate. In our algorithm, for first 10% of
total Function Evaluations the “DE/rand/1” is used and for the
remaining FEs “DE/best/1” is used. DE is used for a cluster until
its radius becomes very small. If radius of a particular cluster
becomes lesser than a pre-assigned value (Rconv), then to gain
diversity we apply a weed inspired algorithm for that cluster.
The value of Rconv is calculated as

 Rconv = dist(
!
Xupper,

!
Xlower) !10

"3 (9)

 Where dist(!a,
!
b) denotes the Euclidean distance between the

vectors !a&
!
b .
!
Xupper &

!
Xlower are the upper bound and lower

bound vectors in the search region. This expression is used
because for all the problems we cannot use a fixed value
of Rconv . Basically Rconv is an indication parameter, which
indicates the convergence of a single cluster. It seems obvious
that Rconv should depend on spread of the upper and lower
bounds. Thus instead of assigning a fixed value, we adopted the
previous expression for Rconv . When the radius of a cluster
becomes smaller than Rconv a weed inspired algorithm is used

instead of DE. We will discuss about the weed inspired
algorithm in the next section.

 After a specific number of iterations i.e. generations, the
performance of the algorithm is checked. If the performance is
satisfactory then cluster numbers are decreased and then again
the total population is clustered in new cluster numbers. This is
done to reduce the wastage of FEs as the algorithm performed
well in those generations. But if the algorithm performs badly,
then one new cluster is generated in the search region randomly,
without deleting the previous individuals.

The idea of creating clusters from the population comes from
the phenomenon of trapping in a local minimum on a
multimodal search region, when we apply “DE/best/1” on a
single population. For global optimization, it is always
preferable that we use a speedy algorithm, which can readily
find the optimum. The algorithm, which will be most efficient
should have a good convergence rate. In that context it seems
that applying DE or some variant of DE, we can find the
optimum quickly. But, unfortunately, it has been seen that, those
algorithms get trapped in a local minimum and don’t improve
further. To overcome this fact, we used the cluster based
optimization idea. The particles of a population are divided into
some clusters and the clusters individually try to find minima.
There should not be any information exchange between any
clusters and they will work individually. However, in our
algorithm, some information is exchanged periodically by
redistributing the total population. It is expected that each cluster
will find one local minimum, which may or may not be the
global minimum. But the problem in this, during optimization,
two clusters may be highly overlapped (regarding to spatial
distribution) and it may happen that two different clusters are
searching for the same optimum. Special care should be taken to
avoid this problem, otherwise FEs will be wasted. Again, if we
don’t know the total number of local minima, we will have to
blindly guess the cluster numbers, as here one cluster discovers
one minimum. Again if a cluster gets stuck to a local optimum,
it is necessary to delete that cluster, saving the optimum value
discovered by it, and to reinitialize it to a newer place such that
it can again search for another minimum. To deal with the above
problems, we introduced a cluster based optimization technique
in which the total cluster number at any generation is determined
self-adaptively by the algorithm and not by the user. However,
the user has to provide the initial cluster numbers (k), which we
have taken 5 in this paper. In this algorithm after certain
iterations (time span, TS) or generations the performance of the
clusters is evaluated in terms of percentage change in the value
of global best value found so far. Then the individuals of the
different clusters are exchanged via another call to K-means
such that spatially nearer particles are taken into one cluster.
Thus the idea of no exchange of information among the clusters
is not followed thoroughly in our algorithm. There will be
certain exchange of information periodically during optimization
by redistributing the particles. If the performance in previous
duration under examination is satisfactory, then some clusters
are merged or in other words the total cluster number is
decreased. This is done because, as the algorithm is performing
well, to reduce the FE cost, cluster number is reduced. But the
total number of individuals does not change. If the performance
is not satisfactory, then one new cluster is created in the search
region randomly, as bad performance indicates that there is a

high chance that the global minimum stays in some other region,
which is currently not covered by the clusters. Thus, the cluster
number is increased then, as if the current situation of the
process is demanding it. When we introduce a new cluster, new
particles are generated randomly keeping the previous
population intact. While redistributing, the total population do
not change, just the cluster number and number of individuals in
a cluster is changed. We set an upper limit on both the cluster
numbers (Clustmax) and the total population in a cluster (popmax).
In this paper we set, Clustmax = 2k, i.e. 10 and popmax =100. There
is also a lower limit of cluster number (Clustmin), which is set to
2. If the total population in a cluster exceeds maximum value
(popmax), then best popmax particles are selected and the other
particles are deleted. If cluster number is maximum, and the
performance evaluation test still indicates a negative result,
neither the cluster number is further increased nor is any more
clustering done. This belongs to the worst condition in the
optimization process. Similar work is done if cluster number is
minimum and still tends to reduce its value; we restrict it to do
so. A brief description of our algorithm follows:

A. Initialization:

 A certain number of individuals (NP) are spread randomly in
the search region. Then they are clustered into k clusters using
the K-means clustering algorithm.

B. Cluster Improvements:

 As it is stated above that DE performs well with respect to
other Evolutionary Algorithms (EAs), we primarily use DE as
our main optimization algorithm. It is also sated that,
“DE/best/1” has better convergence rate, but after experiments
we come to a conclusion that, for 1st 10% of total FE (FEmax) if
we use “DE/rand/1” with a probability 0.5 (i.e. rand(0,1)>.5), it
performs better than using only “DE/best/1”. For both the
schemes, we used a dynamic value of the scaling factor (F).
Instead of using a fixed value of F, we have used the following
formula for deriving F.

 F = (rand+1)*0.5 (10)

 Here rand denotes a random number between 0 and 1.
It is seen from the above expression that F varies from 0.5 and
1. DE will be applied on a particular cluster until the radius (7)
of that cluster becomes lower than a predefined value (Rconv). If
so, then it can be said that the cluster is highly converged
around a point, which may or may not be a minimum even. In
this case, we apply the weed inspired technique on that cluster.
We have used a modified version of IWO. Some of the
parameters are changed and the selection technique is
improved. The standard deviation (!) is defined as

! t =!min +
FEmax !FE
FEmax

"

#
$

%

&
'

2

.(!max !!min) (11)

!max is taken as dist(
!
Xupper,

!
Xlower).10

!1 , !min is taken as

dist(
!
Xupper,

!
Xlower) !10

"8 .The definitions of dist,
!
Xupper and

!
Xlower

are similar as stated in preceding sections. For the selection

part, without selecting all the weeds until population
cross popmax , we applied a modified selection criteria. A weed
is selected to next generation if it is better than its parent or the
mean of its fitness and its parents’ fitness is better than the
average fitness of best and worst plant in the population. In a
cluster, whether it is performing DE or weed inspired
algorithm, whenever the population number exceeds popmax ,
the best popmax particles are survived and the others are deleted.
If a cluster performs DE, population of that cluster will not
increase, but while redistributing, it may happen that the
population exceeds popmax . This will happen when the
algorithm is performing well and the total number of clusters is
needed to be reduced. Then, the total population (combining the
population from different clusters) is divided into less number
of clusters, thus the new clusters will have more number of
individuals than that of previous iteration. But, the reduction of
cluster numbers is done in the context that the algorithm is
performing well so less effort may be given on that time of
optimization or in other words we try to save FE. But, if the
poorer particles are not deleted, the FE might be wasted.

C. Performance Evaluation & Redistribution:

 After a time span (TS) or generations the performance of
the algorithm is evaluated and accordingly the cluster numbers
are updated. In each iteration, the change in global best value is
calculated. The total number of changes over a time span is also
calculated. Primarily the importance is given to the number of
changes, rather than average change over that period. So, we
are giving stress on consistency of change, not on quality of
change. But quality affects when the change is very low, but we
get change in almost every time. In that case, our desire will not
be fulfilled. So, it is checked that if the average change is lower
than a value, say, changemin , then instead of giving positive
result, it will indicate a negative state. After experiments, the
optimum value of seedmax is found, and it is taken to be,
seedmax =1e-3.The detail of this algorithm is given on the
pseudo code.
 After evaluating the performance of the algorithm in a time
span (TS), the total population is redistributed. The
performance evaluation test gives us the change in cluster
number, which is to be made. If the change is positive, then the
cluster number is reduced and the total population is
redistributed in reduced number of clusters. If the change is
negative, then a new cluster is introduced in the search space.
The individuals of this new cluster are generated randomly in
the entire search region. As stated earlier, cluster number is not
updated every time. There are two limits, namely Clustmax and
Clustmin . When cluster number is equal to Clustmax and still
tends to increase, then the increment is restricted. Similarly
when cluster number is equal to Clustmin and trying to
decrease, we restrict it to decrease further.

V. PSEUDO CODE

/* Main Algorithm*/
Step 1: %Initialization
Initialize a population of NP individuals in the search region
randomly
Divide them into k clusters using K-means
Clusterno ! k , iteration t! 1
Define maxClust , minClust and TS
Set convR according to (9)

Step 2: %Cluster Improvements

While Termination Criterion is not satisfied
 For i = 1 to clusterno
 Determine Radius iR according to (8)
 If convRR >
 Improve by DE algorithm
 Else
 Improve by Weed Inspired algorithm
 End If
 End For

Step3: %Performance Evaluation

 If mod(t,TS) = 0
 increase = Determine_increase(changeno,totchange)
 changeno! 0 & totchange! 0
 Else
 If 1tt GlobalbestGlobalbest !<
 Calculate percentage change in 1tGlobalbest !
 changeno! changeno+1
 totchange! totchange+percentage change
 End If
 End If

Step 4: % Update Cluster number

 If mod(t,TS) = 0
 Create (clusterno - increase) clusters using K-means
 clusterno! clusterno - increase
 End If
 t! t+1

End While

/* Function For Determination change in cluster numbers*/
Function Determine_increase(changeno,totchange)

avg_change ! totchange/changeno

If changeno ! TS*0.6
 increase 2!
Else If changeno! TS*0.3

 increase 1!
Else
 increase 1!"
End If

If changeno! TS*0.3 & avg_change ! 1e-03
 increase 1!"
End If

temp ! clusterno - increase

If temp> maxClust Or temp< minClust
 increase 0! // i.e. no change
End If

VI. SOLVING REAL WORLD OPTIMIZATION PROBLEMS

 In this paper, 22 benchmark problems for the CEC-2011
competition and special session on “Testing Evolutionary
Algorithms on Real World Optimization Problems” are solved.

A. Test Problems & Experimental Conditions:
Among the 22 problems, the Dynamic Economic Dispatch

(DED) problem has 2 instances; the Static Economic Load
Dispatch (ELD) problem has 5 instances and the Hydrothermal
Scheduling problem has 3 instances of running. We have
performed 25 independent runs on each problem. The maximum
function evaluations for each run are 150000. It is asked to
report the mean, best and worst objective function values after
50000,100000 and 150000 FEs. The algorithm is tested on the
benchmark problems until the FE reaches FEmax .

B. Parameter Settings:
In this algorithm, parameters for DE are the population size

(NP), a scaling factor (F), a crossover rate (Cr). For the weed
inspired part, the parameters are maximum number of seeds of
the cluster (seedmax), minimum seed number (seedmin), the
standard deviation (!). The parameters to be adjusted due to
self adaptive cluster portion are, initial cluster number (k),
convergence radius of a cluster (Rconv), maximum cluster
number (Clustmax), minimum cluster number (Clustmin),
maximum size of a single cluster (popmax) and the time span
(TS) after which the algorithm self adaptively determines the
cluster numbers in the next time span. The actual values of the
parameters used are, NP = 200, Cr = 0.9, seedmax = 5, seedmin =
0, k = 5, Clustmax = 2k = 10, Clustmin = 2, popmax = 100, TS =
10. For the scaling factor (F), it is determined according to (10),
which is a random number between 0.5 and 1. Experiments
show that setting F to a specific value, it degrades the
performance of the algorithm when it is applied on various
problems. So, randomness is introduced in the value of F. Rconv
can be calculated from (9). The standard deviation (!), which
determines how far the seeds will be generated around an
individual is calculated from (11).

Table 1. Experimental results
 FEs F-1 F-2 F-3 F-4 F-5

5e
+0

4

Best

Worst

Mean

Std

0.00e+0

1.79e+1

3.54e+0

5.93e+0

-2.64e+1

-1.15e+1

-1.83e+1

 3.78e+0

2.87e-4

2.87e-4

2.87e-4

0.00e+0

1.38e+1

1.43e+1

1.41e+1

 2.87e-1

-3.55e+1

-2.65e+1

-3.20e+1

 3.26e+0

1e
+0

5

Best

Worst

Mean

Std

0.00e+0

1.45e+1

3.28e+0

5.42e+0

-2.84e+1

-1.91e+1

-2.35e+1

2.53e+0

2.87e-4

2.87e-4

2.87e-4

0.00e+0

1.38e+1

1.43e+1

1.41e+1

2.72e-1

-3.68e+1

-3.41e+1

-3.53e+1

 9.81e-1

1.
5e

+0
5

Best

Worst

Mean

Std

0.00e+0

1.45e+1

3.28e+0

5.42e+0

-2.84e+1

-2.21e+1

-2.51e+1

 2.05e+0

2.87e-4

2.87e-4

2.87e-4

0.00e+0

1.38e+1

1.43e+1

1.40e+1

 2.05e-1

-3.68e+1

-3.42e+1

-3.56e+1

 9.04e-1

FEs F-6 F-7 F-8 F-9 F-10

5e
+0

4

Best

Worst

Mean

Std

-2.92e+1

-2.21e+1

-2.62e+1

 2.78e+0

5.00e-1

1.27e+0

1.00e+0

1.73e-1

2.20e+2

2.20e+2

2.20e+2

0.00e+0

3.38e+3

1.98e+4

9.74e+3

5.18e+3

-2.18e+1

-2.14e+1

-2.16e+1

 1.94e-1

1e
+0

5

Best

Worst

Mean

Std

-2.92e+1

-2.30e+1

-2.64e+1

2.59e+0

5.00e-1

1.06e+0

7.58e-1

1.40e-1

2.20e+2

2.20e+2

2.20e+2

0.00e+0

2.17e+3

8.89e+3

5.51e+3

1.92e+3

-2.18e+1

-2.14e+1

-2.17e+1

 1.51e-1

1.
5e

+0
5

Best

Worst

Mean

Std

-2.92e+1

-2.30e+1

-2.65e+1

 2.40e+0

5.00e-1

9.93e-1

6.56e-1

1.16e-1

2.20e+2

2.20e+2

2.20e+2

0.00e+0

1.97e+3

8.04e+3

4.55e+3

1.97e+3

-2.18e+1

-2.14e+1

-2.17e+1

 1.50e-1

FEs F-11.1 F-11.2 F-11.3 F-11.4 F-11.5

5e
+0

4

Best

Worst

Mean

Std

6.50e+4

5.59e+5

2.32e+5

1.34e+5

1.10e+6

1.33e+6

1.19e+6

6.06e+4

1.54e+4

1.54e+4

1.54e+4

4.00e-3

1.82e+4

1.86e+4

1.84e+4

1.02e+2

3.27e+4

3.31e+4

3.28e+4

6.23e+1

1e
+0

5

Best

Worst

Mean

Std

 5.15e+4

 1.64e+5

 6.27e+4

 2.46e+4

1.07e+6

1.11e+6

1.08e+6

1.14e+4

1.54e+4

1.54e+4

1.54e+4

0.00e+0

1.81e+4

1.83e+4

1.82e+4

6.22e+1

3.27e+4

3.29e+4

3.28e+4

4.54e+1

1.
5e

+0
5

Best

Worst

Mean

Std

 5.13e+4

 7.15e+4

 5.41e+4

 4.72e+3

1.07e+6

1.11e+6

1.08e+6

9.04e+3

1.54e+4

1.54e+4

1.54e+4

0.00e+0

1.81e+4

1.83e+4

1.82e+4

5.45e+1

3.27e+4

3.29e+4

3.28e+4

4.23e+1

FEs F-11.6 F-11.7 F-11.8 F-11.9 F-11.10

5e
+0

4

Best

Worst

Mean

Std

1.32e+5

1.47e+5

1.40e+5

3.90e+3

1.93e+6

3.35e+6

2.32e+6

3.71e+5

1.05e+6

1.56e+6

1.28e+6

1.49e+5

1.04e+6

2.08e+6

1.42e+6

2.39e+5

1.04e+6

1.87e+6

1.29e+6

1.78e+5
1e

+0
5

Best

Worst

Mean

Std

1.31e+5

1.45e+5

1.37e+5

3.00e+3

1.91e+6

3.31e+6

2.19e+6

3.13e+5

9.95e+5

1.30e+6

1.11e+6

9.30e+4

1.01e+6

1.77e+6

1.21e+6

1.85e+5

9.58e+5

1.36e+6

1.14e+6

9.45e+4

1.
5e

+0
5

Best

Worst

Mean

Std

1.31e+5

1.41e+5

1.36e+5

2.57e+3

1.91e+6

2.56e+6

2.06e+6

1.58e+5

9.64e+5

1.22e+6

1.06e+6

7.53e+4

9.76e+5

1.51e+6

1.14e+6

1.49e+5

9.55e+5

1.27e+6

1.08e+6

7.04e+4

VII. CONCLUSIONS

We have applied our algorithm to 22 real world optimization
problems for CEC-2011. The above tables give the best, worst,
mean and standard deviation values of 25 independent runs of
the algorithm on the problems. The results are taken after
50000, 100000 and 150000 FEs. It has been noted that for
functions F-3, F-4, F-6, F-8, F-10, F-11.3, F-11.4, F-11.5 we
don’t need maximum value of FEs, i.e. 150000, rather, we have
reached the optimal values before 50000 FEs. For the other
functions such as cassini2, messengerfull, circular antenna
problem, Lennard jones potential problem, transmission pricing
problem, we have noted that the function value is improving
during entire optimization process. It may so happen that, if we
increase maximum value of FE, the function value may
improve further.

ACKNOWLEDGEMENTS
This work was supported by the Czech Science Foundation,
under the grant no. GA102/09/1494.

REFERENCES
[1] R. Storn and K. V. Price, “Differential evolution-a simple and

efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization 11:341-359.1997.

[2] K. V. Price, R. Storn, and J. Lampinen, Differential Evolution
- A Practical Approach to Global Optimization, Springer,
Berlin, 2005

[3] S. Das and P. N. Suganthan, “Differential Evolution – a survey
of the state-of-the-art”, IEEE Transactions on Evolutionary
Computation, Vol. 15, No. 1, pp. 4 – 31, Feb. 2011.

[4] J. Ilonen, J.-K. Kamarainen and J. Lampinen, ”Differential
Evolution Training Algorithm for Feed-Forward Neural
Networks,” In: Neural Processing Letters Vol. 7, No. 1 93-
105. 2003.

[5] R. Storn, “Differential evolution design of an IIR-filter,” In:
Proceedings of IEEE Int. Conference on Evolutionary
Computation ICEC'96. IEEE Press, New York. 268-273. 1996.

[6] A. R. Mehrabian and C. Lucas, “A novel numerical
opmization algorithm inspired from weed colonization,”
Ecological Informatics, vol. 1, pp. 355–366, 2006.

[7] A. R. Mallahzadeh, S. Es'haghi, and A. Alipour, “Design of an
e-shaped mimo antenna using IWO algorithm for wireless
application at 5.8 GHz”, Progress In Electromagnetics
Research, PIER 90, 187 - 203, 2009.

[8] A. R. Mallahzadeh, S. Es'haghi, and H. R. Hassani, Compact
U-array MIMO antenna designs using IWO algorithm,
International Journal of RF and Microwave Computer-Aided
Engineering, Wiley-InterSscience, DOI:
10.1002/mmce.20379, Jul, 2009.

[9] Tanaka, F., Kameda, A., Yamamoto, M. and Ohuchi, A.,
Design of nucleic acid sequences for DNA computing based
on a thermodynamic approach. Nucleic Acids Research. v3.
903-911.

[10] S. Karimkashi, and A. A. Kishk, "Invasive weed optimization
 and its features in electromagnetics," IEEE Transactions on
 Antennas and Propagation, Vol. 58, Issue 4, pp.1269 – 1278,
 April, 2010.

FEs F-12 F-13

5e
+0

4
Best

Worst

Mean

Std

9.56e+0

1.75e+1

1.42e+1

3.01e+0

1.04e+1

2.24e+1

1.66e+1

4.42e+0

 1
e+

05

Best

Worst

Mean

Std

8.88e+0

1.44e+1

1.26e+1

2.17e+0

1.00e+1

2.12e+1

1.52e+1

4.18e+0

 1
.5

e+
05

Best

Worst

Mean

Std

6.78e+0

1.32e+1

1.15e+1

2.44e+0

8.84e+0

1.97e+1

1.28e+1

3.65e+0

