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Abstract— In this paper we propose a Self Adaptive Cluster based 
and Weed Inspired Differential Evolution algorithm (SACWIDE), 
the total population is divided into several clusters based on the 
positions of the individuals and the cluster number is dynamically 
changed by the suitable learning strategy during evolution. Here 
we incorporate a modified version of the Invasive Weed 
Optimization (IWO) algorithm as a local search technique. The 
algorithm strategically determines whether a particular cluster 
will perform Differential Evolution (DE) or the IWO algorithm 
(modified). The number of clusters in a particular iteration is set 
by the algorithm itself self-adaptively. The performance of 
SACWIDE is reported on the set of 22 benchmark problems of 
CEC-2011.   

Keywords - Differential Evolution; Evolutionary Algorithm; real world 
optimization; weed colony optimization; self-adaptive optimization 
algorithm. 

I. INTRODUCTION 
      Scientist and engineers from all branches have to deal with 
the global optimization problem where the main target is to find 
a set of model parameters or state-variables, which will provide 
a globally maximum or minimum value for a specified 
objective or cost function. The Differential Evolution (DE) 
Algorithm proposed by Storn and Price [1] is a simple but very 
effective algorithm for global optimization problem. In many 
applications such as Pattern Recognition [1], Communication 
[4], mechanical engineering [5] the effectiveness and efficiency 
has been successfully demonstrated. The Invasive Weed 
Optimization (IWO) algorithm [6], is also a very effective 
algorithm which has found successful in some application like 
design of E-shaped MIMO Antenna [7], design of compact U-
array MIMO antenna [8], encoding sequences for DNA 
computing [9], and design of aperiodic thinned array antennas 
[10].  
       In our proposed algorithm, we have used a modified, 
cluster based, self-adaptive Differential Evolution (DE) 
algorithm, with a weed inspired technique. In this algorithm, 
the total population is divided into some clusters based on their 
spatial positions and a modified version of DE is used. In each 
generation, the clusters do not share information among them. 
The cluster modification technique is totally self adaptive, i.e. 
the cluster number and creation of new cluster is determined by 

the learning strategy of the algorithm itself. We have used 
cluster based technique so that the total population does not get 
stuck to a local optimum. When a cluster tends to converge to a 
point or any local optimum, a weed inspired technique is 
adapted on that cluster. The weed inspired technique helps us in 
local searching in the vicinity of each particle. Thus, there is a 
chance to find a better position for each particle by its weeds. 
Thus the population is improved by the self-adaptive behavior 
of the algorithm itself and the simultaneous use of DE and 
weed inspired technique. 
  

II. DIFFERENTIAL EVOLUTION ALGORITHM 
Differential Evolution (DE) is a very simple but a very 

powerful algorithm for optimization problem. Let nRS!  be the 
search space of the problem under consideration. DE algorithm 
starts with an initial population of NP, n dimensional solution 
particles. These particles (solution vectors) are initially covering 
the search space (S) as much as possible by randomly initializing 
them through the search space. The particles are of the form 
X
!"

i = (xi1, xi2, xi3,..., xin )! S , where i=1,2,….,NP and are 
upgraded from one generation to next generation, where 

in2i1i xxx ,....,,  are in between their respective upper and lower 

bounds lower
j

upper
j xx , respectively. The population undergoes 

through Crossover, Mutation at each generation t and produces a 
new solution vector  Ui,t   for each vector X

!"
i,t .  

A. Mutation: 

     After initialization for each solution vectors X
!"

i,t , a new 

vector tiY ,  is generated at each generation t. The vector 

tiY , can be generated by any one of the following five methods: 
 
“DE/rand/1”:  Y

!"
i,t = X
!"

r1
i ,t +F.(X

!"
r2
i ,t ! X
!"

r3
i ,t )                  (1) 

“DE/best/1”: Y
!"
i,t = X
!"

best,t +F.(X
!"

r1
i ,t ! X
!"

r2
i ,t )

                  
(2) 

“DE/target-to-best/1”  
Y
!"
i,t = X
!"

i,t +F.(X
!"

best,t ! X
!"

i,t )+F.(X
!"

r1
i ,t ! X
!"

r2
i ,t )                (3)  
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“DE/best/2”: 
Y
!"
i,t = X
!"

best,t +F.(X
!"

r1
i ,t ! X
!"

r2
i ,t )+F.(X

!"
r3
i ,t ! X
!"

r4
i ,t )           (4) 

“DE/rand/2”:  
Y
!"
i,t = X
!"

r1
i ,t +F.(X

!"
r2
i ,t ! X
!"

r3
i ,t )+F.(X

!"
r4
i ,t ! X
!"

r5
i ,t )             (5) 

 
Where The indices i

4
i
3

i
2

i
1 rrrr ,,, and i

5r are mutually exclusive 
integers randomly chosen from the range [1, NP], and all are 
different from the base index i. F is a scaling factor for the 
differential vectors and X

!"
best,t  is the vector with best fitness in 

the generation t. The general convention used for naming the 
various mutation strategies is DE/a/b/c, where DE stands for 
Differential Evolution, a represents a string denoting the vector 
to be perturbed and b is the number of difference vectors 
considered for perturbation of x. c is the type of crossover being 
used. 
 
B. Cross-over: 
       After the phase of mutation the crossover phase comes, 
which plays a major role to enhance the diversity of the 
population. In this phase the generated vector Y

!"
i,t exchanges its 

component with its parent vector X
!"

i,t  to generate a new vector 

U
!"

i,t = (u1i,t,u2i,t,u3i,t,...,uni,t )  Where uj,i,t  is found by the 
following procedure: 
 

uj,i,t =
Yj,i,t , if (randi, j[0,1)<Cr or j = jrand
X j,i,t , otherwise

!
"
#

$#
 

    
 Where randi, j[0,1)  is a uniformly distributed random 

number which is called anew for each thj component of the thi  
parameter vector. jrand ! [1, 2,....,n] is a randomly chosen 

index, which ensures that tiU ,  gets at least one component 
from tiY , , and Cr is a user defined constant in the range [0,1). 
 
C. Selection Operation: 
       In the selection phase, the algorithm determines that which 
one between the target vector and generated vector will be kept 
for next generation and which one should be deleted from the 
population so that the size of the population (no of the solution 
vectors) remains unchanged down the generation. The selection 
procedure is done by the following way: 
 

                 X
!"

i,t+1 =
U
!"

i,t if f (U
!"

i,t )< f (X
!"

i,t )

X
!"

i,t if f (U
!"

i,t )> f (X
!"

i,t )

!
"
#

$#
 

      
for minimization problem. Thus after every generation we find 
either a new solution which has better fitness (here for 
minimization problem) or the previous vector is kept. So after 
each generation the population gets better or remains 
unchanged but never deteriorates. 

III. THE INVASIVE WEED OPTIMIZATION (IWO) 

IWO is a population-based algorithm that replicates the 
colonizing behavior of weeds. The basic characteristic of a 
weed is that it grows its population entirely or predominantly in 
a geographically specified area, which can be substantially 
large or small. Initially a certain number of weeds are randomly 
spread over the entire search space. These weeds will 
eventually grow up and execute the following four steps as the 
algorithm proceeds.  There are four steps of the algorithm as 
described below:  

1) Initialization: A certain number m of weeds are randomly 
spread over the entire D-dimensional search space. This initial 
population of each generation will be termed as 
X = {

!
X1,
!
X 2,.........,

!
Xm}.  

 2) Reproduction: Each member of the population X is allowed 
to produce seeds within a specified region centered at its own 
position. The number of seeds produced by 

!
Xi, i ! {1, 2.....,m}  

depends on its relative fitness in the  

population with respect to the best and worst fitness. The 
number of seeds produced by any weed varies linearly from 
seedmin to changemin  with seedmin  for the worst member and 
seedmax for the best member in the population.  

3) Spatial distribution: The generated seeds are being 
randomly distributed over the d-dimensional search space by 
normally distributed random numbers with zero mean and 
variance !2. However, the standard deviation ! is made to 
decrease over the generations so that the algorithm gradually 
moves from exploration to exploitation with increasing 
generations.  If!max  and !min  are the maximum and minimum 
standard deviation, then the standard deviation in a particular 
generation (or iteration) is given by,    

! t =!min +
tmax ! t
tmax

"

#
$$

%

&
''

n _m _ i

.(!max !!min ),                     (6)                                                                     

where n_m_i represents the non-linear modulation index, t is 
the current iteration number and tmax is the maximum number of 
iterations allowed. This step ensures that the probability of 
dropping a seed in a distant area decreases nonlinearly with 
iterations, which results in grouping fitter plants and 
elimination of inappropriate plants. 

4) Competitive Exclusion: There is a need of some kind of 
competition between plants to limit the maximum number of 
plants in a population. Initially, the plants in a colony will 
reproduce fast and all the produced weeds will be included in 
the colony, until the number of plants reaches a maximum 
value of popmax . However, it is expected that by this time the 
fitter plants have reproduced more than undesirable plants. 
From then on, only the fittest plants, among the existing ones 
and the reproduced ones; are taken in the colony and the steps 1 
to 4 are repeated until the maximum number of iterations (or 



function evaluations) have been reached. So, in every 
generation the population size must be less than or equal 
to maxpop . This method is known as competitive exclusion and 
is a selection procedure of IWO. 
 

IV. PROPOSED ALGORITHM: SACWIDE 
In our proposed algorithm we have used a strategy-based 

clustered DE algorithm, which is self-adaptive with a weed 
inspired strategy. We initialize the population randomly in the 
search region and the population is divided into several clusters 
using the K-means clustering algorithm. If clustering is not done 
then for multimodal problem there is a high chance to get 
trapped in a local minimum and the algorithm will not perform 
better afterwards. That’s why the total population is divided into 
some clusters based on their spatial distribution. The radius of a 
particular cluster is defined as the mean distance (Euclidean) 
from the center of the cluster. If the particles of the clusters are  

1x
!

, 2x
!

….., nx
!

 then the center(C
!

) is determined as  

         
!
C =

!xi
i=1

n

!
n

                                         (7) 

And the radius,  R =

(!xi, j !
!cj )

j=1

d

"
i=1

n

"

n
                       (8)     

 After clustering is done, in each cluster modified DE is used 
separately.  In our algorithm we used both the “DE/rand/1” and 
“DE/best/1” schemes depending on the FE. Between the two 
schemes “DE/rand/1” usually shows good diversity but slower 
convergence rate whereas “DE/best/1” shows less diversity but 
satisfactory convergence rate. In our algorithm, for first 10% of 
total Function Evaluations the “DE/rand/1” is used and for the 
remaining FEs “DE/best/1” is used. DE is used for a cluster until 
its radius becomes very small. If radius of a particular cluster 
becomes lesser than a pre-assigned value ( Rconv ), then to gain 
diversity we apply a weed inspired algorithm for that cluster. 
The value of Rconv   is calculated as  

  Rconv = dist(
!
Xupper,

!
Xlower ) !10

"3                      (9) 

  Where dist(!a,
!
b)  denotes the Euclidean distance between the 

vectors !a&
!
b .
!
Xupper &

!
Xlower are the upper bound and lower 

bound vectors in the search region. This expression is used 
because for all the problems we cannot use a fixed value 
of Rconv . Basically Rconv is an indication parameter, which 
indicates the convergence of a single cluster. It seems obvious 
that Rconv  should depend on spread of the upper and lower 
bounds. Thus instead of assigning a fixed value, we adopted the 
previous expression for Rconv . When the radius of a cluster 
becomes smaller than Rconv  a weed inspired algorithm is used 

instead of DE. We will discuss about the weed inspired 
algorithm in the next section. 

 After a specific number of iterations i.e. generations, the 
performance of the algorithm is checked. If the performance is 
satisfactory then cluster numbers are decreased and then again 
the total population is clustered in new cluster numbers. This is 
done to reduce the wastage of FEs as the algorithm performed 
well in those generations. But if the algorithm performs badly, 
then one new cluster is generated in the search region randomly, 
without deleting the previous individuals.   

The idea of creating clusters from the population comes from 
the phenomenon of trapping in a local minimum on a 
multimodal search region, when we apply “DE/best/1” on a 
single population. For global optimization, it is always 
preferable that we use a speedy algorithm, which can readily 
find the optimum. The algorithm, which will be most efficient 
should have a good convergence rate. In that context it seems 
that applying DE or some variant of DE, we can find the 
optimum quickly. But, unfortunately, it has been seen that, those 
algorithms get trapped in a local minimum and don’t improve 
further. To overcome this fact, we used the cluster based 
optimization idea. The particles of a population are divided into 
some clusters and the clusters individually try to find minima. 
There should not be any information exchange between any 
clusters and they will work individually. However, in our 
algorithm, some information is exchanged periodically by 
redistributing the total population. It is expected that each cluster 
will find one local minimum, which may or may not be the 
global minimum. But the problem in this, during optimization, 
two clusters may be highly overlapped (regarding to spatial 
distribution) and it may happen that two different clusters are 
searching for the same optimum. Special care should be taken to 
avoid this problem, otherwise FEs will be wasted. Again, if we 
don’t know the total number of local minima, we will have to 
blindly guess the cluster numbers, as here one cluster discovers 
one minimum. Again if a cluster gets stuck to a local optimum, 
it is necessary to delete that cluster, saving the optimum value 
discovered by it, and to reinitialize it to a newer place such that 
it can again search for another minimum. To deal with the above 
problems, we introduced a cluster based optimization technique 
in which the total cluster number at any generation is determined 
self-adaptively by the algorithm and not by the user. However, 
the user has to provide the initial cluster numbers (k), which we 
have taken 5 in this paper. In this algorithm after certain 
iterations (time span, TS) or generations the performance of the 
clusters is evaluated in terms of percentage change in the value 
of global best value found so far. Then the individuals of the 
different clusters are exchanged via another call to K-means 
such that spatially nearer particles are taken into one cluster. 
Thus the idea of no exchange of information among the clusters 
is not followed thoroughly in our algorithm. There will be 
certain exchange of information periodically during optimization 
by redistributing the particles. If the performance in previous 
duration under examination is satisfactory, then some clusters 
are merged or in other words the total cluster number is 
decreased. This is done because, as the algorithm is performing 
well, to reduce the FE cost, cluster number is reduced. But the 
total number of individuals does not change. If the performance 
is not satisfactory, then one new cluster is created in the search 
region randomly, as bad performance indicates that there is a 



high chance that the global minimum stays in some other region, 
which is currently not covered by the clusters. Thus, the cluster 
number is increased then, as if the current situation of the 
process is demanding it.  When we introduce a new cluster, new 
particles are generated randomly keeping the previous 
population intact. While redistributing, the total population do 
not change, just the cluster number and number of individuals in 
a cluster is changed. We set an upper limit on both the cluster 
numbers (Clustmax ) and the total population in a cluster ( popmax ). 
In this paper we set, Clustmax = 2k, i.e. 10 and popmax =100. There 
is also a lower limit of cluster number (Clustmin ), which is set to 
2. If the total population in a cluster exceeds maximum value 
( popmax ), then best popmax  particles are selected and the other 
particles are deleted. If cluster number is maximum, and the 
performance evaluation test still indicates a negative result, 
neither the cluster number is further increased nor is any more 
clustering done. This belongs to the worst condition in the 
optimization process. Similar work is done if cluster number is 
minimum and still tends to reduce its value; we restrict it to do 
so. A brief description of our algorithm follows: 

A. Initialization: 

     A certain number of individuals (NP) are spread randomly in 
the search region. Then they are clustered into k clusters using 
the K-means clustering algorithm. 

B. Cluster Improvements: 

       As it is stated above that DE performs well with respect to 
other Evolutionary Algorithms (EAs), we primarily use DE as 
our main optimization algorithm. It is also sated that, 
“DE/best/1” has better convergence rate, but after experiments 
we come to a conclusion that, for 1st 10% of total FE ( FEmax ) if 
we use “DE/rand/1” with a probability 0.5 (i.e. rand(0,1)>.5), it 
performs better than using only “DE/best/1”.  For both the 
schemes, we used a dynamic value of the scaling factor (F). 
Instead of using a fixed value of F, we have used the following 
formula for deriving F. 

         F = (rand+1)*0.5                                           (10) 

 Here rand denotes a random number between 0 and 1. 
It is seen from the above expression that F varies from 0.5 and 
1. DE will be applied on a particular cluster until the radius (7) 
of that cluster becomes lower than a predefined value ( Rconv ). If 
so, then it can be said that the cluster is highly converged 
around a point, which may or may not be a minimum even. In 
this case, we apply the weed inspired technique on that cluster. 
We have used a modified version of IWO. Some of the 
parameters are changed and the selection technique is 
improved. The standard deviation (!) is defined as 

! t =!min +
FEmax !FE
FEmax

"

#
$

%

&
'

2

.(!max !!min )                              (11) 

!max is taken as dist(
!
Xupper,

!
Xlower ).10

!1 , !min is taken as 

dist(
!
Xupper,

!
Xlower ) !10

"8 .The definitions of dist, 
!
Xupper  and 

!
Xlower  

are similar as stated in preceding sections. For the selection 

part, without selecting all the weeds until population 
cross popmax , we applied a modified selection criteria. A weed 
is selected to next generation if it is better than its parent or the 
mean of its fitness and its parents’ fitness is better than the 
average fitness of best and worst plant in the population. In a 
cluster, whether it is performing DE or weed inspired 
algorithm, whenever the population number exceeds popmax , 
the best popmax particles are survived and the others are deleted. 
If a cluster performs DE, population of that cluster will not 
increase, but while redistributing, it may happen that the 
population exceeds popmax .  This will happen when the 
algorithm is performing well and the total number of clusters is 
needed to be reduced. Then, the total population (combining the 
population from different clusters) is divided into less number 
of clusters, thus the new clusters will have more number of 
individuals than that of previous iteration. But, the reduction of 
cluster numbers is done in the context that the algorithm is 
performing well so less effort may be given on that time of 
optimization or in other words we try to save FE. But, if the 
poorer particles are not deleted, the FE might be wasted. 

C. Performance Evaluation & Redistribution: 

       After a time span (TS) or generations the performance of 
the algorithm is evaluated and accordingly the cluster numbers 
are updated. In each iteration, the change in global best value is 
calculated. The total number of changes over a time span is also 
calculated. Primarily the importance is given to the number of 
changes, rather than average change over that period. So, we 
are giving stress on consistency of change, not on quality of 
change. But quality affects when the change is very low, but we 
get change in almost every time. In that case, our desire will not 
be fulfilled. So, it is checked that if the average change is lower 
than a value, say, changemin , then instead of giving positive 
result, it will indicate a negative state. After experiments, the 
optimum value of seedmax  is found, and it is taken to be, 
seedmax =1e-3.The detail of this algorithm is given on the 
pseudo code. 
      After evaluating the performance of the algorithm in a time 
span (TS), the total population is redistributed. The 
performance evaluation test gives us the change in cluster 
number, which is to be made. If the change is positive, then the 
cluster number is reduced and the total population is 
redistributed in reduced number of clusters. If the change is 
negative, then a new cluster is introduced in the search space. 
The individuals of this new cluster are generated randomly in 
the entire search region. As stated earlier, cluster number is not 
updated every time. There are two limits, namely Clustmax  and 
Clustmin . When cluster number is equal to Clustmax  and still 
tends to increase, then the increment is restricted. Similarly 
when cluster number is equal to Clustmin  and trying to 
decrease, we restrict it to decrease further. 
 



V. PSEUDO CODE 

 
/* Main Algorithm*/ 
Step 1: %Initialization 
Initialize a population of NP individuals in the search region 
randomly 
Divide them into k clusters using K-means 
Clusterno ! k , iteration t! 1 
Define maxClust , minClust  and TS 
Set convR  according to (9) 
 
Step 2: %Cluster Improvements 
 
While Termination Criterion is not satisfied 
            For i = 1 to clusterno 
                  Determine Radius iR  according to (8) 
      If convRR >   
             Improve by DE algorithm  
     Else 
             Improve by Weed Inspired algorithm 
     End If 
            End For  
           
Step3: %Performance Evaluation 
            
            If mod(t,TS) = 0 
  increase = Determine_increase(changeno,totchange) 
  changeno! 0 & totchange! 0 
            Else  
                 If 1tt GlobalbestGlobalbest !<  
       Calculate percentage change in 1tGlobalbest !   
                   changeno! changeno+1 
       totchange! totchange+percentage change 
    End If 
            End If 
 
Step 4: % Update Cluster number 
 
            If mod(t,TS) = 0 
  Create (clusterno - increase) clusters using K-means 
                clusterno!  clusterno - increase 
            End If  
            t! t+1 
 
End While 
 
/* Function For Determination change in cluster numbers*/ 
Function Determine_increase(changeno,totchange) 
 
avg_change !  totchange/changeno 
 
If changeno !  TS*0.6 
         increase 2!  
Else If changeno!   TS*0.3 

         increase 1!   
Else 
         increase 1!"  
End If  
 
If changeno! TS*0.3  & avg_change ! 1e-03 
         increase 1!"   
End If 
 
temp ! clusterno - increase 
 
If  temp> maxClust  Or  temp< minClust  
        increase 0!      // i.e. no change 
End If  
             

VI. SOLVING REAL WORLD OPTIMIZATION PROBLEMS 

       In this paper, 22 benchmark problems for the CEC-2011 
competition and special session on “Testing Evolutionary 
Algorithms on Real World Optimization Problems” are solved. 

A. Test Problems & Experimental Conditions: 
Among the 22 problems, the Dynamic Economic Dispatch 

(DED) problem has 2 instances; the Static Economic Load 
Dispatch (ELD) problem has 5 instances and the Hydrothermal 
Scheduling problem has 3 instances of running. We have 
performed 25 independent runs on each problem. The maximum 
function evaluations for each run are 150000. It is asked to 
report the mean, best and worst objective function values after 
50000,100000 and 150000 FEs. The algorithm is tested on the 
benchmark problems until the FE reaches FEmax . 

B. Parameter Settings: 
In this algorithm, parameters for DE are the population size 

(NP), a scaling factor (F), a crossover rate (Cr). For the weed 
inspired part, the parameters are maximum number of seeds of 
the cluster ( seedmax ), minimum seed number ( seedmin ), the 
standard deviation (! ). The parameters to be adjusted due to 
self adaptive cluster portion are, initial cluster number (k), 
convergence radius of a cluster ( Rconv ), maximum cluster 
number ( Clustmax ), minimum cluster number ( Clustmin ), 
maximum size of a single cluster ( popmax ) and the time span 
(TS) after which the algorithm self adaptively determines the 
cluster numbers in the next time span. The actual values of the 
parameters used are, NP = 200, Cr = 0.9,  seedmax  = 5, seedmin = 
0, k = 5, Clustmax = 2k = 10,  Clustmin  = 2, popmax = 100, TS = 
10. For the scaling factor (F), it is determined according to (10), 
which is a random number between 0.5 and 1. Experiments 
show that setting F to a specific value, it degrades the 
performance of the algorithm when it is applied on various 
problems. So, randomness is introduced in the value of F. Rconv  
can be calculated from (9). The standard deviation (! ), which 
determines how far the seeds will be generated around an 
individual is calculated from (11).       

    



 

 

 

 

Table 1. Experimental results 
      FEs  F-1 F-2 F-3 F-4 F-5 

5e
+0

4 

Best 

Worst 

Mean 

Std 

0.00e+0 

1.79e+1 

3.54e+0 

5.93e+0 

-2.64e+1 

-1.15e+1 

-1.83e+1 

  3.78e+0 

2.87e-4 

2.87e-4 

2.87e-4 

0.00e+0 

1.38e+1 

1.43e+1 

1.41e+1 

 2.87e-1 

-3.55e+1 

-2.65e+1 

-3.20e+1 

  3.26e+0 

1e
+0

5 

Best 

Worst 

Mean 

Std 

0.00e+0 

1.45e+1 

3.28e+0 

5.42e+0 

-2.84e+1 

-1.91e+1 

-2.35e+1 

2.53e+0 

2.87e-4 

2.87e-4 

2.87e-4 

0.00e+0 

1.38e+1 

1.43e+1 

1.41e+1 

2.72e-1 

-3.68e+1 

-3.41e+1 

-3.53e+1 

  9.81e-1 

1.
5e

+0
5 

Best 

Worst 

Mean 

Std 

0.00e+0 

1.45e+1 

3.28e+0 

5.42e+0 

-2.84e+1 

-2.21e+1 

-2.51e+1 

 2.05e+0 

2.87e-4 

2.87e-4 

2.87e-4 

0.00e+0 

1.38e+1 

1.43e+1 

1.40e+1 

 2.05e-1 

-3.68e+1 

-3.42e+1 

-3.56e+1 

  9.04e-1 

FEs  F-6 F-7 F-8 F-9 F-10 

5e
+0

4 

Best 

Worst 

Mean 

Std 

-2.92e+1 

-2.21e+1 

-2.62e+1 

  2.78e+0 

5.00e-1 

1.27e+0 

1.00e+0 

1.73e-1 

2.20e+2 

2.20e+2 

2.20e+2 

0.00e+0 

3.38e+3 

1.98e+4 

9.74e+3 

5.18e+3 

-2.18e+1 

-2.14e+1 

-2.16e+1 

  1.94e-1 

1e
+0

5 

Best 

Worst 

Mean 

Std 

-2.92e+1 

-2.30e+1 

-2.64e+1 

2.59e+0 

5.00e-1 

1.06e+0 

7.58e-1 

1.40e-1 

2.20e+2 

2.20e+2 

2.20e+2 

0.00e+0 

2.17e+3 

8.89e+3 

5.51e+3 

1.92e+3 

-2.18e+1 

-2.14e+1 

-2.17e+1 

 1.51e-1 

1.
5e

+0
5 

Best 

Worst 

Mean 

Std 

-2.92e+1 

-2.30e+1 

-2.65e+1 

 2.40e+0 

5.00e-1 

9.93e-1 

6.56e-1 

1.16e-1 

2.20e+2 

2.20e+2 

2.20e+2 

0.00e+0 

1.97e+3 

8.04e+3 

4.55e+3 

1.97e+3 

-2.18e+1 

-2.14e+1 

-2.17e+1 

  1.50e-1 

FEs  F-11.1 F-11.2 F-11.3 F-11.4 F-11.5 

5e
+0

4 

Best 

Worst 

Mean 

Std 

6.50e+4 

5.59e+5 

2.32e+5 

1.34e+5 

1.10e+6 

1.33e+6 

1.19e+6 

6.06e+4 

1.54e+4 

1.54e+4 

1.54e+4 

4.00e-3 

1.82e+4 

1.86e+4 

1.84e+4 

1.02e+2 

3.27e+4 

3.31e+4 

3.28e+4 

6.23e+1 

1e
+0

5 

Best 

Worst 

Mean 

Std 

 5.15e+4 

 1.64e+5 

 6.27e+4 

 2.46e+4 

1.07e+6 

1.11e+6 

1.08e+6 

1.14e+4 

1.54e+4 

1.54e+4 

1.54e+4 

0.00e+0 

1.81e+4 

1.83e+4 

1.82e+4 

6.22e+1 

3.27e+4 

3.29e+4 

3.28e+4 

4.54e+1 

1.
5e

+0
5 

Best 

Worst 

Mean 

Std 

 5.13e+4 

 7.15e+4 

 5.41e+4 

 4.72e+3 

1.07e+6 

1.11e+6 

1.08e+6 

9.04e+3 

1.54e+4 

1.54e+4 

1.54e+4 

0.00e+0 

1.81e+4 

1.83e+4 

1.82e+4 

5.45e+1 

3.27e+4 

3.29e+4 

3.28e+4 

4.23e+1 

FEs  F-11.6 F-11.7 F-11.8 F-11.9 F-11.10 

5e
+0

4 

Best 

Worst 

Mean 

Std 

1.32e+5 

1.47e+5 

1.40e+5 

3.90e+3 

1.93e+6 

3.35e+6 

2.32e+6 

3.71e+5 

1.05e+6 

1.56e+6 

1.28e+6 

1.49e+5 

1.04e+6 

2.08e+6 

1.42e+6 

2.39e+5 

1.04e+6 

1.87e+6 

1.29e+6 

1.78e+5 
1e

+0
5 

Best 

Worst 

Mean 

Std 

1.31e+5 

1.45e+5 

1.37e+5 

3.00e+3 

1.91e+6 

3.31e+6 

2.19e+6 

3.13e+5 

9.95e+5 

1.30e+6 

1.11e+6 

9.30e+4 

1.01e+6 

1.77e+6 

1.21e+6 

1.85e+5 

9.58e+5 

1.36e+6 

1.14e+6 

9.45e+4 

1.
5e

+0
5 

Best 

Worst 

Mean 

Std 

1.31e+5 

1.41e+5 

1.36e+5  

2.57e+3 

1.91e+6 

2.56e+6 

2.06e+6 

1.58e+5 

9.64e+5 

1.22e+6 

1.06e+6 

7.53e+4 

9.76e+5 

1.51e+6 

1.14e+6 

1.49e+5 

9.55e+5 

1.27e+6 

1.08e+6 

7.04e+4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

VII. CONCLUSIONS 
       
We have applied our algorithm to 22 real world optimization 
problems for CEC-2011. The above tables give the best, worst, 
mean and standard deviation values of 25 independent runs of 
the algorithm on the problems. The results are taken after 
50000, 100000 and 150000 FEs.  It has been noted that for 
functions F-3, F-4, F-6, F-8, F-10, F-11.3, F-11.4, F-11.5 we 
don’t need maximum value of FEs, i.e. 150000, rather, we have 
reached the optimal values before 50000 FEs. For the other 
functions such as cassini2, messengerfull, circular antenna 
problem, Lennard jones potential problem, transmission pricing 
problem, we have noted that the function value is improving 
during entire optimization process. It may so happen that, if we 
increase maximum value of FE, the function value may 
improve further. 
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FEs  F-12 F-13 
   

   
   

5e
+0

4 
Best 

Worst 

Mean 

Std 

9.56e+0 

1.75e+1 

1.42e+1 

3.01e+0 

1.04e+1 

2.24e+1 

1.66e+1 

4.42e+0 

   
   

  1
e+

05
 

Best 

Worst 

Mean 

Std 

8.88e+0 

1.44e+1 

1.26e+1  

2.17e+0 

1.00e+1 

2.12e+1 

1.52e+1 

4.18e+0 

   
   

 1
.5

e+
05

 

Best 

Worst 

Mean 

Std 

6.78e+0 

1.32e+1 

1.15e+1   

2.44e+0 

8.84e+0 

1.97e+1 

1.28e+1 

3.65e+0 


