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Abstract—Regression testing is an integral part of the software
evolution and maintenance phase as it ensures that the modified
software is working correctly after any upgrades. Test case
prioritization and reduction minimize cost and effort needed
for retesting by scheduling critical test cases before the less
critical ones and removing redundant test cases. The criticality
and redundancy of the test cases depend on several testing
criteria. This paper empirically analyzed the effect of different
testing criteria like code and fault coverage on the techniques’
performance. This paper proposed a discrete Quantum-behaved
particle swarm optimization (QPSO) for enhancing efficiency of
test case prioritization. The algorithm is improved by replacing
the random distribution with Gaussian probability to escape
from the local optima. The evolution stagnation issue is further
resolved by hybridizing it with genetic algorithm (QPSO-GA). In
addition to prioritizing the test cases, the algorithm also reduces
the test suite size through the test suite reduction approach. The
experiments are conducted on different versions of three pro-
grams from the open-source software infrastructure repository.
The performance is compared with the average percentage of
statement coverage, fault detection, and their combinations with
the cost. Consequently, suite reduction, fault detection capability
losses, and coverage loss percentage are also drawn for test suite
reduction. The proposed algorithms outperformed the random
search, ant colony optimization, differential evolution, GA, PSO,
and adaptive PSO for all the evaluation metrics.

Index Terms—regression testing, nature-inspired algorithms,
test case prioritization, test suite reduction, particle swarm
optimization, QPSO

I. INTRODUCTION

The most challenging task of a software firm is to stay
afloat in a competitive market by upgrading and maintaining
the software to meet the changing demands. All software’s
test cases must be re-implemented to ensure that the quality
is not compromised. It is known as regression testing [1].
Software gets more complicated with frequent updates, so the
time and effort necessary for regression testing may rise. These
bottleneck problems may be overcome by employing test case
reduction, selection, and priority strategies that focus only on
removing the redundant test cases, selecting the critical test
case, and ranking the test cases based on predefined goals such
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as maximum code coverage, fault coverage, and requirements
coverage.

With optimization techniques, the cost-effectiveness of re-
gression testing may be further enhanced. The researchers
attention was drawn to nature-inspired algorithms because
of their simple structure and ease of application. The algo-
rithms are developed by taking inspiration from the natural
processes [2]. Swarm-intelligence and genetic algorithms of
the biology-inspired class are the most often employed [3].
These algorithms have also been proven to be useful in
regression testing [1]. For example, Li, Harman and Hierons
[4] compared GA, hill climbing and greedy algorithms for
Test Case Prioritization (TCP). It was observed that greedy
methods worked better but Genetic Algorithm (GA) provided
better fitness landscape.

Zhang et al. [5] used Ant Colony Optimization (ACO) to
prioritize the test cases. The obtained results were better than
GA, Particle Swarm Optimization (PSO) and Random Search
(RS). A new adaptation strategy for permutation encoding was
proposed to solve the TCP problem using Cuckoo Search
Algorithm (CSA) [2]. Furthermore, Ahmed [6] used CSA
to minimize the test suite for configuration-aware software
testing. Few researchers have used PSO like Khatibsyarbini,
Isa, and Jawawi [7] implemented PSO using string distances
for ordering the test cases. The proposed algorithm performed
better than the nearest neighbor and RS for the real-world
TSL dataset. Binary constraint PSO and its hybrid versions
with local search techniques were developed to select the test
cases based on the redundancy and the required efforts [8].

Standard PSO algorithm have issues, e.g., stuck into local
optima and premature convergence [9]. Observations sug-
gested that improved and hybrid versions of PSO outperformed
the standard PSO to test the complex programs [8]. One
such improvement is the Quantum-behaved PSO (QPSO)
algorithm. It is inspired by the quantum behavior of particles,
i.e., particles can move in a wide search space for global
convergence [11]. The algorithm shows promising results in
various applications [10]- [13]. On the other side, it has
not been examined in TCP. We introduced discrete QPSO
that perturbs the population using asexual genetic operator
[2]. However, it also has some disadvantages like prema-
ture convergence. Therefore, we have hybridized it with GA



to accelerate the performance in the last iterations, and to
avoid premature convergence uniform distribution of quantum-
behaved particles is replaced with the Gaussian distribution
[10]. Besides this, we have also improved the method for
reducing redundancy. The main contributions of this paper are:

• Discretized QPSO algorithm to solve the combinatorial
TCP problem using asexual reproduction algorithm based
fix-up mechanism.

• Suggested a hybrid algorithm using advantages of particle
swarm and genetic algorithm, i.e., hybrid QPSO-GA.

• Included the Test Suite Reduction (TSR) method in the
TCP to remove redundant test cases.

• Verified algorithm’s robustness against testing goals like
code coverage, fault coverage and cost reduction.

• Compared proposed work against baseline approach:
Random search (RS) and different state-of-the-art algo-
rithms like ACO, Differential Evolution (DE), GA, PSO,
and adaptive PSO (APSO).

II. PSO AND QUANTUM-BEHAVED PSO
A. Particle Swarm Optimization (PSO)

PSO is influenced by the flocking, swarming and herding
behavior of agents called particles. The particles change their
flights using self and neighbor’s flying experience. Each
particle with its self-experience knows the location of food
known as personal best position (P ). At the same time,
the particle is aware of the swarms’ best found location,
i.e., global best position (G). This phenomena is imitated to
solve the real world problems. In other words, the swarm
consists of particles that move randomly in the search space
with velocity vi at location xi and change their positions
using the self experience, social and cognitive behavior [14].
Mathematically, the location and the velocity of each particle
i at gth generation are formulated as:

vg+1
i = wvi + c1r1 (P

g
i − xi
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here w is the inertia weight for controlling the effect of prior
velocity; c1 and c2 are the constants that controls the attraction
rates of these social and cognitive components; and r1 and r2
are the uniform random numbers between [0, 1].

B. Quantum Behaved PSO

PSO cannot guarantee the global convergence [12] so a
more robust version of PSO is developed called QPSO [9]. It
finds the path of the quantum-behaved particles by assuming
that the N particles with δ potential and specified energy
are well-centered in each dimension of n-dimensional Hilbert
search space. So, according to Monte Carlo method, jth

component of the particle’s position at gth generation:
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Where ug
ij is a uniform random value ranging from 0 to 1, θ

is contraction–expansion coefficient and agij is particle’s local
attractor. So particle’s position in the QPSO algorithm can be
obtained as:
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i = { agij − θ|Mbestgj − xg

ij | ln(1/u
g
ij) : r(0, 1) > 0.5
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(5)
The particles move around the local attractor agij in each
generation and it is formulated with the P and G best positions
as follows:

agij = ϕg
ijP

g
ij + (1− ϕt

ij)G
g
j , ϕg

ij ∼ (0, 1) (6)

Whereas, the position distribution of the particles for the next
generation is calculated with the mean Mbest of the P best
positions of the particles.

Mbestgj =
1

N

N∑
i

P g
ij (7)

So, the underlying difference between the PSO and QPSO
lies in two ways: 1) wide search space due to exponential
distribution of the particles. 2) the distance between the
particle and its companions are taken into account whereas,
in PSO the particles move freely to converge to global best.
Another advantage is it has only one parameter, i.e., θ that need
to be controlled for convergence and its value is decreased
linearly:

θ = (θmax − θmin) ∗ (nGen− g)/nGen+ θmin (8)

As it is easy to implement and has been implemented on
various applications [12]. Therefore, in this paper, we have
attempted to apply QPSO algorithm for discrete optimization
problem and compare its performance with the state-of-the-art
algorithms.

III. PROPOSED DISCRETIZED HYBRID QPSO-GA

This section describes the proposed hybrid QPSO-GA algo-
rithm with respect to TCP. It is done in three subsequent steps.
Firstly, it updates the population with the proposed asexual
reproduction operator (ARO). Secondly, Gaussian probability
is used to avoid premature convergence. Thirdly, the stagnation
issue is resolved with GA swap mutation operator and finally
the TSR approach is followed by the TCP algorithm for
reducing the redundancy as explained:

A. Population Update

One of the key issues in the successful application of any
nature-inspired algorithms is mapping the problem with the
algorithm, as it directly affects the performance and feasibility.
The PSO and QPSO algorithms were designed for continuous
problems. The original approach cannot be used directly for
a discrete combinatorial issue. Therefore, we have chosen
permutation encoding to represent the solution since proper
mapping improves the algorithm’s speed and efficacy. We
modified the real values to permutation sequences by using
the asexual reproduction algorithm [2].



Algorithm 1 describes the working of fix-up mechanism
where the current solution inherit the parent solution’s features
by creating a link between actual numbers and test case series.
It retains the offspring’s feasible values during development
of the bud from parent (larva). To put it another way, the
algorithm refreshes the results by replacing the duplicate and
out of bound particles with don’t care values (*). To produce
a proper solution, these infeasible values are substituted with
values from the prior solution. For instance, when x= [4, 6,
5, 2, 1, 3] is updated to y= [6.2, 7.4, 2.4, 5.7, 2.3, 1.1], y
is adjusted to [6, 7, 2, 5, 2, 1], yielding [6, *, 2, 5, *, 1].
The correct solution is developed by acquiring the remaining
particles (genetic characteristics) of new offspring from the
the prior solution (parent) as [6, 4, 2, 5, 3, 1].

Algorithm 1 Asexual Reproduction Fix-Up Mechanism
1: xp =xi(g)
2: for i = 1, 2, . . . , nPop do
3: xi(g + 1) = round(xi(g + 1))
4: if xi(g + 1) < 1 or xi(g + 1) > n then
5: xi(g + 1)=∗(don′t care)
6: end if
7: end for
8: yl=xi(g + 1)
9: ∆=setdiff(1 : length(yl), unique(yl))

10: xb=replace(xp,∆id,∆)
11: xi(g + 1)=xb

12: Return: xi(g + 1)

B. Gaussian Probability

The uniform random number u of (5) is replaced by Gu(x)
(9), i.e., with the absolute value of Gaussian distribution
N(0, 1) to avoid premature convergence.

Gu(x) =
2√
2π

e
−x2/2

, x ≥ 0 (9)

Therefore, (5) is updated as
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C. Diversity Enhancement

Though QPSO algorithm provides the wide search space to
the particles throughout the generations. However, the distance
between the particles distribution |Mbestgj−xg

ij | narrows down
in the final phase of search. It leads to loss of exploration and
stagnates the evolution process if the solution does not improve
for successive δ generations. It requires external interference
to progress further. So, GA’s swap mutation operator is used to
escape from the local optima problem. It allows the particles
to move away from the current point, hence, reduces the
interference and improves the global search. On the other
hand, it may create a fresh solution that differs from the prior
one. There’s a risk that it can overlook the best, high-quality
solution. As a result, in the proposed method, a decision

criterion about when to apply the mutation operator is made to
avoid this risk. The following condition is tested before each
generation begins:

g−10∑
i=g

gfit (i)− gfit (i− 1) ≤ δ (11)

Here δ is the threshold for finding the disturbance in the
solutions. In other words, it accelerates the search when
consecutive ten generations’ global fitness (gfit) values fall
in a small limit.

D. Test Suite Reduction (TSR)

Each iteration’s current best solution is executed for remov-
ing the faults/statements redundancy by selecting the initial m
test cases to reduce suite cost and size. This method has the
benefit of revealing how exactly the test cases are prioritised.
The greater the prioritising, the fewer test cases are required
to meet the complete coverage criterion. The pseudo-codes of
TSR and hybrid QPSO-GA are presented in Algorithms 2 and
3 .

Algorithm 2 Test Suite Reduction Algorithm
1: Define test fault matrix TFM, Prioritized test array PT and

Faults position array FP
2: Initialize reduced array of test cases indices RSInd[FP]=0
3: Index=find(TFM(1,FP)=1)
4: Fill the RSInd with the faults positions covered by the first

test case in PT
5: RSInd(Index)=1
6: Find other test cases needed for full coverage
7: for t = 1, 2, . . . , size(PT ) do
8: for f = 1, 2, . . . , size(FP ) do
9: if (TFM(PT(t),FP(f))=1 and RSInd(f)=0)) then

10: RSInd(f)=t
11: end if
12: end for
13: end for
14: Return: Minimized Test Suite=PT(RSInd)

IV. EXPERIMENTAL SETUP

This Section outlines an empirical study, including research
questions, datasets, evaluation metrics, and the algorithms with
which the proposed algorithm is compared. The formulated
research questions are:

RQ1. How the proposed algorithm performed for TCP?
The goal is to see whether the proposed algorithm outper-

formed other algorithms. It also determines which algorithm
obtains the best results and the impact of various testing
conditions on the algorithms’ performance.

RQ2. How the proposed algorithm performed for TSR?
The purpose is to compare the proposed algorithm’s per-

formance to that of the other algorithms. Additionally, to
determine which testing criteria optimise TSR. In addition,
to investigate how it affects the test suite’s coverage, fault
detection capacity and cost reduction.



Algorithm 3 QPSO-GA Algorithm
1: Define nPop, nGen, θmax, θmin and δ
2: Initialize random population xi

3: for g = 1, 2, . . . , nGen do
4: for i = 1, 2, . . . , nPop do
5: Calculate fitness f(xi)
6: Update Pi and G solutions
7: Update xi(g + 1) using (10)
8: Repair the solution using Algorithm 1
9: end for

10: if G does not improve for δ attempts then
11: Create new solution using swap mutation
12: xi(g + 1)=xi(g)+xµ

13: end if
14: Apply test suite reduction Algorithm 2
15: end for
16: Return: Final solution

A. Experimental design

The algorithms used for comparison purposes are RS, GA,
PSO, ACO, DE, APSO. These algorithms are implemented
in MATLAB R2017 installed on an Dell laptop having Intel
i5 processor, Windows 11, and 8GB RAM. The algorithms
are executed for 30 runs because of their stochastic behavior.
These are applied on several versions of jtopas, ant and jmeter
programs of software infrastructure repository (SIR) [15] (see
Table I).

TABLE I
SUBJECT PROGRAMS

Programs Versions KLOC Classes Methods Test
Cases

Type

ant 7 80.4 650 7524 878 JUnit
jtopas 4 5.4 50 748 209 JUnit
jmeter 5 43.4 389 3613 97 JUnit

Parameter settings play a major role in the performance of
the algorithms [16]. So, we carefully choose the parameters
from the literature followed by Taguchi method for appropriate
values (see Table II).

TABLE II
PARAMETER SETTINGS OF THE ALGORITHMS

Algorithms Parameters values
GA pcr = 0.8, pm = 0.1, tournament selection,

ordered crossover
PSO c1 = 1.5, c2 = 2, wmin = 0.4, wmax = 0.8
ACO α = 0.3, β = 0.9, init = 20, ρ = 0.2
DE pc = 0.6, F = 0.8
QPSO θmin = 0.4, θmax = 1
QPSO-GA θmin = 0.3, θmin = 1, δ = 10
Common Parameters nPop = 100, nGen = 1000

B. Performance Measures

The following performance measures are used to validate
the efficiency and efficacy of these algorithms:

1) Test Case Prioritization: To assess the robustness of
the proposed technique, the test cases are selected using
statement and fault coverage criteria. As a result, commonly
used fitness measurements and effectiveness measures are
defined as follows:

Average Percentage of Fault Detection (APFD) is a measure
of how well a system detects faults. It finds a weighted average
of the detected defects based on where they are in the test suite
[17]. It’s computed as follows:

APFD = 1−
∑m

i=1 TF (i)

n ∗m
+

1

2 ∗ n
(12)

The location of the test case that detects the ith fault is denoted
by TF (i), and the faults covered by n test cases is denoted
by m. It’s value lies in between 0 and 100, with greater being
better.

Average Percentage of Fault Detection with Cost (APFDc):
APFD is based on the assumption of consistent test case costs
and fault severity levels, which is rarely the case. As a result,
a cost-conscious measure, APFDc, has been developed [18],
which incorporates various costs and fault severity levels in
APFD and is written as:

APFDc = 1−

∑m
i=1 fs (i) ∗

(∑n
j=TF (i) cost (j)−

1
2cost (TF (i))

)
∑n

i=1 cost (i) ∗
∑m

i fs (i)
(13)

cost (TF (i)) is the cost of the test case that discovers the
ith fault first having fault severity of fs(i) and cost(j) is test
execution cost of jth test case. The Average Percentage of
Statement Coverage (APSC) and APSC with cost (APSCc)
are calculated in the same way as the APFD and APFDc.

2) Test Suite Reduction: Test suite reduction percentage and
cost reduction percentage are two regularly utilised effective-
ness indicators. The test suite reduction, which comes after the
TCP, decreases suite size by employing 100% statement/fault
coverage.

Test Reduction Percentage (TRP): It’s the percentage reduc-
tion in the size of the test suite.

TRP =
n− s

n
∗ 100 (14)

Here s indicates the test cases selected from n test cases.
Coverage Loss Percentage (CLP): It’s the proportion of

statements left undetected slu by reduced test suite to total
statements covered tsc.

CLP =
slu

tsc
∗ 100 (15)

Fault Detection Capability Loss Percentage (FLP): Ratio
of faults not covered by reduced test suite nfl to total faults
covered tfc:

FLP =
nfl

tfc
∗ 100 (16)

Cost Reduction Percentage (CRP): This is the percentage
of the test suite’s cost that is reduced rcost when compared
to the original suite’s cost tcost.

CRP =
rcost

tcost
∗ 100 (17)



V. RESULTS AND ANALYSIS

The proposed algorithms are empirically evaluated using
various fitness functions. The impact of TSR on fault/statement
coverage loss and reduction in cost is also investigated. Cu-
mulative average of all the versions of a program is used to
calculate its experimental outcomes. The mean of 30 runs is
used to calculate the performance metrics for each version. The
performance of the algorithms is statistically compared using
a one-way ANOVA test having a p-value of 0.05. The null
hypothesis is rejected if the p-value is less than 0.05, indicating
that the algorithms’ means are different. It is followed by a
Tukey simultaneous test to assess the pairwise comparison
of the algorithms. Furthermore, boxplots and interval plots
for fitness measurements and test reduction percentages are
demonstrated.

A. Performance analysis of TCP (RQ 1)

Table III shows the mean fitness values of the performance
metrics, as well as their corresponding Tukey group ranks,
for all the programs. Observations show that all the nature-
inspired algorithms are statistically different from RS, with
a p-value less than 0.05, for all testing criteria. Moreover,
it suggests that there is an insignificant difference between
means of 1) RS and ACO 2) GA and PSO 3) DE and GA
in most of the cases. APSO is significantly better than DE
for APSCc and one out of three programs for other criteria.
There is insignificant difference between QPSO and APSO
for statement coverage criteria. On the other hand, QPSO-GA
is better than QPSO except APSCc, however it has higher
mean values, which makes QPSO-GA superior to all other
algorithms.

The box plots, as illustrated in Figure 1, graphically display
the fitness values’ distribution. It shows that the proposed
QPSO-GA algorithm possesses the high-quality solutions
comparatively. It is also discovered that variance for fault
coverage is more than statement coverage because of faults’
spread throughout software. In other words, most test cases
cover almost same statements, resulting into squeezed boxplots
compared to fault coverage. On the other side, the variance in
fault coverage with cost is the biggest. It may be claimed that,
apart from the vast fault distribution, these variances are due
to the varied execution costs that result in different test case
ordering. Therefore, test case execution cost is also important
criterion. Because if two test cases cover the same amount of
faults but have different costs, the algorithm will prioritise the
test case with the lowest cost above the other.

B. Performance analysis of TSR (RQ 2)

Table IV shows the average test reduction percentages of all
algorithms, as well as their Tukey group ranks, for all the pro-
grams. Observations suggest that though the mean values of all
the algorithms are different however most pairs are statistically
insignificant like 1) RS and ACO, 2) GA and PSO 3) GA and
DE 4) DE and APSO. QPSO and QPSO-GA performed similar
in case of fault coverage criteria while QPSO-GA is superior
to QPSO for statement criteria. It depicts that ACO and DE
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Fig. 1. Boxplots of algorithms for TCP of different testing criteria

have less significant suite size compared to APSO, QPSO, and
QPSO-GA algorithms showing the inefficiency of the ACO
and DE compared to the PSO variants. Overall, the proposed
algorithm QPSO-GA works better than all the algorithms in
each case.

Interval plots are used to depict the distribution of test
reduction percentages (see Figure 2). For all of the testing
criteria, the proposed algorithms QPSO and QPSO-GA outper-
formed RS, GA, PSO, ACO, and DE algorithms. As observed
from Table IV and Figure 2, TSR is larger fir statement
coverage than fault coverage. It is because of many redundant
statements compared to faults that spread over the program.
TSR also observes underlying difference in the TCP methods’
performances, i.e., if the algorithm correctly prioritizes the
test cases. Alternatively, it might be due to chance effect or
program characteristics if an algorithm performs well for TCP
but can not decrease the test suite for 100 percent coverage
requirements.

Table V shows that QPSO-GA has least loss in the coverage
as compared to other algorithms for all the testing criteria.
However, PSO has least coverage loss for APFD and APFDc
of jmeter comparatively. Observations also depict that the



TABLE III
FITNESS COMPARISON OF ALGORITHMS FOR TCP

Programs Algorithms Fitness values and Tukey Group Ranking (%)
APFD TR APFDc TR APSC TR APSCc TR

jtopas

RS 88.132 F 87.176 E 95.816 E 94.908 E
ACO 89.480 E 91.066 D 97.687 D 95.174 D
PSO 90.236 D 91.274 CD 98.046 BC 96.601 C
GA 91.204 D 92.664 BC 97.417 C 95.759 D
DE 92.217 C 92.672 B 98.168 BC 96.365 C
APSO 93.104 C 93.787 B 98.383 B 97.125 B
QPSO 95.217 B 95.059 A 98.401 B 96.999 B
QPSO-GA 96.535 A 95.754 A 98.904 A 97.778 A

ant

RS 85.684 G 84.800 E 95.274 E 94.884 D
ACO 88.226 F 87.724 D 95.871 E 94.755 D
PSO 88.627 EF 90.264 C 96.535 CD 95.606 C
GA 88.934 DE 90.863 C 96.621 CD 95.404 C
DE 90.377 CD 90.786 C 96.294 D 95.306 C
APSO 91.789 BC 92.333 B 96.988 BC 95.972 B
QPSO 92.365 B 93.332 AB 96.799 B 95.884 B
QPSO-GA 94.429 A 94.081 A 97.830 A 97.080 A

jmeter

RS 86.895 F 87.168 E 96.594 F 97.007 E
ACO 88.334 E 89.081 D 98.166 E 97.789 E
PSO 88.689 E 90.677 C 98.711 BCD 98.391 BC
GA 90.256 D 92.846 BC 98.438 D 98.084 DE
DE 91.573 C 93.999 B 98.651 CD 98.229 CD
APSO 91.563 C 93.841 B 98.818 BC 98.593 B
QPSO 94.023 B 96.509 A 98.888 B 98.511 B
QPSO-GA 95.407 A 97.155 A 99.471 A 99.138 A

TABLE IV
ALGORITHMS’ COMPARISONS FOR TSR

Programs Algorithms Fitness functions wise TSP and Tukey Group Ranking (%)
TSPAPFD TR TSPAPFDc TR TSPAPSC TR TSPAPSCc TR

jtopas

RS 81.917 E 81.867 D 81.150 D 82.017 E
ACO 83.008 DE 83.433 C 83.883 CD 82.742 E
PSO 84.317 CD 84.300 C 86.575 BC 85.942 CD
GA 84.633 C 84.850 BC 84.800 BC 83.825 DE
DE 84.467 CD 84.308 C 84.892 BC 84.225 CDE
APSO 86.167 B 86.100 B 86.958 B 86.858 BC
QPSO 85.558 B 86.950 A 87.375 B 87.858 B
QPSO-GA 87.200 A 87.167 A 89.142 A 88.867 A

ant

RS 74.200 D 73.790 D 75.705 D 76.090 D
ACO 76.705 CD 75.852 D 78.043 CD 77.000 CD
PSO 76.919 CD 77.271 C 80.067 BC 79.124 BC
GA 78.067 B 77.857 C 79.995 BC 78.943 BC
DE 80.019 B 79.129 B 81.095 BC 80.019 B
APSO 80.205 B 80.043 B 81.443 B 81.267 B
QPSO 81.038 A 80.881 B 81.919 B 81.086 B
QPSO-GA 81.352 A 81.224 A 83.719 A 83.524 A

jmeter

RS 77.883 D 78.100 E 88.250 D 87.933 D
ACO 78.967 CD 79.267 D 88.923 D 88.707 D
PSO 78.930 CD 80.523 CD 91.083 B 90.740 C
GA 79.820 BCD 80.203 CD 89.947 C 89.600 C
DE 82.093 B 82.380 B 91.733 B 91.060 B
APSO 80.917 B 81.730 C 91.580 B 90.967 B
QPSO 83.467 A 83.957 A 91.833 B 91.590 B
QPSO-GA 83.423 A 83.983 A 92.517 A 92.047 A



TABLE V
CLP, FLP AND CRP OF THE ALGORITHMS FOR TSR

Program Algorithms
CLP, FLP and CRP of TSR

CLPAPFD CLPAPFDc FLPAPSC FLPAPSCc CRPAPFD CRPAPFDc CRPAPSC CRPAPSCc

jtopas

RS 11.55 12.27 28.36 26.94 83.66 83.91 86.95 86.11
ACO 9.90 10.11 25.38 23.35 84.65 85.41 84.85 87.29
PSO 11.00 9.85 23.69 23.18 82.83 82.94 84.05 83.38
GA 12.33 14.33 23.35 20.83 81.59 81.64 82.02 82.16
DE 12.57 13.52 25.74 25.70 84.06 84.38 86.31 84.17
APSO 10.28 10.50 30.47 30.20 84.63 85.04 87.95 86.93
QPSO 8.96 9.58 29.91 29.58 85.01 85.68 88.57 87.19
QPSO-GA 7.15 7.32 28.56 27.50 88.28 87.50 89.01 88.57

ant

RS 7.01 7.14 18.22 17.59 75.88 76.86 79.98 78.90
ACO 6.33 6.43 18.71 16.37 77.56 77.67 79.79 80.96
PSO 5.79 5.83 16.62 15.24 75.59 75.13 77.82 76.99
GA 6.63 6.67 16.17 16.65 73.42 73.07 75.80 75.71
DE 6.99 6.95 19.13 17.44 76.95 77.42 79.80 78.30
APSO 6.38 6.13 19.79 19.27 77.46 77.79 81.09 79.87
QPSO 5.56 5.89 20.34 19.34 78.56 78.44 81.67 80.23
QPSO-GA 4.75 5.33 19.36 18.83 80.98 79.90 82.06 81.58

jmeter

RS 4.05 4.25 30.57 29.95 79.61 80.42 90.74 90.48
ACO 4.16 4.13 26.37 24.32 80.77 80.80 89.54 91.27
PSO 3.87 3.82 27.11 25.36 78.72 78.77 88.54 88.27
GA 4.17 4.24 27.01 26.84 78.35 77.76 88.17 87.18
DE 4.15 4.53 28.16 27.37 80.11 79.75 90.49 88.99
APSO 3.83 4.23 30.70 30.60 80.75 81.38 91.39 90.80
QPSO 3.95 3.87 29.50 28.56 81.28 81.37 91.67 90.50
QPSO-GA 4.29 3.43 27.92 27.50 81.91 81.44 91.97 91.91

FLP of APSC and APSCc is comparatively higher to CLP
of APFD and APFDc. The reason for this is larger test suite
redundancy in statement coverage, therefore, reduction of test
suite according to fault coverage, may lead to less coverage
loss. The RS and ACO algorithms have higher fault coverage
loss than other algorithms. It may be deduced that the loss
of coverage and the reduction in test suite size are inversely
proportionate. Another thing to keep in mind, if we lower
the test suite size based on one criterion, we may lose a
proportion of other metrics. It might happen as a result of
the significant reduction in the size of the test suite. Table V
clearly shows that the CRP of QPSO-GA and QPSO is larger
than the other algorithms. It is also observed that the cost
reduction is proportionate to the TSR, i.e., larger the decrease
in size of suite, lower will be the test cost.
Overall, QPSO and QPSO-GA surpass the ACO, GA, DE
and PSO for convergence speed, robustness, and quality of
final solutions. Though quality of solutions of QPSO-GA is
better than QPSO, but the only disadvantage of QPSO-GA
is that it requires one more parameter to fine-tune, i.e., δ.
It can be adjusted by adaptive/dynamic parameter settings.
However, at the expense of one extra-parameter, QPSO-GA
have demonstrated superior search capabilities to solve the
TCP and TSR in all the three subject programs.

VI. CONCLUSIONS

We suggested the discretized QPSO algorithms for test
case prioritization and reduction, and compared them to
current nature-inspired methods. Empirical results show that
the suggested algorithms outperformed these algorithms for
all performance criteria. The QPSO-GA’s advantage for TCP
was validated by a statistical test. Furthermore, the proposed

algorithms’ usefulness was shown using boxplots and interval
plots. In TSR, the QPSO-GA and QPSO performed similarly
for fault coverage. The suggested algorithms, on the other
hand, performed better than the APSO in terms of statement
coverage and cost reduction % when it came to decreasing
the test suite. The proposal of a test case selection approach
that picks a reasonable amount of test cases without sacrificing
software quality is one of our future work. We also plan to
investigate alternative variants of QPSO to validate on more
real-world applications for generalization.
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