
Intelligent Systems: Architectures and
Perspectives

Ajith Abraham
Faculty of Information Technology, School of Business Systems
Monash University (Clayton Campus), Victoria 3168, Australia
Email: ajith.abraham@ieee.org, URL: http://ajith.softcomputing.net

Abstract: The integration of different learning and adaptation techniques to
overcome individual limitations and to achieve synergetic effects through the
hybridization or fusion of these techniques has, in recent years, contributed to a
large number of new intelligent system designs. Computational intelligence is an
innovative framework for constructing intelligent hybrid architectures involving
Neural Networks (NN), Fuzzy Inference Systems (FIS), Probabilistic Reasoning
(PR) and derivative free optimization techniques such as Evolutionary
Computation (EC). Most of these hybridization approaches, however, follow an ad
hoc design methodology, justified by success in certain application domains. Due
to the lack of a common framework it often remains difficult to compare the
various hybrid systems conceptually and to evaluate their performance
comparatively. This chapter introduces the different generic architectures for
integrating intelligent systems. The designing aspects and perspectives of different
hybrid archirectures like NN-FIS, EC-FIS, EC-NN, FIS-PR and NN-FIS-EC
systems are presented. Some conclusions are also provided towards the end.

Keywords: computational intelligence, hybrid systems, neural network, fuzzy
system, evolutionary computation

1. Introduction

In recent years, several adaptive hybrid soft computing [108] frameworks have
been developed for model expertise, decision support, image and video
segmentation techniques, process control, mechatronics, robotics and complicated
automation tasks. Many of these approaches use a combination of different
knowledge representation schemes, decision making models and learning
strategies to solve a computational task. This integration aims at overcoming the
limitations of individual techniques through hybridization or the fusion of various

techniques. These ideas have led to the emergence of several different kinds of
intelligent system architectures [14][51-53][58][66][69][92].

It is well known that intelligent systems, which can provide human-like expertise
such as domain knowledge, uncertain reasoning, and adaptation to a noisy and
time-varying environment, are important in tackling practical computing
problems. In contrast with conventional artificial intelligence techniques which
only deal with precision, certainty and rigor, the guiding principle of soft
computing is to exploit the tolerance for imprecision, uncertainty, low solution
cost, robustness, partial truth to achieve tractability, and better rapport with reality
[108]. In general hybrid soft computing consists of 4 essential paradigms: NN,
FIS, EC and PR. Nevertheless, developing intelligent systems by hybridization is
an open-ended rather than a conservative concept. That is, it is evolving those
relevant techniques together with the important advances in other new computing
methods [35][96]. Table 1 lists the three principal ingredients together with their
advantages [12][42].

Table 1. Comparison of different intelligent systems with classical approaches†.

 FIS NN EC Symbolic
AI

Mathematical model SG B B SB
Learning ability B G SG B
Knowledge representation G B SB G
Expert knowledge G B B G
Nonlinearity G G G SB
Optimization ability B SG G B
Fault tolerance G G G B
Uncertainty tolerance G G G B
Real time operation G SG SB B

†Fuzzy terms used for grading are good (G), slightly good (SG), slightly bad (SB)
and bad (B).

To achieve a highly intelligent system, a synthesis of various techniques is
required. Figure 1 shows the synthesis of NN, FIS and EC and their mutual
interactions leading to different architectures. Each technique plays a very
important role in the development of different hybrid soft computing architectures.
Experience has shown that it is crucial, in the design of hybrid systems, to focus
primarily on the integration and interaction of different techniques rather than to
merge different methods to create ever-new techniques. Techniques already well
understood should be applied to solve specific domain problems within the
system. Their weaknesses must be addressed by combining them with
complementary methods.

Neural networks offer a highly structured architecture with learning and
generalization capabilities, which attempts to mimic the neurological mechanisms

of the brain. NN stores knowledge in a distributive manner within its weights
which have been determined by learning from known samples. The generalization
ability of new inputs is then based on the inherent algebraic structure of the NN.
However it is very hard to incorporate human a priori knowledge into a NN
mainly because the connectionist paradigm gains most of its strength from a
distributed knowledge representation.

ANN - FIS - EC

FIS

NN

EC

NN - FIS NN - EC

FIS - EC

Figure 1. General framework for hybrid soft computing architectures

By contrast, fuzzy inference systems [106-107] exhibit complementary
characteristics, offering a very powerful framework for approximate reasoning
which attempts to model the human reasoning process at a cognitive level [61].
FIS acquires knowledge from domain experts which is encoded within the
algorithm in terms of the set of if-then rules. FIS employ this rule-based approach
and interpolative reasoning to respond to new inputs [30]. The incorporation and
interpretation of knowledge is straightforward, whereas learning and adaptation
constitute major problems.

Probabilistic reasoning such as Bayesian belief networks [20] and the Dempster-
Shafer theory of belief [36] [86], gives us a mechanism for evaluating the outcome
of systems affected by randomness or other types of probabilistic uncertainty. An
important advantage of probabilistic reasoning is its ability to update previous
outcome estimates by conditioning them with newly available evidence [57].

Global optimization involves finding the absolutely best set of parameters to
optimize an objective function. In general, it may be possible to have solutions
that are locally but not globally optimal. Consequently, global optimization
problems are typically quite difficult to solve exactly: in the context of
combinatorial problems, they are often NP-hard. Evolutionary Computation works
by simulating evolution on a computer by iterative generation and alteration
processes operating on a set of candidate solutions that form a population. The

entire population evolves towards better candidate solutions via the selection
operation and genetic operators such as crossover and mutation. The selection
operator decides which candidate solutions move on into the next generation and
thus limits the search space [40].

Section 2 presents the various techniques to forumlate hybrid intelligent
architectures followed by optimization of neural network using evolutionary
computation and local search techniques in Section 3. Adaptation issues of fuzzy
inference systems are discussed in Section 4 followed by evolutionary fuzzy
systems and cooperative neuro-fuzzy systems in Section 5 and 6 respectively.
Integrated neuro-fuzzy systems are presented in Section 7. In Section 8, a
framework for an integrated neuro-fuzzy-evolutionary system is presented.
Optimization of evolutionary algorithms using soft computing techniques is
presented in Section 9 and finally interactions between soft computing technology
and probabilistic reasoning techniques are given in Section 10. Some conclusions
are also presented.

2. Models Of Hybrid Soft Computing Architectures

We broadly classify the various hybrid intelligent architectures into 4 different
categories based on the system’s overall architecture: (1) Stand-alone (2)
Transformational (3) Hierarchical hybrid and (4) Integrated hybrid. The following
sections discuss each of these strategies, the expected uses of the model and some
benefits and limitations of the approach.

2.1 Stand Alone Intelligent System
Stand-alone models consist of independent software components which do not
interact in any way. Developing stand-alone systems can have several purposes:
first, they provide a direct means of comparing the problem solving capabilities of
different techniques with reference to a certain application [13]. Running different
techniques in a parallel environment permits a loose approximation of integration.
Stand-alone models are often used to develop a quick initial prototype, while a
more time-consuming application is developed. Figure 2 displays a stand-alone
system where a neural network and a fuzzy system are used separately.

Neural network Fuzzy system

Figure 2. Stand–alone system

Some of the benefits are simplicity and ease of development by using
commercially available software packages . On the other hand, stand-alone

techniques are not transferable: neither can support the weakness of the other
technique.

2.2 Transformational Hybrid Intelligent System
In a transformational hybrid model, the system begins as one type and ends up as
the other. Determining which technique is used for development and which is used
for delivery is based on the desirable features that the technique offers. Figure 3
shows the interaction between a neural network and an expert system in a
transformational hybrid model [69]. Obviously, either the expert system is
incapable of adequately solving the problem, or the speed, adaptability, and
robustness of neural network is required. Knowledge from the expert system is
used to determine the initial conditions and the training set for the artificial neural
network.

Neural network Expert system

Figure 3. Transformational hybrid architecture

Transformational hybrid models are often quick to develop and ultimately require
maintenance on only one system. They can be developed to suit the environment
and offer many operational benefits. Unfortunately, transformational models are
significantly limited: most are just application-oriented. For a different
application, a totally new development effort might be required such as a fully
automated means of transforming an expert system to a neural network and vice
versa.

Neural network

Fuzzy system

Evolutionary
algorithm

Figure 4. Hierarchical hybrid architectures

2.3 Hierarchical Hybrid Intelligent System
This architecture is built in a hierarchical fashion, associating a different
functionality with each layer. The overall functioning of the model depends on the
correct functioning of all the layers. Figure 4 demonstrates a hierarchical hybrid

architecture involving a neural network, an evolutionary algorithm and a fuzzy
system. The neural network uses an evolutionary algorithm to optimize its
performance and the network output acts as a pre-processor to a fuzzy system,
which then produces the final output. Poor performance in one of the layers
directly affects the final output.

2.4 Integrated Intelligent System
Fused architectures are the first true form of integrated intelligent systems. They
include systems which combine different techniques into one single computational
model. They share data structures and knowledge representations. Another
approach is to put the various techniques side-by-side and focus on their
interaction in a problem-solving task. This method can allow for integrating
alternative techniques and exploiting their mutuality. Furthermore, the conceptual
view of the agent allows one to abstract from the individual techniques and focus
on the global system behavior, as well as to study the individual contribution of
each component [51].

The benefits of integrated models include robustness, improved performance and
increased problem-solving capabilities. Finally, fully integrated models can
provide a full range of capabilities such as adaptation, generalization, noise
tolerance and justification. Fused systems have limitations caused by the increased
complexity of the inter-module interactions and specifying, designing, and
building fully integrated models is complex. In this chapter, discussions is limited
to different integrated intelligent systems involving neural networks, fuzzy
inference systems, evolutionary algorithms and probabilistic reasoning techniques.

3. Neural Networks and Evolutionary Algorithms

Even though artificial neural networks are capable of performing a wide variety of
tasks, in practice, they sometimes deliver only marginal performance.
Inappropriate topology selection and learning algorithms are frequently blamed.
There is little reason to expect to find a uniformly best algorithm for selecting the
weights in a feedforward artificial neural network [97]. It is an NP-complete
problem to find a set of weights for a given neural network and a set of training
examples to classify even two-thirds of them correctly. In general, claims in the
literature on training algorithms that one being proposed is substantially better
than most others should be treated with scepticism. Such claims are often
defended through simulations based on applications in which the proposed
algorithm performed better than some familiar alternative.

The artificial neural network (ANN) methodology enables the design of useful
nonlinear systems accepting large numbers of inputs, with the design based solely
on instances of input-output relationships. For a training set T, consisting of n
argument value pairs, and given a d-dimensional argument x, an associated target
value t will be approximated by the neural network output. The function
approximation could be represented as:

}n:1i),it,ix{(T == (1)

In most applications, the training set T is considered to be noisy and while the goal
is not to reproduce it exactly the intention is to construct a network function that
generalizes well to new function values. An attempt will be made to address the
problem of selecting the weights to learn the training set. The notion of closeness
on the training set T is typically formalized through an error function of the form:

2

1
∑
=

−=
n

i
iiT tyψ (2)

where yi is the network output. A long recognized bane of analysis of the error
surface and the performance of training algorithms is the presence of multiple
stationary points, including multiple minima. Empirical results with practical
problems and training algorithms show that different initialization yields different
networks [5][9]. Hence the issue of many minima is a real one. According to Auer
et al [17], a single node network with n training pairs and Rd inputs, could end up

having d

d
n)(local minima. Hence, not only do multiple minima exist, but also,

there may be huge numbers of them.

Different learning algorithms have staunch proponents who can always construct
instances in which their algorithm performs better than most others. In practice,
optimization algorithms that are used to minimize ΨT (w) can be classified into
four categories. The first three methods, gradient descent, conjugate gradients and
quasi-Newton, are general optimization methods whose operation can be
understood in the context of minimization of a quadratic error function
[25][38[73]. Although the error surface is not quadratic, for differentiable node
functions, it will be in a sufficiently small neighborhood of a local minimum. Such
an analysis provides information about the behavior of the training algorithm over
the span of a few iterations and also as it approaches its goal. The fourth method,
that of Levenberg and Marquardt [31], is specifically adapted to minimization of
an error function that arises from a squared error criterion of the form assumed.
Backpropagation calculation of the gradient can be adapted easily to provide the
information about the Jacobian matrix J needed for this method. A common
feature of these training algorithms is the requirement of repeated efficient
calculation of gradients [56].

Many of the conventional ANNs now being designed are statistically quite
accurate but still leave a bad taste with users who expect computers to solve their
problems accurately. The important drawback is that the designer has to specify
the number of neurons, their distribution over several layers and the
interconnection between them. Several methods have been proposed to
automatically construct ANNs for reduction in network complexity that is to
determine the appropriate number of hidden units, layers and learning rules [82].
Topological optimization algorithms such as Extentron [18], Upstart [41], Tiling

[70], Pruning [88] and Cascade Correlation [37] have their own limitations
[5][104].

Evolutionary design of neural networks eliminates the tedious trial and error work
of manually finding an optimal network [5][15][19][39][94-95][103]. The
advantage of automatic design over manual design becomes clearer as the
complexity of ANN increases. Evolutionary Artificial Neural Networks (EANN)
provide a general framework for investigating various aspects of simulated
evolution and learning. In EANN's, evolution can be introduced at various levels.
At the lowest, it can be introduced into weight training, where ANN weights are
evolved. At the next level, it can be introduced into neural network architecture
adaptation, where the architecture (number of hidden layers, the number of hidden
neurons and node transfer functions) is evolved. At the highest level, it can be
introduced into the learning mechanism.

3.1 Meta Learning Evolutionary Artificial Neural Networks

One major problem with evolutionary algorithms is their inefficiency in fine
tuning local search, although they are good at global searches [7]. The efficiency
of evolutionary training can be improved significantly by incorporating a local
search procedure into the evolution. Evolutionary algorithms are used first to
locate a good region in the space and then a local search procedure is used to find
a near optimal solution in this region. It is interesting to think of finding good
initial weights as locating a good region in the space. Defining that the basin of
attraction of a local minimum is composed of all the points, sets of weights in this
case, which can converge to the local minimum through a local search algorithm,
then a global minimum can easily be found by the local search algorithm if the
evolutionary algorithm can locate any point, that is, a set of initial weights, in the
basin of attraction of the global minimum. In Figure 5, G1 and G2 could be
considered to be the initial weights as located by the evolutionary search, and WA
and WB the corresponding final weights fine-tuned by the meta-learning technique.

Figure 6 illustrates the architecture of the Meta Learning Evolutionary Artificial
Neural Network (MLEANN) and the general interaction mechanism with the
learning mechanism evolving at the highest level on the slowest time scale [5]. All
the randomly generated architectures of the initial population are trained by
different learning algorithms (backpropagation - BP, scaled conjugate gradient -
SCG, quasi-Newton algorithm - QNA and Levenberg Marquardt - LM) and
evolved in a parallel environment. Parameters controlling the performance of the
learning algorithm will be adapted (for example, the learning rate and the
momentum for BP) according to the problem. The Architecture of the
chromosome is presented in Figure 7. Figure 8 depicts the MLEANN algorithm.

G1

G2

Tr
ai

ni
ng

 e
rro

r

WG2WG1

A
B

WA WB

Figure 5. Fine tuning of weights using meta-learning

Backpropagation Scaled Conjugate
Gradient Quasi- Newton Levenberg

Marquardt

Evolutionary search of learning algorithms and its parameters

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

Figure 6. Interaction of various evolutionary search mechanisms

From the point of view of engineering, the decision about the level of evolution
depends on what kind of prior knowledge is available. If there is more prior
knowledge about EANN's architectures than that about their learning rules or a
particular class of architectures is pursued, it is better to implement the evolution
of architectures at the highest level because such knowledge can be used to reduce
the search space and the lower levels of evolution of learning algorithms can be
more biased towards this kind of architecture. On the other hand, the evolution of
learning algorithms should be at the highest level if there is more prior knowledge
available or a special interest in certain types of learning algorithm. Connection
weights may be represented as binary strings represented by a certain length. The
whole network is encoded by concatenation of all the connection weights of the
network in the chromosome. A heuristic concerning the order of the concatenation
is to put connection weights of the same node together.

Evolutionary architecture adaptation can be achieved by constructive [18][41] and
destructive [88] algorithms. The former, which add complexity to the network
starting from a very simple architecture until the entire network is able to learn the
task. The latter start with large architectures and remove nodes and
interconnections until the ANN is no longer able to perform its task. Then the last
removal is undone. Direct encoding of the architecture makes the mapping simple
but often suffers problems like scalability and implementation of crossover
operators. For an optimal network, the required node transfer function (such as
Gaussian, sigmoidal) could be formulated as a global search problem, which is
evolved simultaneously with the search for architectures. For the neural network
to be fully optimal, the learning algorithms have to be adapted dynamically
according to the architecture and the given problem. Deciding the learning rate
and momentum can be considered as the first attempt at adaptation of the local
search technique (learning algorithm). The best learning algorithm will again be
decided by the evolutionary search mechanism. Genotypes of the learning
parameters of the different learning algorithms can be encoded as real-valued
coefficients [15].

In Figure 7, for every learning algorithm parameter (LR2), there is the evolution of
architectures (AR1, AR2…..AR7….) that proceeds on a faster time scale in an
environment decided by the learning algorithm. For each architecture (AR3), the
evolution of connection weights (WT1, WT2…..WT5….) proceeds at a faster time
scale in an environment decided by the problem, the learning algorithm and the
architecture.

LR1 LR2 LR3 LR4 LR8LR6 LR7 LR9LR5

AR1 AR2 AR3 AR4 AR6 AR7AR5

WT1 WT2 WT3

parameters of learning
 algorithm

neural network
 architectures

initial weights

WT4 WT5

Figure 7. MLEANN chromosome architecture

The MLEANN approach has been applied for modelling three benchmark chaotic
time series and the empirical results on test data sets clearly demonstrate the
importance and efficacy of the meta learning approach for designing evolutionary
neural networks [5][7]. Test results also demonstrate that MLEANN could
outperform a Takagi-Sugeno [90] and Mamdani [68] fuzzy inference system
which is learned using neural network learning methods.

1. Set t=0 and randomly generate an initial population of neural
networks with architectures, node transfer functions and connection
weights assigned at random.

2. In a parallel mode, evaluate fitness of each ANN using
BP/SCG/QNA and LM

3. Based on fitness value, select parents for reproduction
4. Apply mutation to the parents and produce offspring (s) for next

generation. Refill the population back to the defined size.
5. Repeat step 2
6. STOP when the required solution is found or number of iterations

has reached the required limit.

Figure 8. MLEANN algorithm

The MLEANN approach was compared with the Cutting Angle Method (CAM)
which is a deterministic global optimization technique [21]. This technique is
based on theoretical results in abstract convexity [16]. It systematically explores
the whole domain by calculating the values of the objective function f(x) at certain
points which are selected in such a way that the algorithm does not return to
unpromising regions where function values are high. The new point is chosen
where the objective function can potentially take the lowest value. The function is
assumed to be Lipschitz, and the value of the potential minima is calculated based
on both the distance to the neighbouring points and the function values at these
points. This process can be seen as constructing the piecewise linear lower
approximation of the objective function f(x). With the addition of new points, the
approximation hk(x) becomes closer to the objective function, and the global
minimum of the approximating function x* converges to the global minimum of
the objective function. The lower approximation, the auxiliary function hk(x), is
called the saw-tooth cover of f. The MLEANN approach performed marginally
better in terms of the lowest error on test sets. However CAM performed much
faster when compared to the population-based MLEANN approach.

Selection of the architecture of a network (the number of layers, hidden neurons,
activation functions and connection weights) and the correct learning algorithm is
a tedious task for designing an optimal artificial neural network. Moreover, for
critical applications and hardware implementations optimal design often becomes
a necessity. Empirical results are promising and similar approach could be used
for optimizing recurrent neural networks and other connectionist models. For the
evolutionary search of architectures, it will be interesting to model as co-evolving
[34] sub-networks instead of evolving the whole network. Further, it will be
worthwhile to explore the whole population information of the final generation for
deciding the best solution [103]. A fixed chromosome structure (direct encoding

technique) was used to represent the connection weights, architecture, learning
algorithms and its parameters. As the size of the network increases, the
chromosome size grows. Moreover, implementation of crossover operator is often
difficult due to production of non-functional offsprings. Parameterized encoding
overcomes the problems with direct encoding but the search of architectures is
restricted to layers. In the grammatical encoding a re-written grammar is encoded.
The success will depend on the coding of grammar (rules). Cellular configuration
might be helpful to explore the architecture of neural networks more efficiently.
Gutierrez et al [45] has shown that their cellular automata technique performed
better than direct coding.

Fuzzy Inference System

membership functions

if-then rules

Knowledge base

Process
+

-

Adaptation of fuzzy
inference system

Performance
measure

fuzzy operators

Figure 9. Architecture of adaptive fuzzy inference systems

4. Adaptation of Fuzzy Inference Systems

A conventional fuzzy controller makes use of a model of the expert who is in a
position to specify the most important properties of the process. Expert knowledge
is often the main source for designing Fuzzy Inference Systems (FIS) [81]. Figure
9 shows the architecture of the fuzzy inference system controlling a process.
According to the performance measure of the problem environment, the
membership functions, the knowledge base and the inference mechanism are to be
adapted. Several research works continue to explore the adaptation of fuzzy
inference systems [32][49][66-67][84][99]. These include the adaptation of
membership functions, rule bases and the aggregation operators. They include but
are not limited to:

• The self-organizing process controller by Procyk et al [83] which considered
the issue of rule generation and adaptation.

• The gradient descent and its variants which have been applied to fine-tune
the parameters of the input and output membership functions [100].

• Pruning the quantity and adapting the shape of input/output membership
functions [101].

• Tools to identify the structure of fuzzy models [89].
• Fuzzy discretization and clustering techniques [105].
• In most cases the inference of the fuzzy rules is carried out using the 'min'

and 'max' operators for fuzzy intersection and union. If the T-norm and T-
conorm operators are parameterized then the gradient descent technique
could be used in a supervised learning environment to fine-tune the fuzzy
operators.

The antecedent of the fuzzy rule defines a local fuzzy region, while the consequent
describes the behavior within the region via various constituents. The consequent
constituent can be a membership function (Mamdani model) [68] or a linear
equation (first order Takagi-Sugeno model) [90]. An easiest way to formulate the
initial rule base is the grid partition method, as shown in Figure 10 where the input
space is divided into multi-dimensional partitions and then assign actions to each
of the partitions. The consequent parts of the rule represent the actions associated
with each partition. It is evident that the MFs and the number of rules are tightly
related to the partitioning and it encounters problems when we have a moderately
large number of input variables (curse of dimensionality). Tree and scatter
partition relieves the problem of exponential increase in the number of rules but
orthogonality is often a major problem associated with these partitioning
techniques [54].

Figure 10. Grid partition: A simple if-then rule will appear as “If input-1 is
medium and input 2 is large then rule R8 is fired”.

5. Evolutionary Fuzzy Systems

Adaptation of fuzzy inference systems using evolutionary computation techniques
has been widely explored [11][32][76][79][85]. The evolutionary search of
membership functions, rule base, fuzzy operators progress on different time scales
to adapt the fuzzy inference system according to the problem environment. Figure
11 illustrates the general interaction mechanism with the evolutionary search of a
fuzzy inference system (Mamdani, Takagi -Sugeno etc) evolving at the highest
level on the slowest time scale. For each evolutionary search of fuzzy operators
(for example, best combination of T-norm, T-conorm and defuzzification
strategy), the search for the fuzzy rule base progresses at a faster time scale in an
environment decided by the fuzzy inference system and the problem. In a similar
manner, the evolutionary search of membership functions proceeds at a faster time
scale (for every rule base) in the environment decided by the fuzzy inference
system, fuzzy operators and the problem. The chromosome architecture is
depicted in Figure 12.

Slow

Fast

Evolutionary search of fuzzy inference system

Evolutionary search of fuzzy operators and defuzzification strategies

Evolutionary search of fuzzy rules

Evolutionary search of membership functions

Figure 11. Interaction of the different evolutionary search mechanisms in the
adaptation of fuzzy inference system

FIS1 FIS2 FIS3 FIS4 FIS6 FIS7FIS5

OP1 OP2 OP3 OP4 OP6OP5

Rule1 Rule2 Rule3 Rule4 Rule5

Fuzzy inference system

Fuzzy operators

Fuzzy rules

MF1 MF2 MF3 MF4

Fuzzy membership functions

Figure 12. Chromosome representation of the adaptive fuzzy inference system

The automatic adaptation of membership functions is popularly known as self-
tuning. The genome encodes parameters of trapezoidal, triangle, logistic,
hyperbolic-tangent, Gaussian membership functions and so on [27].

The evolutionary search of fuzzy rules can be carried out using three approaches
[32]. In the first (Michigan approach), the fuzzy knowledge base is adapted as a
result of the antagonistic roles of competition and cooperation of fuzzy rules. Each
genotype represents a single fuzzy rule and the entire population represents a
solution. A classifier rule triggers whenever its condition part matches the current
input, in which case, the proposed action is sent to the process to be controlled.
The global search algorithm generates new classifier rules based on the rule
strengths acquired during the entire process. The fuzzy behavior is created by an
activation sequence of mutually-collaborating fuzzy rules. The entire knowledge
base is built up by a cooperation of competing multiple fuzzy rules.

The second method (Pittsburgh approach) evolves a population of knowledge
bases rather than individual fuzzy rules. Genetic operators serve to provide a new
combination of rules and new rules. In some cases, variable length rule bases are
used employing modified genetic operators for dealing with these variable length
and position independent genomes. The disadvantage is the increased complexity
of the search space and the additional computational burden, especially for online
learning.

The third method (iterative rule learning approach) is similar to the first, with each
chromosome representing a single rule, but contrary to the Michigan approach,
only the best individual is considered to form part of the solution, the remaining
chromosomes in the population are discarded. The evolutionary learning process
builds up the complete rule base through an iterative learning process [44].

6. Cooperative Neuro-Fuzzy Systems

Hayashi et al [47] showed that a feedforward neural network could approximate
any fuzzy-rule-based system and any feedforward neural network may be
approximated by a rule-based fuzzy inference system [64]. A fusion of artificial
neural networks and fuzzy inference systems has attracted growing interest
amoung researchers in various scientific and engineering areas due to the growing
need for adaptive intelligent systems to solve real world problems
[2][4][6][8][10][33][43][46][52-54][59][62][66][78][98]. The advantages of a
combination of neural networks and fuzzy inference systems are obvious [28-
29][71]. An analysis reveals that the drawbacks pertaining to these approaches
seem complementary and therefore, it is natural to consider building an integrated
system combining the concepts. While the learning capability is an advantage
from the viewpoint of a fuzzy inference system, the automatic formation of a
linguistic rule base is an advantage from the viewpoint of neural networks. Neural
network learning techniques could be used to learn the fuzzy inference system in a
cooperative and an integrated environment. In this Section, three different types of
cooperative neuro-fuzzy models are presented, namely fuzzy associative

memories, fuzzy rule extraction using self-organizing maps and systems capable
of learning fuzzy set parameters. Integrated neuro-fuzzy systems are presented in
Section 7.

At the simplest level, a cooperative model can be thought of as a preprocessor
wherein the ANN learning mechanism determines the fuzzy inference system
membership functions or fuzzy rules from the training data. Once the FIS
parameters are determined, ANN goes to the background.

Kosko’s fuzzy associative memories [62], Pedryz’s (et al) fuzzy rule extraction
using self organizing maps [80] and Nomura’s. (et al) systems capable of learning
of fuzzy set parameters [75] are some good examples of cooperative neuro-fuzzy
systems.

6.1 Fuzzy Associative memories

Kosko interprets a fuzzy rule as an association between antecedent and consequent
parts [62]. If a fuzzy set is seen as a point in the unit hypercube and rules are
associations, then it is possible to use neural associative memories to store fuzzy
rules. A neural associative memory can be represented by its connection matrix.
Associative recall is equivalent to multiplying a key factor with this matrix. The
weights store the correlations between the features of the key, k, and the
information part, i. Due to the restricted capacity of associative memories and
because the combination of multiple connection matrices into a single matrix is
not recommended due to severe loss of information, it is necessary to store each
fuzzy rule in a single FAM. Rules with n conjunctively combined variables in
their antecedents can be represented by n FAMs, where each stores a single rule.
The FAMs are completed by aggregating all the individual outputs (maximum
operator in the case of Mamdani fuzzy system) and a defuzzification component.

Learning can be incorporated in FAM as learning the weights associated with
FAMs output or to create FAMs completely by learning. A neural network-
learning algorithm determines the rule weights for the fuzzy rules. Such factors
are often interpreted as the influence of a rule and are multiplied with the rule
outputs. Rule weights can be replaced equivalently by modifying the membership
functions. However, this could result in a misinterpretation of fuzzy sets and
identical linguistic values might be represented differently in different rules.
Kosko suggests a form of adaptive vector quantization technique to learn the
FAMs. This approach is called differential competitive learning and is very similar
to the learning in self-organizing maps.

Figure 13 depicts a cooperative neuro-fuzzy model where the neural network
learning mechanism is used to determine the fuzzy rules, parameters of fuzzy sets,
rule weights and so on. Kosko's adaptive FAM is a cooperative neuro-fuzzy model
because it uses a learning technique to determine the rules and its weights. Its
main disadvantage is the weighting of rules. Just because certain rules, do not
have much influence does not mean that they are totally unimportant. Hence, the

reliability of FAMs for certain applications is questionable. But because of their
implementation simplicity, they are used in many applications.

Neural Network Fuzzy Inference system

Fuzzy sets

Fuzzy rules

Data Output

Figure 13. Cooperative neuro-fuzzy model

6.2 Fuzzy Rule Extraction Using Self Organizing Maps

Pedryz et al [80] used self-organizing maps with a planar competition layer to
cluster training data, and they provide means to interpret the learning results. The
learning results show whether two input vectors are similar to each other or belong
to the same class. However, in the case of high-dimensional input vectors, the
structure of the learning problem can rarely be detected in the two dimensional
map. Pedryz et al provides a procedure for interpreting the learning results using
linguistic variables.

After the learning process, the weight matrix W represents the weight of each
feature of the input patterns to the output. Such a matrix defines a map for a single
feature only. For each feature of the input patterns, fuzzy sets are specified by a
linguistic description, B (one fuzzy set for each variable). They are applied to the
weight matrix, W, to obtain a number of transformed matrices. Each combination
of linguistic terms is a possible description of a pattern subset or cluster. To check
a linguistic description, B, for validity, the transformed maps are intersected and a
matrix D is obtained. Matrix D determines the compatibility of the learning result
with the linguistic description B. D(B) is a fuzzy relation, and d (B) is interpreted as

the degree of support of B. By describing D(B) by its α-cuts, subsets of output
nodes, whose degree of membership is at least α, so that the confidence of all
patterns, X

BDα

α , belong to the class described by B vanishes with decreasing α. Each

B is a valid description of a cluster if D(B) has a non-empty α-cut . If the
features are separated into input and output according to the application
considered, then each B represents a linguistic rule, and by examining each
combination of linguistic values, a complete fuzzy rule base can be created. This
method also shows which patterns belong to a fuzzy rule, because they are not
contained in any subset, X

BDα

α. An important advantage compared to FAMs is that the

rules are not weighted. The problem is with the determination of the number of
output neurons and the α values for each learning problem. Compared to FAM,
since the form of the membership function determines a crucial role in the
performance, the data could be better exploited. Since Kosko's learning procedure
does not take into account the neighborhood relation between the output neurons,
perfect topological mapping from the input patterns to the output patterns might
not be obtained. Thus the FAM learning procedure is more dependent on the
sequence of the training data than the Pedryz et al procedure.

Pedryz et al initially determine the structure of the feature space and then the
linguistic descriptions best matching the learning results, by using the available
fuzzy partitions obtained. If a large number of patterns fit none of the descriptions,
this may be due to an insufficient choice of membership functions and they can be
determined anew. Hence, for learning the fuzzy rules, this approach is preferable
compared to FAM [23]. Performance of this method still depends on the learning
rate and the neighborhood size for weight modification, which is problem-
dependant and could be determined heuristically. Fuzzy C-means algorithm also
has been explored to determine the learning rate and neighborhood size [23][50].

6.3 Systems Capable of Learning Fuzzy Set Parameters
Nomura et al [75] proposed a supervised learning technique to fine-tune the fuzzy
sets of an existing Sugeno type fuzzy system. Parameterized triangular
membership functions were used for the antecedent part of the fuzzy rules. The
learning algorithm is a gradient descent procedure that uses an error measure, E,
(difference between the actual and target outputs) to fine-tune the parameters of
the MF. Because the underlying fuzzy system uses neither a defuzzification
procedure nor a non-differentiable t-norm to determine the fulfilment of rules, the
calculation of the modifications of the MF parameters is trivial. The procedure is
very similar to the delta rule for multilayer perceptrons. The learning takes place
in an offline mode. For the input vector, the resulting error, E, is calculated and,
based on that, the consequent parts (a real value) are updated. Then the same
patterns are propagated again and only the parameters of the MFs are updated.
This is done to take the changes in the consequents into account when the
antecedents are modified. A severe drawback of this approach is that the
representation of the linguistic values of the input variables depends on the rules
they appear in. Initially, identical linguistic terms are represented by identical
membership functions. During the learning process, they may be developed
differently, so that identical linguistic terms are represented by different fuzzy
sets. The proposed approach is applicable only to Sugeno type fuzzy inference
system. Using a similar approach, Miyoshi et al [72] adapted fuzzy T-norm and T-
conorm operators while Yager et al adapted the defuzzification operator using a
supervised learning algorithm [102].

7. Integrated Neuro-Fuzzy Systems

In an integrated model, neural network learning algorithms are used to determine
the parameters of fuzzy inference systems. Integrated neuro-fuzzy systems share
data structures and knowledge representations. A fuzzy inference system can
utilize human expertise by storing its essential components in a rule base and a
database, and perform fuzzy reasoning to infer the overall output value. The
derivation of if-then rules and corresponding membership functions depends
heavily on the a priori knowledge about the system under consideration.
However, there is no systematic way to transform the experiences of knowledge of
human experts in to the knowledge base of a fuzzy inference system. There is also
a need for the adaptability or some learning algorithms to produce outputs within
the required error rate. On the other hand, the neural network learning mechanism
does not rely on human expertise. Due to its homogenous structure, it is difficult
to extract structured knowledge from either the weights or the configuration of the
network. The weights of the neural network represent the coefficients of the
hyper-plane that partition the input space into two regions with different output
values. If this hyper-plane structure can be visualized from the training data the
subsequent learning procedures in a neural network can be reduced. However, in
reality, the a priori knowledge is usually obtained from human experts and it is
most appropriate to express the knowledge as a set of fuzzy if-then rules and it is
very difficult to encode into an neural network. Table 2 summarizes the
comparison between neural networks and the fuzzy inference system [4][6]].

Table 2. Comparison between neural networks and fuzzy inference systems

Artificial Neural Networks Fuzzy Inference System

Prior rule-based knowledge cannot
be used

Prior rule-base can be incorporated

Learning from scratch Cannot learn (use linguistic
knowledge)

Black box Interpretable (if-then rules)

Complicated learning algorithms Simple interpretation and
implementation

A common way to apply a learning algorithm to a fuzzy system is to represent it in
a special neural network like architecture. Most of the integrated neuro-fuzzy
models use a partitioning method (discussed in Section 4) to set up the initial rule
base and then the learning algorithm is used to fine tune the parameters. However
the conventional neural network learning algorithms (gradient descent) cannot be
applied directly to such a system as the functions used in the inference process are
usually non differentiable. This problem can be tackled by using differentiable

functions in the inference system or by not using the standard neural learning
algorithm. In Sections 7.1 and 7.2, how to model integrated neuro-fuzzy systems
implementing Mamdani and Takagi - Sugeno FIS, is discussed.

7.1 Integrated Neuro-Fuzzy System (Mamdani FIS)

A Mamdani neuro-fuzzy system uses a supervised learning technique
(backpropagation learning) to learn the parameters of the membership functions.
The detailed function of each layer (as depicted in Figure 14) is as follows:

R1 R2 R3

x1 x2

y

 Layer 2
(fuzzification layer)

 Layer 3
rule antecedent layer

 Layer 4
rule consequent layer

 Layer 5
rule inference and defuzzification layer

 Layer 1
 (input layer)

Figure 14..Mamdani neuro-fuzzy system

• Layer -1(input layer): No computation is done in this layer. Each node,
which corresponds to one input variable, only transmits input values to the
next layer directly. The link weight in Layer 1 is unity.

• Layer-2 (fuzzification layer): Each node corresponds to one linguistic
label (such as excellent, good) to one of the input variables in Layer 1. In
other words, the output link represent the membership value, which
specifies the degree to which an input value belongs to a fuzzy set, is
calculated in layer 2. The final shapes of the MFs are fine tuned during
network learning.

• Layer-3 (rule antecedent layer): A node represents the antecedent part of
a rule. Usually a T-norm operator is used. The output of a Layer 3 node
represents the firing strength of the corresponding fuzzy rule.

• Layer-4 (rule consequent layer): This node basically has two tasks: to
combine the incoming rule antecedents and determine the degree to which
they belong to the output linguistic label (for example, high, medium, low).
The number of nodes in this layer are equal to the number of rules.

• Layer-5 (Combination and defuzzification layer): This node combines all
the rules’ consequents (normally using a T-conorm operator) and finally
computes the crisp output after defuzzification.

7.2 Integrated Neuro-fuzzy system (Takagi-Sugeno FIS)

Takagi Sugeno neuro-fuzzy systems make use of a mixture of backpropagation to
learn the membership functions and least mean square estimation to determine the
coefficients of the linear combinations in the rule consequents. A step in the
learning procedure has two parts: in the first, the input patterns are propagated,
and the optimal conclusion parameters are estimated by an iterative least mean
square procedure, while the antecedent parameters (membership functions) are
assumed to be fixed for the current cycle through the training set; in the second,
the patterns are propagated again, and in this epoch, backpropagation is used to
modify the antecedent parameters, while the conclusion parameters remain fixed.
This procedure is then iterated. The detailed functioning of each layer (as depicted
in Figure 15) is as follows:

• Layers 1,2 and 3 functions the same way as Mamdani FIS.

• Layer 4 (rule strength normalization): Every node in this layer calculates
the ratio of the i-th rule’s firing strength to the sum of all rules’ firing
strength

 2,1,
21

=
+

i
ww

wi
i =w . (3)

• Layer-5 (rule consequent layer): Every node i in this layer has a node
function

)(21 iiiiii rxqxpwfw ++= , (4)

where iw is the output of layer 4, and { }iii rqp ,, is the parameter set. A
well-established way is to determine the consequent parameters using the
least means squares algorithm.

• Layer-6 (rule inference layer) The single node in this layer computes the
overall output as the summation of all incoming signals:

∑
∑

∑
==

i i i
i ii

ii w
fw

fwoutputOverall (5)

x1 x2

 Layer 2
(fuzzification layer)

R1 R2 R3

x1

y

 Layer 4
rule strength normalization

 Layer 5
rule consequent layer

 Layer 6
rule inference layer

 Layer 1
 (input layer)

 Layer 3
rule antecedent layer

x2

Figure 15. Takagi-Sugeno neuro-fuzzy system

Some of the integrated neuro-fuzzy systems are GARIC [22], FALCON [65],
ANFIS [54], NEFCON, NEFCLASS, NEFPROX [74], FUN [91], SONFIN[55],
FINEST[77][93], EFuNN [59-60] and EvoNF [1] [12]. A detailed review of the
different integrated neuro-fuzzy models is presented in [6].

In ANFIS the adaptation (learning) process is only concerned with parameter level
adaptation within fixed structures. For large-scale problems, it will be too
complicated to determine the optimal premise-consequent structures, rule numbers
etc. The structure of ANFIS ensures that each linguistic term is represented by
only one fuzzy set. However the learning procedure of ANFIS does not provide
the means to apply constraints that restrict the kind of modifications applied to the
membership functions. When using Gaussian membership functions, operationally
ANFIS can be compared with a radial basis function network.

NEFCON make use of a reinforcement type of learning algorithm for learning the
rule base (structure learning) and a fuzzy backpropagation algorithm for learning
the fuzzy sets (parameter learning). NEFCON system is capable of incorporating
prior knowledge as well as learning from scratch. However the performance of the
system will very much depend on heuristic factors like learning rate, error
measure etc.

FINEST provides a mechanism based on the improved generalized modus ponens
for fine tuning of fuzzy predicates and combination functions and tuning of an
implication function. Parameterization of the inference procedure is very much
essential for proper application of the tuning algorithm.

SONFIN is is adaptable to the users specification of required accuracy.
Precondition parameters are tuned by backpropagation algorithm and consequent
parameters by least mean squares or recursive least squares algorithms very
similar to ANFIS.

EFuNN implements a Mamdani type of fuzzy rule base, based on a dynamic
structure (creating and deleting strategy), and single rule inference, established on
the winner-takes all rule for the rule node activation, with a one-pass training,
instance based learning and reasoning. dmEFuNN is an improved version of the
EFuNN capable of implementing Takagi-Sugeno fuzzy system, using several (m)
of the highest activated rule nodes instead of one. The rule node aggregation is
achieved by a C-means clustering algorithm.

FUN system is initialized by specifying a fixed number of rules and a fixed
number of initial fuzzy sets for each variable and the network learns through a
stochastic procedure that randomly changes parameters of membership functions
and connections within the network structure Since no formal neural network
learning technique is used it is questionable to call FUN a neuro-fuzzy system.

Sugeno-type fuzzy systems are high performers (less Root Mean Squared Error-
RMSE) but often requires complicated learning procedures and are
computationally expensive. However, Mamdani-type fuzzy systems can be
modeled using faster heuristics but with a compromise on performance (high
RMSE). There is always a compromise between performance and computational
time. The data acquisition and preprocessing training data are also quite important
for the success of neuro-fuzzy systems.

The success with integrating neural network and fuzzy logic and knowing their
strengths and weaknesses, can be used to construct better neuro-fuzzy systems to
mitigate the limitations and take advantage of the opportunities to produce more
powerful hybrids than those that could be built with stand alone systems. As a
guideline, for neuro-fuzzy systems to be at the top of the ladder, some of the major
requirements are: fast learning (memory based - efficient storage and retrieval
capacities), on-line adaptability (accommodating new features like inputs, outputs,
nodes, connections), a global error rate and inexpensive computations (fast
performance). As the problem become more complicated manual definition of
neuro-fuzzy architecture/parameters becomes complicated. Especially for tasks
requiring an optimal FIS, global optimization approach might be the best solution.
In Section 8, EvoNF: a frame work for optimization of FIS using evolutionary
algorithms and neural network learning technique is presented. EvoNF approach
could be considered as a meta learning approach of evolutionary fuzzy systems.

8. Neuro-Fuzzy-Evolutionary (EvoNF) Systems

In an integrated neuro-fuzzy model, there is no guarantee that the neural network-
learning algorithm will converge and the tuning of fuzzy inference system be
successful. Optimization of fuzzy inference systems could be further improved
using a meta-heuristic approach combining neural network learning algorithm and
evolutionary algorithms. The proposed technique could be considered as a
methodology to integrate neural networks, fuzzy inference systems and
evolutionary search procedures [1] [3] [12].

Global search of fuzzy inference system
(Mamdani FIS, Takagi Sugeno FIS etc)

 Slow

Fast

Time scale

Global search of learning parameters

 Global search of inference mechanisms
(optimal T-norm and T-conorm parameters)

Global search of fuzzy rules (architectures)
(antecedents and consequents)

Global search of membership functions
(optimal quantity and shape)

Figure 16. General computational framework for EvoNF

The EvoNF framework could adapt to Mamdani, Takagi-Sugeno or other fuzzy
inference systems. The architecture and the evolving mechanism could be
considered as a general framework for adaptive fuzzy systems, that is a fuzzy
model that can change membership functions (quantity and shape), rule base
(architecture), fuzzy operators and learning parameters according to different
environments without human intervention. Solving multi-objective scientific and
engineering problems is, generally, a very difficult goal. In these particular
optimization problems, the objectives often conflict across a high-dimension
problem space and may also require extensive computational resources. Proposed
here is an evolutionary search procedure wherein the membership functions, rule
base (architecture), fuzzy inference mechanism (T-norm and T-conorm operators),
learning parameters and finally the type of inference system (Mamdani, Takagi-
Sugeno etc.) are adapted according to the environment. Figure 15 illustrates the
interaction of various evolutionary search procedures and shows that for every
fuzzy inference system, there exists a global search of learning algorithm
parameters, an inference mechanism, a rule base and membership functions in an
environment decided by the problem. Thus, the evolution of the fuzzy inference
system evolves at the slowest time scale while the evolution of the quantity and
type of membership functions evolves at the fastest rate. The function of the other
layers could be derived similarly.

The hierarchy of the different adaptation layers (procedures) relies on prior
knowledge. For example, if there is more prior knowledge about the architecture
than the inference mechanism then it is better to implement the architecture at a
higher level. If a particular fuzzy inference system best suits the problem, the
computational task could be reduced by minimizing the search space.

A typical chromosome of EvoNF would be as shown in Figure 17 and the detailed
modelling process could be obtained from [1][12]. The chromosome architecture
is very similar to to the chromosome structure mentioned in Figures 7 and 12.

FIS1 FIS2 FIS3 FIS4 FIS6 FIS7FIS5

OP1 OP2 OP3 OP4 OP6OP5

Rule1 Rule2 Rule3 Rule4 Rule5

MF1 MF2 MF3 MF4

FIS8

LR1 LR2 LR3 LR4 LR6 LR7LR5

Fuzzy inference system

Fuzzy operators

Fuzzy rules

Fuzzy membership functions

Parameters of learning algorithm

Figure 17. Chromosome structure of the EvoNF model

We have applied the proposed technique to the three well known chaotic time
series. Fitness value is calculated based on the RMSE achieved on the test set. We
have considered the best-evolved EvoNF model as the best individual of the last
generation. We also explored different learning methods combining evolutionary
learning and gradient descent techniques and the importance of tuning of different
parameters. To reduce the computational complexity of the hierarchical search
procedure, we reduced the search space by incorporating some priori knowledge.
The genotypes were represented by real coding using floating-point numbers and
the initial populations were randomly created. For all the three time series
considered, EvoNF gave the best results on training and test sets [1] when
compared to other integrated neuro-fuzzy models. Our experiments using the three
different learning strategies also reveal the importance of fine-tuning the global
search method using a local search method [3]. Figure 18 illustrates the
comparison of EvoNF model with different integrated neuro-fuzzy models for
predicting the Mackey Glass time series [1]. In Figure 18, test set RMSE values
are given for each neuro-fuzzy model considered and an artificial neural network
trained using BP.

Figure 18. Comparison of EvoNF and some popular neuro-fuzzy models

9. Fuzzy Evolutionary Algorithms

Evolutionary algorithms are relatively easy to implement and, in general, their
performance tends to be rather satisfactory in comparison with the small amount
of knowledge about the problem they need in order to work. However, their
success relies directly on the carefull selection of algorithm parameters, fitness
function and so on. The use of fuzzy logic to translate and improve heuristic rules
has also been applied to manage the resource of evolutionary algorithms such as
population size and selection pressure as the algorithm greedily explores and
exploits the search space [48]. The technique proposed by Lee [63] to perform a
run-time tuning of population size and reproduction operators based on the fitness
measures has shown large improvements in the computational run-time efficiency
of the evolutionary search process. The fuzzy controller takes the inputs

fitnessbest
fitnessaverage

fitnessworst
fitnessbest

fitnessaverage
∆,,

and gives ∆population size, ∆crossover rate and ∆mutation rate to control the
evolutionary algorithm parameters. The ranges of the parameter changes are also
limited to remain within certain bandwidths. This technique could improve not
only the search efficiency and convergence but also sometimes could avoid
premature convergence due to lack of diversity in the population.

As mentioned in Section 5, the two ingredients of soft computing, evolutionary
computation and fuzzy inference systems, could be integrated in a way that makes
them benefit from one another.

10. Soft Computing and Probabilistic Reasoning

A common feature of soft computing technology and the probabilistic reasoning
system is their depature from classical reasoning and modeling approaches which
are highly based on analytical models, crisp logic and deterministic search. In the
probabilistic modeling process, risk means the uncertainty for which the
probability distribution is known. The probabilistic models are used for protection
against adverse uncertainty and exploitation of propitious uncertainty.

In a probabilistic neural network (Bayesian learning) probability is used to
represent uncertainty about the relationship being learned. Before any data is seen
the prior opinions about what the true relationship might be can be expressed in a
probability distribution over the network weights that define this relationship.
After a look at the data, revised opinions are captured by a posterior distribution
over network weights. Network weights that seemed plausible before, but which
do not match the data very well, are now seen as being much less likely, while the
probability for values of the weights that do fit the data well have increased.
Typically, the purpose of training is to make predictions for future cases in which
only the inputs to the network are known. The result of conventional network
training is a single set of weights that can be used to make such predictions.

Several research work has exposed the complementary features of probabilistic
reasoning and fuzzy theory [26]. The development of the theory of belief of a
fuzzy event by Smets [87] helped to establish the orthogonality and
complementarity between probabilistic and possibilistic methods.

11. Conclusions

It is predicted that, in the 21st century, the fundamental source of wealth will be
knowledge and communication rather than natural resources and physical labour.
With the exponential growth of information and complexity in this world,
intelligent systems are needed that could learn from data in a continuous,
incremental way, and grow as they operate, update their knowledge and refine the
model through interaction with the environment. The intelligence of such systems
could be further improved if the adaptation process could learn from successes and
mistakes and that knowledge be applied to new problems.

This chapter has presented some of the architectures and perspectives of hybrid
intelligent systems involving neural networks, fuzzy inference systems,
evolutionary computation and probabilistic reasoning. The hybrid soft computing
approach has many important practical applications in science, technology,
business and commercial. Compared to the individual constituents (NN, FIS, EC
ans PR) hybrid soft computing frameworks are relatively young. As the strengths
and weakness of different hybrid architectures are understood, it will be possible
to use them more efficiently to solve real world problems.

The integration of different intelligent technologies is the most exciting fruit of
modern artificial intelligence and is an active area of research. While James
Bezdek [24] defines intelligent systems in a frame called computational
intelligence, Lotfi Zadeh [108] explains the same by using the soft computing
framework. Integration issues range from different techniques and theories of
computation to problems of exactly how best to implement hybrid systems. Like
most biological systems which can adapt to any environment, adaptable intelligent
systems are required to tackle future complex problems involving huge data
volume. Most of the existing hybrid soft computing frameworks rely on several
user specified network parameters. For the system to be fully adaptable,
performance should not be heavily dependant on user-specified parameters.

For optimizing neural networks and fuzzy inference systems, there is perhaps no
better algorithm than evolutionary algorithms. However, the real success in
modeling such systems will directly depend on the genotype representation of the
different layers. The population-based collective learning process, self-adaptation,
and robustness are some of the key features of evolutionary algorithms when
compared to other global optimization techniques. Evolutionary algorithms attract
considerable computational effort especially for problems involving complexity
and huge data volume. Fortunately, evolutionary algorithms work with a
population of independent solutions, which makes it easy to distribute the
computational load among several processors.

Acknowledgements

Author is grateful to Professor Lakhmi Jain (University of South Australia,
Adelaide) and the three referees for the technical comments, which improved the
clarity of this chapter.

References

[1] Abraham A., EvoNF: A Framework for Optimization of Fuzzy Inference
Systems Using Neural Network Learning and Evolutionary Computation,
2002 IEEE International Symposium on Intelligent Control (ISIC’02),
Canada, IEEE Press, 2002.

[2] Abraham A., Beyond Neuro-Fuzzy Systems: Reviews, Prospects,
Perspectives and Directions, Seventh International Mendel Conference on
Soft Computing, Brno, MENDEL 2001, Matousek Radek et al (Eds.), pp.
376-372, 2001.

[3] Abraham A., How Important is Meta-Learning in Evolutionary Fuzzy
Systems?, In Proceedings of Sixth International Conference on Cognitive
and Neural Systems, ICCNS 2002, Boston University Press, USA, 2002.

[4] Abraham A., It is time to Fuzzify Neural Networks, Intelligent Multimedia,
Computing and Communications: Technologies and Applications of the

Future, John Wiley & Sons Inc., Syed M.R. and Baiocchi O.R. (Eds.), pp.
253-263, 2001.

[5] Abraham A., Meta-Learning Evolutionary Artificial Neural Networks,
Elsevier Science, Neurocomputing Journal, Netherlands, 2002.

[6] Abraham A., Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques,
Connectionist Models of Neurons, Learning Processes, and Artificial
Intelligence, LNCS 2084, Mira J. and Prieto A. (Eds.), Springer-Verlag
Germany, pp. 269-276, 2001.

[7] Abraham A., Optimization of Evolutionary Neural Networks Using Hybrid
Learning Algorithms, International Joint Conference on Neural Networks,
2002 IEEE World Congress on Computational Intelligence, WCCI’02,
Hawaii, IEEE Press, 2002.

[8] Abraham A. and Nath B., A Neuro-Fuzzy Approach for Forecasting
Electricity Demand in Victoria, Applied Soft Computing Journal, Elsevier
Science, Volume 1 (2), pp.127-138, 2001.

[9] Abraham A. and Nath B., ALEC -An Adaptive Learning Framework for
Optimizing Artificial Neural Networks, Computational Science, LNCS
2074, Alexandrov V.N. et al (Eds.), Springer Verlag Germany, pp. 171-180,
2001.

[10] Abraham A. and Nath B., Designing Optimal Neuro-Fuzzy Systems for
Intelligent Control, In proceedings of the Sixth International Conference on
Control Automation Robotics Computer Vision (ICARCV 2000), CD-
ROM Proceeding, Wang J.L. (Ed.), ISBN 9810434456, Singapore, 2000.

[11] Abraham A. and Nath B., Evolutionary Design of Fuzzy Control Systems -
An Hybrid Approach, The Sixth International Conference on Control,
Automation, Robotics and Vision, (ICARCV 2000), CD-ROM Proceeding,
Wang J.L. (Ed.), ISBN 9810434456, Singapore, 2000.

[12] Abraham A. and Nath B., Evolutionary Design of Neuro-Fuzzy Systems - A
Generic Framework, In Proceedings of The 4-th Japan-Australia Joint
Workshop on Intelligent and Evolutionary Systems, Namatame A. et al
(Eds.), Japan, pp. 106-113, 2000.

[13] Abraham A. and Nath B., Failure Prediction of Critical Electronic Systems
in Power Plants Using Artificial Neural Networks, In Proceedings of First
International Power and Energy Conference, CD-ROM Proceeding, Isreb
M. (Ed.), ISBN 0732620945, Australia, 1999.

[14] Abraham A. and Nath B., IT Impact On New Millennium Manufacturing, In
Proceedings of 5th International Conference on Computer Integrated
Manufacturing, Computer Integrated Manufacturing, Singh J. , Lew S. C.
and Gay R. (Eds.), Singapore, pp. 321-332, 2000.

[15] Abraham A. and Nath B., Optimal Design of Neural Nets Using Hybrid
Algorithms, In proceedings of 6th Pacific Rim International Conference on
Artificial Intelligence, LNCS 1886, Mizoguchi R. and Slaney J.K. (Eds.),
Springer Verlag, Germany, pp. 510-520, 2000.

[16] Andramonov M., Rubinov A. and Glover B., Cutting Angle Methods in
Global Optimization, Applied Mathematics Letters, 12, pp. 95-100, 1999.

[17] Auer P., Herbster M. and Warmuth M., Exponentially Many Local Minima
for Single Neurons, Advances in Neural Information Processing Systems,
Touretzky D. et al (Eds.), MIT Press, USA, Vol 8, pp. 316-322, 1996.

[18] Baffles P.T. and Zelle J.M., Growing layers of Perceptrons: Introducing the
Exentron Algorithm, Proceedings on the International Joint Conference on
Neural Networks, Vol 2, pp. 392-397, 1992.

[19] Baxter J., The Evolution of Learning Algorithms for Artificial Neural
Networks, Complex systems, IOS press, Amsterdam, pp. 313-326, 1992.

[20] Bayes T., An Essay Towards Solving a Problem in the Doctrine of Chances,
Philosophical Transactions of the Royal Society of London, 53: pp. 370-
418, 1763.

[21] Beliakov G. and Abraham A., Global Optimization of Neural Networks
Using a Deterministic Hybrid Approach, Hybrid Information Systems,
Abraham A. and Koeppen M. (Eds.), Physica-Verlag Germany, pp. 79-92,
2002.

[22] Berenji H.R. and Khedkar P., Learning and Tuning Fuzzy Logic Controllers
through Reinforcements, IEEE Transactions on Neural Networks, Vol (3),
pp. 724-740, 1992.

[23] Bezdek J.C. and Pal S.K., Fuzzy Models for Pattern Recognition, IEEE
Press, New York, 1992.

[24] Bezdek J.C., Computational Intelligence Defined–By Everyone!,
Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications, Okay Kaynal et al (Eds.), Springer Verlag, Germany,
1996.

[25] Bishop C.M., Neural Networks for Pattern Recognition, Oxford Press,
1995.

[26] Bonissone P.P., Approximate Reasoning Systems: A Personal Perspective,
In Proceedings of the American Association of Artificial Intelligence
(AAAI’91), California, pp. 923-929, 1991.

[27] Bonissone P.P., Khedkar P.S., and Chen Y., Genetic Algorithms for
Automated Tuning of Fuzzy Controllers: A Train Handling Application. In
Proceedings of the Fifth IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE'96), Vol. 1, pp. 674-680, 1996.

[28] Buckley J.J. and Feuring T., Fuzzy and Neural: Interactions and
Applications, Studies in Fuzziness and Soft Computing, Physica Verlag,
Heidelberg, Germany, 1999.

[29] Bunke H. and Kandel A., Neuro-Fuzzy Pattern Recognition, World
Scientific Publishing Company, Singapore, 2000.

[30] Cherkassky V., Fuzzy Inference Systems: A Critical Review,
Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration
with Applications, Kayak O. et al (Eds.), Springer, pp.177-197, 1998.

[31] Chong, E.K.P. and Zak S.H., An Introduction to Optimization. John Wiley
and Sons Inc. New York, 1996.

[32] Cordón O., Herrera F., Hoffmann F., and Magdalena L., Genetic Fuzzy
Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases,
World Scientific Publishing Company, Singapore, 2001.

[33] Czogala E. and Leski J., Fuzzy and Neuro-Fuzzy Intelligent Systems,
Studies in Fuzziness and Soft Computing, Springer Verlag, Germany, 2000.

[34] Darwen P.J., Co-evolutionary Learning by Automatic Modularisation with
Speciation, PhD Thesis, University of New South Wales, Australia, 1996.

[35] Dasgupta D. (Ed.), Artificial Immune Systems and Their Applications,
Publisher: Springer-Verlag, Berlin, January 1999.

[36] Dempster A.P., Upper and Lower Probabilities induced by a Multivalued
Mapping, Annals of Mathematical Statistics, Vol. 38, pp. 325-339, 1967.

[37] Fahlman S.E. and Lebiere C., The Cascade – Correlation Learning
architecture, Advances in Neural Information Processing Systems,
Tourretzky D. (Ed.), Morgan Kaufmann, pp. 524-532, 1990.

[38] Fine T.L., Feedforward Neural Network Methodology, Springer Verlag,
New York, 1999.

[39] Fogel D.B., Blondie24: Playing at the Edge of AI, Morgan Kaufmann
Publishers, USA, 2001.

[40] Fogel D.B., Evolutionary Computation: Towards a New Philosophy of
Machine Intelligence, 2nd Edition, IEEE Press, 2000.

[41] Frean M., The Upstart Algorithm: A Method for Constructing and Training
Feed Forward Neural Networks, Neural computations, Vol. 2, pp.198-209,
1990.

[42] Fukuda T. and Shibata M., Fuzzy-Neuro-GA Based Intelligent Robotics, In
Zurada J.M. et al (Eds.), Computational Intelligence Imitating Life, IEEE
Press, pp. 352-362, 1994.

[43] Fuller R., Introduction to Neuro-Fuzzy Systems, Studies in Fuzziness and
Soft Computing, Springer Verlag, Germany, 2000.

[44] Gonzalez A. and Herrera F., Multi-Stage Genetic Fuzzy Systems Based on
the Iterative Rule Learning Approach, Mathware and Soft Computing Vol.
4, pp. 233-249, 1997.

[45] Gutierrez G., Isasi P., Molina J.M., Sanchis A. and Galvan I.M.,
Evolutionary Cellular Configurations for Designing Feedforward Neural
Network Architectures, Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, Mira J. et al (Eds.), Springer Verlag -
Germany, LNCS 2084, pp. 514-521, 2001.

[46] Hayashi I., Nomura H., Yamasaki H. and Wakami N., Construction of
Fuzzy Inference Rules by Neural Network Driven Fuzzy Reasoning and
Neural Network Driven Fuzzy Reasoning With Learning Functions,
International. Journal of Approximate Reasoning, Vol. 6, pp. 241-266,
1992.

[47] Hayashi Y. and Buckley J.J., Approximations Between Fuzzy Expert
Systems and Neural Networks, International Journal of Approximate
Reasoning, Vol. 10, pp.63-73, 1994.

[48] Herrera F., Lozano M. and Verdegay J.L., Tackling Fuzzy Genetic
Algorithms, Genetic Algorithms in Engineering and Computer Science,
Winter G. Periaux J., Galan M., Ceusta P. (Eds.), John Wiley and Sons, pp.
167-189, 1995.

[49] Hoffmann F., Soft Computing Techniques for the Design of Mobile Robot
Behaviors, Journal of Information Sciences, 122 (2-4) pp. 241-258, 2000.

[50] Höppner F., Klawonn F., and Kruse R., Fuzzy-Clusteranalyse,
Computational Intelligence, Vieweg, Braunschweig, 1996.

[51] Jacobsen H.A., A Generic Architecture for Hybrid Intelligent Systems, In
Proceedings of The IEEE World Congress on Computational Intelligence
(FUZZ IEEE), USA, Vol. 1, pp. 709 –714, 1998.

[52] Jain L.C. and Jain R.K. (Eds.), Hybrid Intelligent Engineering Systems,
World Scientific Publishing Company, Singapore, 1997.

[53] Jain L.C. and Martin N.M. (Eds.), Fusion of Neural Networks, Fuzzy Logic
and Evolutionary Computing and their Applications, CRC Press USA,
1999.

[54] Jang J.S.R., Sun C.T. and Mizutani E., Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice
Hall Inc, USA, 1997.

[55] Juang Chia Feng and Lin Chin Teng, An Online Self Constructing Neural
Fuzzy Inference Network and its Applications, IEEE Transactions on Fuzzy
Systems, Vol. 6, No.1, pp. 12-32, 1998.

[56] Judd S., Neural Network Design and the Complexity of Learning, MIT
Press, Cambridge, USA, 1990.

[57] Judea P., Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann Publishers, USA, 1997.

[58] Kandel A. and Langholz G. (Eds.), Hybrid Architectures for Intelligent
Systems, CRC Press, 1992.

[59] Kasabov N. and Kozma R. (Eds.), Neuro-Fuzzy Techniques for Intelligent
Information Systems, Studies in Fuzziness and Soft Computing, Springer
Verlag, Germany, 1999.

[60] Kasabov N., Evolving Connectionist and Fuzzy Connectionist Systems –
Theory and Applications for Adaptive On-line Intelligent Systems, In:
Neuro-Fuzzy Techniques for Intelligent Information Processing, Kasabov
N. and Kozma R., (Eds.), Physica Verlag, 1999.

[61] Kosko B., Fuzzy Engineering, Upper Saddle River, NJ: Prentice Hall, 1997.
[62] Kosko B., Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence, Prentice Hall, Englewood Cliffs, New
Jersey, 1992.

[63] Lee M.A., Automatic Design and Adaptation of Fuzzy Systems and Genetic
Algorithms Using Soft Computing Techniques, PhD thesis, University of
California, Davis, 1994.

[64] Li X.H. and Chen C.L.P., The Equivalance Between Fuzzy Logic Systems
and Feedforward Neural Networks, IEEE Transactions on Neural Networks,
Vol. 11, No. 2, pp. 356-365, 2000.

[65] Lin C.T. and Lee C.S.G., Neural Network based Fuzzy Logic Control and
Decision System, IEEE Transactions on Comput. 40 (12): pp. 1320-1336,
1991.

[66] Lin C.T. and Lee C.S.G., Neural Fuzzy Systems: A Neuro-Fuzzy Synergism
to Intelligent Systems, Prentice Hall Inc, USA, 1996.

[67] Lotfi A., Learning Fuzzy Inference Systems, PhD Thesis, Department of
Electrical and Computer Engineering, University of Queensland, Australia,
1995.

[68] Mamdani E.H. and Assilian S., An Experiment in Linguistic Synthesis with
a Fuzzy Logic Controller, International Journal of Man-Machine Studies,
Vol. 7, No.1, pp. 1-13, 1975.

[69] Medsker L.R., Hybrid Intelligent Systems, Kluwer Academic Publishers,
1995.

[70] Mezard M. and Nadal J.P., Learning in Feed Forward Layered Networks:
The Tiling Algorithm, Journal of Physics A, Vol. 22, pp. 2191-2204, 1989.

[71] Mitra S. and Hayashi Y., Neuro-Fuzzy Rule Generation: Survey in Soft
Computing Framework, IEEE Transactions on Neural Networks, Vol. II,
No. 3, pp. 748-768, 2000.

[72] Miyoshi T., Tano S., Kato Y., Arnould T., Operator Tuning in Fuzzy
Production Rules Using Neural networks, In Proceedings of the IEEE
International Conference on Fuzzy Systems, San Francisco, pp. 641-646,
1993.

[73] Moller A.F., A Scaled Conjugate Gradient Algorithm for Fast Supervised
Learning, Neural Networks, Vol. 6, pp. 525-533, 1993.

[74] Nauck D., Klawonn F. and Kruse R., Foundations of Neuro-Fuzzy Systems,
Wiley, 1997.

[75] Nomura H., Hayashi I. and Wakami N., A Learning Method of Fuzzy
Inference Systems by Descent Method, In Proceedings of the First IEEE
International conference on Fuzzy Systems, San Diego, USA, pp. 203-210,
1992.

[76] Cordón O., Herrera F., Lozano M., On the Combination of Fuzzy Logic and
Evolutionary Computation: A Short Review and Bibliography, Fuzzy
Evolutionary Computation, Pedrycz W. (Ed.), Kluwer Academic, pp. 57-77,
1997.

[77] Oyama T., Tano S., Miyoshi T., Kato Y., Arnould T. and Bastian A.,
FINEST: Fuzzy Inference Environment Software with Tuning, In
Proceedings of IEEE International Conference on Fuzzy Systems, pp 3-4,
1995.

[78] Pal S.K. and Mitra S., Neuro-Fuzzy Pattern Recognition: Methods in Soft
Computing, John Wiley & Sons Inc, USA, 1999.

[79] Pedrycz W. (Ed.), Fuzzy Evolutionary Computation, Kluwer Academic
Publishers, USA, 1997.

[80] Pedrycz W. and Card H.C., Linguistic Interpretation of Self Organizing
Maps, In Proceedings of the IEEE International Conference on Fuzzy
Systems, San Diego, pp. 371-378, 1992.

[81] Pedrycz W., Fuzzy Sets Engineering, CRC Press, 1995.
[82] Phansalkar V.V. and Thathachar M.A.L., Local and Global Optimization

Algorithms for Generalized Learning Automata, Neural Computation, 7, pp.
950-973, 1995.

[83] Procyk T.J. and Mamdani E.H., A Linguistic Self Organising Process
Controller, Automatica, Vol.15, no.1, pp. 15-30, 1979.

[84] Russo M. and Jain L.C. (Eds.), Fuzzy Learning and Applications, CRC
Press, USA, 2001.

[85] Sanchez E., Shibata T. and Zadeh L.A. (Eds.), Genetic Algorithms and
Fuzzy Logic Systems: Soft Computing Perspectives, World Scientific
Publishing Company, Singapore, 1997.

[86] Shafer G., A Mathematical Theory of Evidence, Princeton University Press,
Princeton, NJ, 1976.

[87] Smets P., The Degree of Belief in a Fuzzy Set, Information Science, 25, pp.
1-19, 1981

[88] Stepniewski S.W. and Keane A.J., Pruning Back-propagation Neural
Networks Using Modern Stochastic Optimization Techniques, Neural
Computing & Applications, Vol. 5, pp. 76-98, 1997.

[89] Sugeno M. and Tanaka K., Successive Identification of a Fuzzy Model and
its Applications to Prediction of a Complex System, Fuzzy Sets Systems,
Vol.42, no.3, pp. 315-334, 1991.

[90] Sugeno M., Industrial Applications of Fuzzy Control, Elsevier Science Pub
Co., 1985.

[91] Sulzberger S.M., Tschicholg-Gurman N.N. and Vestli S.J., FUN:
Optimization of Fuzzy Rule Based Systems Using Neural Networks, In
Proceedings of IEEE Conference on Neural Networks, San Francisco, pp .
312-316, 1993.

[92] Takagi H., Fusion Technology of Fuzzy Theory and Neural Networks -
Survey and Future Directions. In Proceedings First International Conference
on Fuzzy Logic & Neural Networks, pp. 13-26, 1990.

[93] Tano S., Oyama T. and Arnould T., Deep combination of Fuzzy Inference
and Neural Network in Fuzzy Inference, Fuzzy Sets and Systems, 82 (2) pp.
151-160, 1996.

[94] Topchy A.P. and Lebedko O.A., Neural Network Training by Means of
Cooperative Evolutionary Search, Nuclear Instruments & Methods In
Physics Research, Section A: accelerators, Spectrometers, Detectors and
Associated equipment, Vol. 389, No. 1-2, pp. 240-241, 1997.

[95] Van Rooij A., Jain L.C., and Johnson R.P., Neural Network Training Using
Genetic Algorithms, World Scientific Publishing Company, Singapore,
1996.

[96] Vapnik V., Golowich S., and Smola A., Support vector method for function
approximation, regression estimation, and signal processing. In Mozer M.,
Jordan M., and Petsche T. (Eds.), Advances in Neural Information
Processing Systems 9, Cambridge, MA, 1997. MIT Press, pp. 281-287,
1997.

[97] Vidhyasagar M.M., The Theory of Learning and Generalization, Springer-
Verlag, New York, 1997.

[98] Von Altrock C., Fuzzy Logic and Neuro Fuzzy Applications Explained,
Prentice Hall Inc, USA, 1995.

[99] Wang L.X., Adaptive Fuzzy Systems and Control, Prentice Hall Inc, USA,
1994.

[100] Wang L.X. and Mendel J.M., Backpropagation Fuzzy System as Nonlinear
Dynamic System Identifiers, In Proceedings of the First IEEE International
conference on Fuzzy Systems, San Diego, USA, pp. 1409-1418, 1992.

[101] Wang L.X. and Mendel J.M., Generating Fuzzy Rules by Learning from
Examples, IEEE Transactions on Systems, Man and Cybernetics, Vol. 22,
No 6, pp. 1414-1427, 1992.

[102] Yager R.R. and Filev D.P., Adaptive Defuzzification for Fuzzy System
Modeling, In Proceedings of the Workshop of the North American Fuzzy
Information Processing Society, pp. 135-142, 1992.

[103] Yao X. and Liu Y., Making Use of Population Information in Evolutionary
Artificial Neural Networks, IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, 28(3): pp. 417-425, 1998.

[104] Yao X., Evolving Artificial Neural Networks, Proceedings of the IEEE,
87(9): pp. 1423-1447, 1999.

[105] Yoshinari Y., Pedrycz W., Hirota K., Construction of Fuzzy Models
Through Clustering Techniques, Fuzzy Sets and Systems, Vol. 54, pp. 157-
165, 1993.

[106] Zadeh L.A., Fuzzy Sets, Information and Control, Vol. 8: pp. 338-353,
1965.

[107] Zadeh L.A., Outline of a New Approach to the Analysis of Complex
Systems and Decision Process, IEEE Transactions, System, Man, and
Cybernetics, Vol.3, no.1, pp. 28-44, 1973.

[108] Zadeh L.A., Roles of Soft Computing and Fuzzy Logic in the Conception,
Design and Deployment of Information/Intelligent Systems, Computational
Intelligence: Soft Computing and Fuzzy-Neuro Integration with
Applications, Kaynak O. et al (Eds.), pp. 1-9, 1998.

