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Summary. Research in bioinformatics necessitates the use of advanced computing tools for
processing huge amounts of ambiguous and uncertain biological data. Swarm Intelligence
(SI) has recently emerged as a family of nature inspired algorithms, especially known for their
ability to produce low cost, fast and reasonably accurate solutions to complex search problems.
In this chapter, we explore the role of SI algorithms in certain bioinformatics tasks like micro-
array data clustering, multiple sequence alignment, protein structure prediction and molecular
docking. The chapter begins with an overview of the basic concepts of bioinformatics along
with their biological basis. It also gives an introduction to swarm intelligence with special
emphasis on two specific SI algorithms well-known as Particle Swarm Optimization (PSO)
and Ant Colony Systems (ACS). It then provides a detailed survey of the state of the art
research centered around the applications of SI algorithms in bioinformatics. The chapter
concludes with a discussion on how SI algorithms can be used for solving a few open ended
problems in bioinformatics.

4.1 Introduction

The past few decades have seen a massive growth in biological information gathered
by the related scientific communities. A deluge of such information coming in the
form of genomes, protein sequences, gene expression data and so on have led to the
absolute need for effective and efficient computational tools to store, analyze and
interpret the multifaceted data.

The term bioinformatics literally means the science of informatics as applied to
biological research. Informatics on the other hand is the management and analysis
of data using various advanced computing techniques. Hence, in other words, bioin-
formatics can be described as the application of computational methods to make
biological discoveries [1]. It presents a symbiosis of several different areas of sci-
ence including biology, computer science, mathematics and statistics. The ultimate
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attempt of the field is to develop new insights into the science of life as well as
creating a global perspective, from which the unifying principles of biology can be
derived [2]. Three major objectives of bioinformatics can be put forward as:

• To develop algorithms and mathematical models for probing the relationships
among the members of a large biological dataset.

• To analyze and interpret the heterogeneous kind of data including nucleotide and
amino acid sequences, protein domains and protein structures.

• To implement tools that enable efficient storage, retrieval and management of
high-volume biological databases.

Biologically inspired computing has been given importance for its immense par-
allelism and simplicity in computation. In recent times, quite a large number of
biologically motivated algorithms have been invented, and are being used for han-
dling many complex problems of the real world. For instance, neural computing [3]
attempts to mimic the biological nervous systems of the living creatures to ensure
a significant amount of parallel and distributed processing in computation. Genetic
algorithms [4], [5] imitate the Darwinian evolutionary process through cross-over
and mutation of biological chromosomes. They have successfully been used in many
bioinformatics tasks that need intelligent search, optimization and machine learning
approaches. Mitra and Hayashi [6] provides a comprehensive survey of the research
in this direction.

Recently, a family of nature inspired algorithms known as Swarm Intelligence
(SI) [7], [8], [9] has attracted the attention of researchers working on bioinformatics
related problems all over the world. Algorithms belonging to this field are moti-
vated by the collective behavior of a group of social insects (like bees, termites and
wasps). These insects with very limited individual capability can jointly (coopera-
tively) perform many complex tasks necessary for their survival. For the past few
years there has been a slow but steady increase of research papers reporting the suc-
cess of SI based search, clustering and data mining methods applied to the field of
computational biology.

This Chapter provides a detailed review of the role of SI algorithms in dif-
ferent aspects of bioinformatics mainly involving optimization, pattern recognition
and data mining tasks. The rest of the chapter is organized as follows. Section 4.2
briefly describes the preliminary ideas of bioinformatics. In section 4.3, we have
introduced the paradigm of Swarm Intelligence and outlined the technical details
of two popular SI algorithms known as Particle Swarm Optimization (PSO) [10]
and Ant Colony Systems (ACS) [11], [12]. We also discuss the relevance of SI in
bioinformatics under this Section. Section 4.4 reviews a number of SI based meth-
ods available in the literature to address many difficult tasks in bioinformatics. A
few open ended research problems as well as how these can be solved with SI al-
gorithms have been discussed in Section 4.5. Finally the Chapter is concluded in
Section 4.6.
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4.2 Fundamental Concepts in Bioinformatics

In this section, we outline a few preliminary biological concepts which are essen-
tial for understanding several research problems that have been discussed in the
subsequent Sections.

4.2.1 DNA

The complete set of instructions for making an organism is called its genome. It
contains the master blueprint for all cellular structures and activities for the life-
time of the cell or organism. Found in every nucleus of a person’s many trillions of
cells, the human genome consists of tightly coiled threads of deoxyribonucleic acid
or DNA and associated protein molecules, organized into structures called chromo-
somes. DNA plays a fundamental role in the different bio-chemical processes of
living organisms in two respects:

• Firstly, it contains the information the cell requires to synthesize protein and to
replicate itself. To be short, it is the storage repository for the information that is
required for any cell to function [13].

• Secondly, it acts as a medium for transmitting the hereditary information (namely
the synthesis plans for proteins) from generation to generation.

In humans, as in other higher organisms, a DNA molecule consists of two strands
that wrap around each other to resemble a twisted ladder whose sides, made of sugar
and phosphate molecules are connected by rungs of nitrogen- containing chemicals
called bases. Each strand is a linear arrangement of repeating similar units called nu-
cleotides, which are each composed of one sugar, one phosphate, and a nitrogenous
base. Four different bases are present in DNA: adenine (A), thymine (T), cytosine
(C), and guanine (G). The particular order of the bases arranged along the sugar-
phosphate backbone is called the DNA sequence; the sequence specifies the exact ge-
netic instructions required to create a particular organism with its own unique traits.
In normal DNA, the bases form pairs: A to T and G to C. This is called comple-
mentarity. The pair of complementary strands then forms the double helix, which
was first suggested by Watson and Crick in 1953. Figure 4.1 illustrates the double
helix of the DNA sequence with a gene in the sequence delimited. Genes are specific
sequences of bases that encode instructions on how to make proteins. We highlight
them in the next subsection.

4.2.2 The Gene

Each DNA molecule contains many genes – the basic physical and functional units
of heredity. A gene is a specific sequence of nucleotide bases, whose sequences carry
the information required for constructing proteins, which provide the structural com-
ponents of cells and tissues as well as enzymes for essential biochemical reactions.
The human genome is estimated to comprise more than 30,000 genes. Human genes
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Fig. 4.1. The DNA double helix and a gene sequence

vary widely in length, often extending over thousands of bases, but only about 10%
of the genome is known to include the protein- coding sequences (exons) of genes.
Interspersed within many genes are intron sequences, which have no coding function.

The gene’s sequence is like language that instructs cell to manufacture a partic-
ular protein. At first a gene is transcribed to produce messenger ribonucleic acid
(m-RNA) which is next translated to produce proteins. It is the protein that deter-
mines the traits of an organism and is called central dogma of life. The m-RNA is
single-stranded and has a ribose sugar molecule. There exist promoter and termi-
nation sites in a gene, responsible for initiation and termination of the transcription
process. Translation consists of mapping from triplets (codons) of four bases to the
twenty amino acids that serve as the building blocks of protein. There are sequences
of nucleotides within the DNA that are spliced out progressively in the process of
transcription and translation. Wu and Lindsay [14] provides a comprehensive survey
of the research undertaken so far, in this direction.

Apart from the genes, DNA consists of three types of non coding regions:

1. Intergenic regions: Regions between genes that are ignored during the process
of transcription.

2. Intragenic regions (Introns): Regions within the genes that will be spliced out
after transcription, but before the RNA is used.

3. Pseudogenes: These are defunct relatives of known genes that have lost their
protein-coding ability or are otherwise no longer expressed in the cell [13]. Al-
though they may have some gene-like features (such as Promoters, CpG islands,
and splice sites), they are nonetheless considered nonfunctional, due to their lack
of protein-coding ability.

Figure 4.2 illustrates the different parts of a gene.

4.2.3 Proteins

An amino acid is an organic molecule that consists of an amine (NH) and a carboxylic
(CO) acid group (backbone) together with a side-chain that differentiates between
them. Proteins are large organic compounds made of amino acids arranged in a linear
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Fig. 4.2. Schematic outline of a gene

Fig. 4.3. Spiral configuration of the α helix structure. Hydrogen bonds between the CO group
of one amino acids and the NH group of another amino acid holds the α helices together
(adapted from [22])

chain and joined together between the carboxyl atom of one amino acid and the
amine nitrogen of the other [15]. This bond is called a peptide bond. The sequence
of amino acids in a protein is defined by a gene and encoded in the genetic code.
Although this genetic code specifies 20 “standard” amino acids, the residues in a
protein are often chemically altered in post-translational modification: either before
the protein can function in the cell, or as part of control mechanisms. Proteins can
also work together to achieve a particular function, and they often associate to form
stable complexes.

In order to carry out their function, each protein must take a particular shape,
known as its fold. When a protein is put into a solvent, within a very short time it
takes a particular 3D shape. This self assembling process is called folding. More
than half a century ago, Linus Pauling (Nobel prize, 1954) discovered that a major
part of most proteins’ folded structure consists of two regular, highly periodic ar-
rangements of amino acids, designated “a” and “b”. The key to both structures is the
hydrogen bond that stabilizes the structures. The “a” structure is now called α helix
(Figure 4.3). It is a spiral configuration of a polypeptide chain stabilized by hydrogen
bonds between the CO group of one amino acid at position n and the NH group of
the amino acid which is four residues away (n + 4). The “b” structure is now called
β sheet (Figure 4.4). It is an essentially a flat two dimensional structure of parallel
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Fig. 4.4. β pleated sheets structure is stabilized by hydrogen bonds between nitrogen atoms
(of the NH group of one amino acid) and oxygen atoms (of the CO group of another amino
acid) of two adjacent chains (adapted from [22])

or anti-parallel β strands; each β strand consists of two polypeptide chains that are
(almost) fully extended and hydrogen bonded to each other. All other local arrange-
ments that are neither α helix nor β sheet are described as random coil: they are
random in the sense that they are not periodic.

Proteins have multiple levels of structure [1]:

1. Primary structure: Linear structure determined solely by the number, se-
quence, and type of amino acid residues (R).

2. Secondary structure: Local structure determined by hydrogen bonding between
amino acids and non-polar interactions between hydrophobic regions. These
interactions produce, in general, three secondary structures: α helix (Figure 4.2),
β sheet (Figure 4.3), and random coil.

3. Tertiary structure: It results from various interactions (mainly hydrophobic
attractions, hydrogen bonding, and disulfide bonding) of the amino acids side
chains (R) that pack together the elements of the secondary structure. The result
is a 3D configuration of proteins.

4. Quaternary structure: It is characterized by the interaction of two or more
individual polypeptides (often via disulfide bonds) and the result is a larger
functional molecule.

4.2.4 DNA Microarray

A DNA microarray (also commonly known as DNA chip or gene array) is a collec-
tion of microscopic DNA spots attached to a solid surface, such as glass, plastic or
silicon chip forming an array for the purpose of expression profiling, monitoring ex-
pression levels for thousands of genes simultaneously. Figure 4.5 illustrates a simple
DNA chip [16].

Microarrays provide a powerful basis to monitor the expression of thousands
of genes, in order to identify mechanisms that govern the activation of genes in an
organism. Short DNA patterns (or binding sites near the genes) serve as switches
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Fig. 4.5. Example of an approximately 37,500 probe spotted oligo microarray with enlarged
inset to show detail (adapted from [16])

that control gene expression. Therefore, similar patterns of expression correspond
to similar binding site patterns. A major cause of coexpression of genes is their
sharing of the regulation mechanism (coregulation) at the sequence level. Clustering
of coexpressed genes, into biologically meaningful groups, helps in inferring the
biological role of an unknown gene that is coexpressed with a known gene(s). Cluster
validation is essential, from both the biological and statistical perspectives, in order
to biologically validate and objectively compare the results generated by different
clustering algorithms.

4.3 Swarm Intelligence - an Overview and Relevance
to Bioinformatics

The behavior of a single ant, bee, termite and wasp often is too simple, but their
collective and social behavior is of paramount significance. A look at National
Geographic TV Channel also reveals that advanced mammals including lions also
enjoy social lives, perhaps for their self-existence at old age and in particular when
they are wounded. The collective and social behavior of living creatures motivated
researchers to undertake the study of swarm intelligence. Historically, the phrase
Swarm Intelligence (SI) was coined by Beny & Wang in late 1980s [9] in the context
of cellular robotics. A group of researchers in different parts of the world started
working almost at the same time to study the versatile behavior of different living
creatures. SI systems are typically made up of a population of simple agents (an
entity capable of performing/executing certain operations) interacting locally with
one another and with their environment. Although there is normally no centralized
control structure dictating how individual agents should behave, local interactions
between such agents often lead to the emergence of global behavior. Many biological
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Fig. 4.6. Main traits of the collective behavior

creatures such as fish schools and bird flocks clearly display structural order, with the
behavior of the organisms so integrated that even though they may change shape and
direction, they appear to move as a single coherent entity [17]. The main properties
of the collective behavior can be given below and is illustrated in Figure 4.6:

• Homogeneity: every bird in flock has the same behavioral model. The flock
moves without a leader, even though temporary leaders seem to appear.

• Locality: its nearest flock-mates only influence the motion of each bird. Vision
is considered to be the most important senses for flock organization.

• Collision avoidance: avoid colliding with nearby flock mates.
• Velocity matching: attempt to match velocity with nearby flock mates.
• Flock centering: attempt to stay close to nearby flock mates.

Individuals attempt to maintain a minimum distance between themselves and oth-
ers at all times. This rule is given the highest priority and corresponds to a frequently
observed behavior of animals in nature [18]. If individuals are not performing, an
avoidance maneuver they tend to be attracted towards other individuals (to avoid be-
ing isolated) and to align themselves with neighbors [19], [20]. Couzin et al. [17]
identified four collective dynamical behaviors as illustrated in Figure 4.7:

• Swarm: an aggregate with cohesion, but a low level of polarization (parallel
alignment) among members.

• Torus: individuals perpetually rotate around an empty core (milling). The direc-
tion of rotation is random.

• Dynamic parallel group: the individuals are polarized and move as a coherent
group, but individuals can move throughout the group and density and group
form can fluctuate [19], [21].

• Highly parallel group: much more static in terms of exchange of spatial po-
sitions within the group than the dynamic parallel group and the variation in
density and form is minimal.
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Fig. 4.7. Different models of collective behavior (adapted from [23])

A swarm can be viewed as a group of agents cooperating to achieve some pur-
poseful behavior and achieve some goal (see Figure 4.7) [23] . This collective intel-
ligence seems to emerge from what are often large groups.

According to Milonas, five basic principles define the SI paradigm [24]. First is
the proximity principle: the swarm should be able to carry out simple space and time
computations. Second is the quality principle: the swarm should be able to respond
to quality factors in the environment. Third is the principle of diverse response: the
swarm should not commit its activities along excessively narrow channels. Fourth is
the principle of stability: the swarm should not change its mode of behavior every
time the environment changes. Fifth is the principle of adaptability: the swarm must
be able to change behavior mote when it is worth the computational price. Note that
principles four and five are the opposite sides of the same coin.

As it appears, ‘Self-organization’ is one of the fundamental features of any SI
system. However, it is not a simple term to define. In general, it refers to the various
mechanisms by which pattern, structure and order emerge spontaneously in complex
systems. Examples of such structures and patterns include the stripes of zebras, the
pattern of sand ripples in a dune, the coordinated movements of flocks of birds or
schools of fish, the intricate earthen nests of termites, the patterns on seashells, the
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whorls of our fingerprints, the colorful patterns of fish and even the spatial pattern of
stars in a spiral galaxy. Bonabeau et al. have tried to define self-organization using
the following words [7]:

Self-organization is a set of dynamical mechanisms whereby structures appear
at the global level of a system from interactions of its lower-level components.

Serra and Zanarini [25] describes the concept of self-organization generally as
“highly organized behavior even in the absence of a pre-ordained design”. They
go on to further describe examples such as the resonance phenomenon in lasers,
and in cellular automata where “unexpected and complex behaviours can be consid-
ered as self-organized.” Self-organization was originally introduced in the context
of physics and chemistry to describe how microscopic processes give rise to macro-
scopic structures in out-of-equilibrium systems. Recent research, however, suggests
that it provides a concise description of a wide rage of collective phenomena in
animals, especially in social insects. This description does not rely on individual
complexity to account for complex spatial-temporal features, which emerge at the
colony level, but rather assumes that interactions among simple individuals can pro-
duce highly structured collective behaviors. There are four main features that govern
the self-organization in insect colonies:

• Positive feedback (amplification)
• Negative feedback (for counter-balance and stabilization)
• Amplification of fluctuations (randomness, errors, random walks)
• Multiple interactions

At a high-level, a swarm can be viewed as a group of agents cooperating to
achieve some purposeful behavior and achieve some goal. This collective intelli-
gence seems to emerge from what are often large groups of relatively simple agents.
The agents use simple local rules to govern their actions and via the interactions
of the entire group, the swarm achieves its objectives. A type of self-organization
emerges from the collection of actions of the group.

An autonomous agent is a subsystem that interacts with its environment, which
probably consists of other agents, but acts relatively independently from all other
agents. The autonomous agent does not follow commands from a leader, or some
global plan [26]. For example, for a bird to participate in a flock, it only adjusts
its movements to coordinate with the movements of its flock mates, typically its
neighbors that are close to it in the flock. A bird in a flock simply tries to stay close
to its neighbors, but avoid collisions with them. Each bird does not take commands
from any leader bird since there is no lead bird. Any bird can in the front, center
and back of the swarm. Swarm behavior helps birds take advantage of several things
including protection from predators (especially for birds in the middle of the flock),
and searching for food (essentially each bird is exploiting the eyes of every other
bird).

Below we discuss in details two algorithms from SI domain, which have gained
huge popularity in a relatively short span of time all over the world. One of these
algorithms, known as Ant Colony Optimization (ACO) mimics the behavior of group
of real ants in multi-agent cooperative search problems. The latter one is referred to
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as Particle Swarm Optimization (PSO), which draws inspiration from the behavior
of particles, the boids method of Craig Reynolds and socio-cognition [27].

4.3.1 Ant Colony Systems

Insects like ants, bees, wasps and termites are quite social. They live in colonies
and follow their own routine of tasks independent of each other. However, when
acting as a community, these insects even with very limited individual capability can
jointly (cooperatively) perform many complex tasks necessary for their survival [7].
Problems like finding and storing foods, selecting and picking up materials for future
usage require a detailed planning, and are solved by insect colonies without any kind
of supervisor or controller.

It is a natural observation that a group of ‘almost blind’ ants can figure out the
shortest route between a cube of sugar and their nest without any visual information.
They are capable of adapting to the changes in the environment as well [28]. It is
interesting to note that ants while crawling deposit trails of a chemical substance
known as pheromone to help other members of their team to follow its trace. The
resulting collective behavior can be described as a loop of positive feedback, where
the probability of an ant’s choosing a path increases as the count of ants that already
passed by that path increases [12], [28].

The basic idea of a real ant system is illustrated in Figure 4.8. In the left picture,
the ants move in a straight line to the food. The middle picture illustrates the situation
soon after an obstacle is inserted between the nest and the food. To avoid the obstacle,
initially each ant chooses to turn left or right at random. Let us assume that ants
move at the same speed depositing pheromone in the trail uniformly. However, the
ants that, by chance, choose to turn left will reach the food sooner, whereas the ants
that go around the obstacle turning right will follow a longer path, and so will take
longer time to circumvent the obstacle. As a result, pheromone accumulates faster
in the shorter path around the obstacle. Since ants prefer to follow trails with larger
amounts of pheromone, eventually all the ants converge to the shorter path around
the obstacle, as shown in Figure 4.8.

An artificial Ant Colony System (ACS) is an agent-based system, which sim-
ulates the natural behavior of ants and develops mechanisms of cooperation and
learning. ACS was proposed by Dorigo et al. [29] as a new heuristic to solve combi-
natorial optimization problems. This new heuristic, called Ant Colony Optimization

Fig. 4.8. Illustrating the behavior of real ant movements
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(ACO) has been found to be both robust and versatile in handling a wide range of
combinatorial optimization problems.

4.3.2 The ACO Algorithm

The main idea of ACO is to model a problem as the search for a minimum cost path
in a graph. Artificial ants as if walk on this graph, looking for cheaper paths. Each
ant has a rather simple behavior capable of finding relatively costlier paths. Cheaper
paths are found as the emergent result of the global cooperation among ants in the
colony. The behavior of artificial ants is inspired from real ants: they lay pheromone
trails (obviously in a mathematical form) on the graph edges and choose their path
with respect to probabilities that depend on pheromone trails. These pheromone trails
progressively decrease by evaporation. In addition, artificial ants have some extra
features not seen in their counterpart in real ants. In particular, they live in a discrete
world (a graph) and their moves consist of transitions from nodes to nodes.

Pheromone placed on the edges acts like a distributed long term memory [29].
The memory, instead of being stored locally within individual ants, remains dis-
tributed on the edges of the graph. This indirectly provides a means of communi-
cation among the ants called stigmergy [30]. In most cases, pheromone trails are
updated only after having constructed a complete path and not during the walk, and
the amount of pheromone deposited is usually a function of the quality of the path.
Finally, the probability for an artificial ant to choose an edge, not only depends on
pheromones deposited on that edge in the past, but also on some problem dependent
local heuristic functions.

We illustrate the use of ACO in finding the optimal tour in the classical Traveling
Salesman Problem (TSP). Given a set of n cities and a set of distances between them,
the problem is to determine a minimum traversal of the cities and return to the home-
station at the end. It is indeed important to note that the traversal should in no way
include a city more than once. Let r(Cx,Cy) be a measure of cost for traversal from
city Cx to Cy. Naturally, the total cost of traversing n cities indexed by i1, i2, i3, .., in
in order is given by the following expression:

Cost(i1, i2, . . . , in) =
n−1

∑
j=1

r(Cij ,Cij+1)+ r(Cin ,Ci1) (4.1)

The ACO algorithm is employed to find an optimal order of traversal of the cities.
Let τ be a mathematical entity modeling the pheromone and τi j = 1/ri, j is a local
heuristic. Also let allowedk(t) be the set of cities that are yet to be visited by ant k
located in city i. Then according to the classical ant system [11] the probability that
ant k in city i visits city j is given by:

pk
i j(t) = [τi j(t)]α•[ηi j]β

∑
h ∈ allowedk(t)

[τih(t)]α•[ηih]β
, i f j ∈ allowedk(t)

= 0, otherwise

(4.2)
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In Equation 4.2, shorter edges with greater amount of pheromone are favored
by multiplying the pheromone on edge (i, j) by the corresponding heuristic
value η(i, j). Parameters α(>0) and β (>0) determine the relative importance
of pheromone versus cost. Now in ant system pheromone trails are updated as fol-
lows. Let Dk be the length of the tour performed by ant k,∆Dk(i, j) = 1/Dk if (i, j)ε
tour done by ant k and = 0 otherwise and finally let ρε[0,1] be a pheromone decay
parameter which takes care of the occasional evaporation of the pheromone from the
visited edges. Then once all ants have built their tours, pheromone is updated on all
the edges as follows:

τ(i, j) = (1−ρ) · τ(i, j)+
m

∑
k=1

∆τk(i, j) (4.3)

From Equation 4.3, we can guess that pheromone updating attempts to accumu-
late greater amount of pheromone to shorter tours (which corresponds to high value
of the second term in (4.3), so as to compensate for any loss of pheromone due to
the first term). This conceptually resembles a reinforcement-learning scheme, where
better solutions receive a higher reinforcement.

The ACS differs from the classical ant system in the sense that here the
pheromone trails are updated in two ways. Firstly, when ants construct a tour they
locally change the amount of pheromone on the visited edges by a local updating
rule. Now if we let γ to be a decay parameter and ∆τ(i, j) = τ0 such that τ0 is the
initial pheromone level, then the local rule may be stated as:

τ(i, j) = (1−ρ) · τ(i, j)+ γ ·∆τ(i, j) (4.4)

Secondly, after all the ants have built their individual tours, a global updating rule
is applied to modify the pheromone level on the edges that belong to the best ant tour
found so far. If Ê be the usual pheromone evaporation constant, Dgb be the length of
the globally best tour from the beginning of the trial and ∆τ ′ = 1/Dgb only when the
edge (i, j) belongs to global-best-tour and zero otherwise, then we may express the
global rule as:

τ(i, j) = (1− k) · τ(i, j)+ k ·∆τ ′(i, j) (4.5)

The main steps of ACS algorithm are presented as Algorithm 1. The first loop
(iteration) starts with m ants being placed in n cities chosen according to some
initialization rule (e.g. randomly). In the embedded loop (step) each ant builds a tour
(i.e., an acceptable solution to the TSP) by repeatedly applying a stochastic state
transition rule. While building its tour, the ant can modify the pheromone level on
the visited edges by applying the local updating rule given by (4.4). Once all the ants
have terminated their tour, the pheromone trails are modified again by the global
updating rule given in (4.5). Figure 4.9 illustrates the computer simulation of the
ACO technique working on a 10 city TSP problem.
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Algorithm 1 Ant colony system algorithm
Begin

Initialize pheromone trails;
Repeat
Begin /* at this stage each loop is called an iteration */

Each ant is positioned on a starting node;
Repeat
Begin /* at this level each loop is called a step */

Each ant applies a state transition rule like rule (2) to incrementally build a solution
and a local pheromone-updating rule like rule (4.4);

Until all ants have built a complete solution;
A global pheromone-updating rule like rule (4.5) is applied.

Until terminating condition is reached;
End

Fig. 4.9. Solving the TSP problem with ACO algorithm (adapted from [29])

4.3.3 The Particle Swarm Optimisation (PSO)

The concept of particle swarms, although initially introduced for simulating hu-
man social behaviors, has become very popular these days as an efficient search
and optimization technique. The Particle Swarm Optimization (PSO) [10], as it is
called now, does not require any gradient information of the function to be opti-
mized, uses only primitive mathematical operators and is conceptually very simple.
Since its advent in 1995, PSO has attracted the attention of a lot of researchers all
over the world resulting into a huge number of variants of the basic algorithm as
well as many parameter automation strategies. PSO [27] is in principle such a multi-
agent parallel search technique. Particles are conceptual entities which fly through
the multi-dimensional search space. At any particular instant, each particle has a
position and a velocity. The position vector of a particle with respect to the origin
of the search space represents a trial solution of the search problem. At the begin-
ning a population of particles is initialized with random positions marked by vectors
Xi and random velocities Vi. The population of such particles is called a ‘swarm’
S. A neighborhood relation N is defined in the swarm. N determines for any two
particles Zi and Zj whether they are neighbors or not. Thus for any particle Z, a
neighborhood can be assigned as N(Z), containing all the neighbors of that particle.
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Different neighborhood topologies and their effect on the swarm performance have
been discussed in [32]. In the basic PSO, each particle P has two state variables:

1. Its current position Xi(t).
2. Its current velocity Vi(t).

And also a small memory comprising,

1. Its previous best position Pi(t) i.e. personal best experience in terms of the
objective function value f (Pi(t)).

2. The best P(t) of all ZεN(Z): i.e. the best position found so far in the neighbor-
hood of the particle.

The PSO scheme has the following algorithmic parameters:

1. Vmax or maximum velocity which restricts Vi(t) within the interval [−Vmax,Vmax]
2. An inertial weight factor ω .
3. Two uniformly distributed random numbers ϕ1 and ϕ2 which respectively deter-

mine the influence of P(t) and g(t) on the velocity update formula.
4. Two constant multiplier terms C1 and C2 known as “self confidence” and “swarm

confidence” respectively.

Initially the settings for P(t) and g(t) are P(0) = g(0) = x(0) for all particles.
Once the particles are initialized, the iterative optimization process begins where
the positions and velocities of all the particles are altered by the following recursive
equations. The equations are presented for the d-th dimension of the position and
velocity of the i− th particle.

Vid(t + 1) = ωVid(t)+C1φ1.(Pd(t)−Xid(t))+C2φ2.(gd(t)−Xid(t))
Xid(t + 1) = Xid(t)+Vid(t + 1) (4.6)

The first term in the velocity updating formula represents the inertial velocity of
the particle. The second term involving P(t) represents the personal experience of
each particle and is referred to as “cognitive part”. The last term of the same relation
is interpreted as the “social term” which represents how an individual particle is
influenced by the other members of its society. Typically, this process is iterated for
a certain number of time steps, or until some acceptable solution has been found
by the algorithm or until an upper limit of CPU usage has been reached. Once the
iterations are terminated, most of the particles are expected to converge to a small
radius surrounding the global optima of the search space. The velocity updating
scheme is illustrated in Figure 4.10 with a humanoid particle. A pseudo code for
the PSO algorithm is depicted as Algorithm 2.

The PSO algorithm can be seen as a set of vectors whose trajectories oscillate
around a region defined by each individual previous best position and the best posi-
tion of some other individuals [27]. There are different neighborhood topologies used
to identify which particles from the swarm can influence the individuals. The most
common ones are known as the gbest and lbest. In the gbest swarm; the trajectory
of each individual (particle) is influenced by the best individual found in the entire
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Fig. 4.10. Illustrating the velocity updating scheme of basic PSO

Algorithm 2 Particle swarm optimization algorithm
PSO Algorithm input: Randomly initialized position and velocity of the particles: Xi(0) and
Vi(0)
Output: Position of the approximate global optima
Begin

While terminating condition is not reached do
Begin

for i = 1 to number of particles
Evaluate the fitness: = f (Xi(t));
Update P(t) and g(t);
Adapt velocity of the particle using equation 4.6;
Update the position of the particle;
increase;

end while;
end;

swarm. It is assumed that gbest swarms converge fast, as all the particles are attracted
simultaneously to the best part of the search space. However, if the global optimum
is not close to the best particle, it may be impossible for the swarm to explore other
areas and, consequently, the swarm can be trapped in local optima [33]. In the lbest
swarm, each individual is influenced by a smaller number of its neighbors (which are
seen as adjacent members of the swarm array). Typically, lbest neighborhoods com-
prise of two neighbors: one on the right side and one on the left side (a ring lattice).
This type of swarm will converge slower but can locate the global optimum with a
greater chance. lbest swarm is able to flow around local optima, sub-swarms being
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Fig. 4.11. Graphical Representation of (a) gbest Swarm (b) lbest Swarm (adapted from [33])

able to explore different optima [32]. A graphical representation of a gbest swarm
and an lbest swarm respectively is depicted in Figure 4.11.

Watts [34] introduced the small-world network model, which allows interpolat-
ing between regular low-dimensional lattices and random networks, by introducing
a certain amount of random long-range connections into an initially regular net-
work [35]. Starting from here, several models have been developed: icing model [36],
spreading of epidemics [37], evolution of random walks [38] are some of them.

4.3.4 Relevance of SI Algorithms in Bioinformatics

From the discussion of the previous subsections, we see that the SI algorithms
are mainly stochastic search and optimization techniques, guided by the principles
of collective behaviour and self organization of insect swarms. They are efficient,
adaptive and robust search methods producing near optimal solutions and have a
large amount of implicit parallelism. On the other hand, several tasks in bioinformat-
ics involve optimization of different criteria (like energy, alignment score, overlap
strength and so on); thereby making the application of SI tools more obvious and
appropriate. For example, most of the ordering problems in bioinformatics, such
as the sequence alignment, fragment assembly problem (FAP) and gene mapping
(GM), are quite similar to the TSP (one of the most difficult ordering problems till
date) with notable differences [39]. We have already discussed how TSP can be
solved efficiently with the ant systems in Section 4.3.2. Thus, ACO can be tried on
many of these problems and the results can be compared with the classical methods
used in these contexts up to now.

The problems of bioinformatics seldom need the exact optimum solution; rather
what they need are robust, fast and near optimal solutions, which SI algorithms like
PSO are known to produce efficiently. Moreover, the laboratory operations on DNA
inherently involve errors. These are more tolerable in executing the SI algorithms
than in executing deterministic algorithms. To some extent, these errors may be
regarded as contributing to population diversity, a desirable property for the con-
vergence of the SI algorithms. The problem of integrating SI in bioinformatics, in
this way, can develop a new research area.
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4.4 A Review of the Present State of the Art

In this section, we provide a substantial review of the state of the art research,
which focuses on the application of swarm intelligence to different bioinformatics
related problems. The number of published papers reporting the applications of PSO
or ACO in bioinformatics is currently smaller as compared to the huge amount of
work reported for other evolutionary computing methods like GA etc in the same
context. Nevertheless, we believe that in near future SI will serve as an indispens-
able computing methodology in the field of bioinformatics, keeping in mind the
reported success of the SI algorithms over classical evolutionary algorithms in many
cases [40], [41], [42]. We describe each research problem first and then illustrate how
SI algorithms can be used to solve them.

4.4.1 Clustering of Gene Expression Data

Gene expression refers to a process through which the coded information of a gene is
converted into structures operating in the cell. It provides the physical evidence that a
gene has been “turned on” or activated. Expressed genes include those that are tran-
scribed into m-RNA and then translated into protein and those that are transcribed
into RNA but not translated into protein (e.g., transfer and ribosomal RNAs) [43].

The expression levels of thousands of genes can be measured at the same time
using the modern microarray technology [44], [45]. DNA microarrays usually con-
sist of thin glass or nylon substrates containing specific DNA gene samples spotted
in an array by a robotic printing device. Researchers spread fluorescently labeled
m-RNA from an experimental condition onto the DNA gene samples in the array.
This m-RNA binds (hybridizes) strongly with some DNA gene samples and weakly
with others, depending on the inherent double helical characteristics. A laser scans
the array and sensors to detect the fluorescence levels (using red and green dyes),
indicating the strength with which the sample expresses each gene. The logarith-
mic ratio between the two intensities of each dye is used as the gene expression
data.

Proper selection, analysis and interpretation of the microarray data can lead us
to the answers of many important problems in experimental biology. In the field
of pattern recognition, clustering [46] refers to the process of partitioning a dataset
into a finite number of groups according to some similarity measure. Currently
it has become a widely used process in microarray engineering for understand-
ing the functional relationship between groups of genes. Clustering was used, for
example, to understand the functional differences in cultured primary epatocytes rel-
ative to the intact liver [47]. In another study, clustering techniques were used on
gene expression data for tumor and normal colon tissue probed by oligonucleotide
arrays [48].

To cluster the microarray dataset, the first thing we need a suitable similarity
measure among the gene profiles. Euclidean distance serves the purpose when the
objective is to partition genes displaying similar level of expression. Let genei(xi1,
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xi2, . . . ,xin) denote the expression pattern of the i − th gene. Then the Euclidean
distance between the i− th and the j− th gene is given by:

di, j =

√
n

∑
k=1

(xik − x jk)2 (4.7)

Another popular similarity measure used in this context is the Pearson Correla-
tion Coefficient [49] given by

r =
∑n

k=1((xik − x̂i)(x jk − x̂ j))/n

σxi ∗σx j

(4.8)

A number of standard clustering algorithms such as hierarchical clustering [50],
[51], principle component analysis (PCA) [52] [53], genetic algorithms [54], and ar-
tificial neural networks [55] [56] [57], have been used to cluster gene expression data.
However, in 2003, Xiao et al. [58] used a new approach based on the synergism of
the PSO and the Self Organizing Maps (SOM) for clustering them. Authors achieved
promising results by applying the hybrid SOM-PSO algorithm over the gene expres-
sion data of Yeast and Rat Hepatocytes. We will briefly discuss their approach in the
following paragraphs.

The idea of the SOM [59] stems from the orderly mapping of information in the
cerebral cortex. With SOM, high dimensional datasets are projected onto a one- or
two- dimensional space. Typically, a SOM has a two dimensional lattice of neurons
and each neuron represents a cluster. The learning process of SOM is unsupervised.
All neurons compete for each input pattern; the neuron that is chosen for the input
pattern wins it.

Xiao et al. [58] used PSO to evolve the weights for SOM. In the first stage of
the hybrid SOM/PSO algorithm, SOM is used to cluster the dataset. Authors used
a SOM with conscience at this step. Conscience directs each component that takes
part in competitive learning toward having the same probability to win. Conscience
is added to SOM by assigning each output neuron a bias. The output neuron must
overcome its own bias to win. The objective is to obtain a better approx. of pattern
distribution. The SOM normally runs for 100 iterations and generates a group of
weights. In the second stage, PSO is initialized with the weights produced by SOM in
the first stage. Then a gbest PSO is used to refine the clustering process. Each particle
consists of a complete set of weights for SOM. The dimension of each particle is the
number of input neurons of SOM times the number of output neurons of SOM. The
objective of PSO is to improve the clustering result by evolving the population of
particles.

4.4.2 The Molecular Docking Problem

Formally, the protein-ligand docking problem may be described as: We are given
a geometric and chemical description of a protein and an arbitrary small organic
molecule. We want to determine computationally whether the small molecule will
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Fig. 4.12. Stereo view of benzamidine docked in the active site of trypsin

bind to the protein, and if so, we would like to estimate the geometry of the bound
complex, as well as the affinity of the binding. Figure 4.12 illustrates how benzami-
dine, a trypsin inhibitor, docks into the active site of trypsin, a protease involved in
digestion (adapted from [60]).

Liu et al. [61] proposed a novel PSO based docking technique, which they called
SODOCK (Swarm Optimization for molecular DOCKing). After comparing with
a number of state of the art docking techniques like GOLD 1.2 [62], AutoDock
3.05 [63], DOCK 4.0 [64] etc., they found promising results for SODOCK in terms
of robustness, accuracy and the speed of convergence. In SODOCK, three kinds of
parameters are optimized using the PSO:

• Translation: three parameters in this category specify the translation of the cen-
ter of the ligand with respect to the center of a 3D grid box that encloses the
binding site of the protein.

• Orientation: There are four parameters nx,ny,nz and α where nx,ny,nz ε[0,1]
specify the normal vector of the ligand whereas αε[−π ,π ] represent the angle of
self rotation along the normal vector.

• Torsions: These are torsion angles toriε[−π ,π ] associated with the rotating
bonds, i = 1,2, . . . ,T .

Thus, the PSO algorithm is used to evolve a total of N = 7 + T parameters such
that the following docking energy function is minimized:

Etot = Evdw + EH−bond + Epot + Eintern (4.9)

The first three terms in the above expression, correspond to the intermolecular
energies: van der Waals force, hydrogen bonding, and electronic potential. The last
term represents the internal energy of the ligand, which also consists of the three
elements.
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The fitness landscape of the energy function shown in 4.9 is usually riddled with
multiple local minima. In order to tackle these local peaks efficiently, Liu et al.
integrated a local search strategy (a variant of the Solis and Wet local search [63]) in
SODOCK. A generation of SODOCK has four stages: update of velocity, move of
particle, local search, and update of local and global best positions. The local search
may be applied to the particle according to a predefined probability Pls. Finally, the
local and global best positions of particles are updated if their energies are improved.
The particles having the smallest energy correspond to a solution to the flexible
docking problem.

4.4.3 The Multiple Sequence Alignment Problems (MSA)

Sequence alignment refers to the process of arranging the primary sequences of
DNA, RNA, or protein to identify regions of similarity that may be a consequence
of functional, structural, or evolutionary relationships between the sequences. Given
two sequences X and Y , a pair-wise alignment indicates positions of each sequence
that are considered to be functionally or evolutionarily related. From a family S =
(S0,S1, . . . ,SN−1) of N sequences, we would like to find out the common patterns
of this family. Since aligning each pair of sequences from S separately often does
not reveal the common information, it is necessary to perform multiple sequence
alignment (MSA). A multiple sequence alignment (MSA) is a sequence alignment
of three or more biological sequences, generally protein, DNA, or RNA. In general,
the input set of query sequences are assumed to have an evolutionary relationship by
which they share a linkage and are descended from a common ancestor. An example
of multiple alignments of five sequences is illustrated in Figure 4.13.

To evaluate the quality of an alignment, a popular choice is to use the SP (sum of
pairs) score method [65]. The SP score basically sums the substitution scores of all
possible pair-wise combinations of sequence characters in one column of a multiple
sequence alignment. Assuming ci representing the i− th character of a given column
in the sequence matrix and match (ci,c j) denoting the comparing score between
characters ci and c j, the score of a column may be computed using the formula:

SP = (c1,c2, . . . ,cN) =
N−1

∑
i=1

N

∑
j=i+1

match(ci,c j) (4.10)

Progressive alignment is a widely used heuristic MSA method that does not guar-
antee any level of optimality [66]. ClustalW [67] is another widely popular program

Fig. 4.13. An example of multiple sequence alignments
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that improved the algorithm presented by Feng and Doolittle [66]. The main short-
coming of ClustalW is that once a sequence has been aligned, that alignment can
never be modified even if it conflicts with sequences added later.

Recently, Chen et al. [68] took a serious attempt to solve the classical MSA
problem by using a partitioning approach coupled with the ACO algorithm. Authors
algorithm consists of three stages. At first a genetic algorithm is employed to find
out the near optimal cut-off points in the original sequences from where they must
be partitioned vertically. In this way a partitioning method is continued recursively
to reduce the original problem to multiple smaller MSA problems until the lengths of
the subsequences are all less than an acceptable threshold. Next, an ant colony system
is used to align each small subsection derived from the previous step. The ant system
consists of N ants each of which represents a solution of alignment. Each ant searches
for an alignment by moving on the sequences to choose the matching characters. Let
the N sequences be S = S0,S1, . . . ,SN−1. In that case an artificial ant starts from
S0[0], the first character of S0, and selects one character from each of the sequences
of S1, . . . ,SN−1 matching with S0[0]. From the sequence Si, i = 1,2, . . . ,n1, the ant
selects a character Si[ j] by a probability determined by the matching score with S0[0],
deviation of its location from S0[0] and pheromones trail on the logical edge between
Si[ j] and S0[0]. In addition, an ant may choose to insert an empty space according
to a predetermined probability. Next, the ant starts from S0[1], selects the characters
of S1, . . . ,SN−1 matching with S0[1] to form the second path. Similarly, starting from
S0[2], . . . ,S0[|S0|−1], the ant can form other paths. Here |S0| indicates the number of
characters in the sequence |S0|. All these |S0| paths forming an alignment solution is
reproduced in Figure 4.14.

To evaluate an alignment represented by a set of paths, the positions of characters
not selected by the ants are calculated first by aligning them to the right and adding
gaps to the left. Next their SP (sum-of-pairs) score is using relation 4.9. Finally,
a solution to the MSA is obtained by concatenating the results from smaller sub-
alignments. Chen et al. showed that the Divide-Ant-MSA algorithm outperforms the
SAGA [69] a leading MSA program based on genetic algorithm (GA) in terms of
both speed and accuracy especially for longer sequences.

Fig. 4.14. An example alignment as presented by the paths traced out by the ants
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Rasmussen and Krink in [70] focussed on a new PSO based training method for
Hidden Markov models (HMMs) in order to solve the MSA problem. The authors
demonstrated how the combination of PSO and evolutionary algorithms can gen-
erate better protein sequence alignments than with more traditional HMM training
methods, such as Baum-Welch [71] and simulated annealing [72].

4.4.4 The Construction of Phylogenetic Trees

Every species on earth undergo slow change of their hereditary traits in course of
evolution. The phylogenetic or evolutionary trees are schematic binary trees show-
ing the evolutionary interrelationships among various species that are believed to
have a common ancestor [15]. The leaves of such a tree represent the present day
species while the interior nodes represent the hypothesized ancestors. Phylogenetic
trees may be rooted or un-rooted (Figure 4.15). An un-rooted tree simply represents
phylogenies but does not provide an evolutionary path. In case of a rooted tree, one
of the internal nodes is used as an out-group, and, in essence, becomes the common
ancestor of all the other external nodes. The out-group therefore enables the root of
a tree to be located and the correct evolutionary pathway to be identified.

In a phylogenetic tree, the phylogenies are reconstructed based on comparisons
among the present-day objects. The term object is used to denote the units for which
one wants to reconstruct the phylogeny. The input data essential for constructing
phylogeny are of two types [15].

• Discrete characters, such as beak shape, number of fingers, presence or absence
of a molecular restriction site. Each character can have a finite number of states.
The data relative to these characters are placed in an objects character matrix
called character state matrix.

• Comparative numerical data, called distances between objects. The resulting
matrix is called distance matrix.

Given data (character state matrix or distance matrix) for n taxa (object), the
phylogenetic tree reconstruction problem is to find the particular permutation of taxa

Fig. 4.15. Topologies of phylogenetic trees (a) un-rooted (b) rooted
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that optimize the criteria (distance). Felenstein has shown that considering n species,
it is possible to construct N number of trees where, N is given by the following
equations for unrooted trees and rooted trees [73]:

N =
(2n−3)!

2n−2(n−2)!
(4.11)

N =
(2n−5)!

2n−3(n−3)!
(4.12)

The problem poses severe computational challenge before us, example, if we
would like to find the best tree using the method of maximum similarity for (only)
15 species, we should try 213, 458, 046, 676, 875 trees.

The phylogenetic tree construction problem bears close resemblance to a stan-
dard TSP, (Traveling Salesman Problem) described earlier in Section 4.3.2. One can
simply associate one imaginary city to each taxa, and define as the distance between
two cities the data obtained from the data matrix for the corresponding pair of taxas.
This kind of formulation of the problem paves the path for the application of heuristic
algorithms like GA [74], [75] and ACO. Perretto et al. [76] proposed a slightly mod-
ified artificial ant colony based algorithm for the construction of phylogenetic trees.
Their approach starts with building a two-dimensional fully-connected graph using
the distance matrix among the species. In this graph, nodes represent the species and
edges represent the evolutionary distances between species. An example of such a
graph is provided in Figure 4.16. The ants start from a randomly selected node and
continue traveling across the structured graph. At each node a transition function
similar in form to equation 4.2, determines its direction.

The method described in [76], differs from the classical ant systems based TSP in
only one respect. In case of the former algorithm, moves are made between nodes, but
here, the ant system creates an intermediary node between the two previously se-
lected ones. This node will represent the ancestral species of the other two, and it will
not be in the list of nodes (species) to be set in the tree. Using such an intermediary
node, distances to the remaining nodes (species) are recomputed.

The ants initially start from a randomly selected node and continue traveling
across the structured graph. At each node a transition function similar in form to

Fig. 4.16. Distance matrix for four species and the corresponding two-dimensional graph
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equation 4.2 determines its direction. In original ACO based algorithm for TSP,
moves are made between nodes. But here, the ant system creates an intermediary
node between the two previously selected ones. This node will represent the ancestral
species of the other two, and it will not be in the list of nodes (species) to be set in the
tree. Using such an intermediary node, distances to the remaining nodes (species) are
recomputed. This procedure is repeated until all nodes belong to the list of already
visited nodes, and then a path is constructed. The score of this path is given by the
sum of the transition probabilities of the adjacent nodes of the path. Paths constructed
by the ants are then used for updating the pheromone trail. An increment of the
pheromone trail is made at all nodes belonging to at least one path, created in an
execution cycle. This key point helps to avoid trapping in a local maximum. In
this way, following an algorithm very close in spirit to the ant colony algorithm for
solving the TSP, the phylogenetic trees may be reconstructed efficiently.

Ando and Iba [77] proposed an ant algorithm for the construction of evolutionary
trees from a given DNA sequence. Authors algorithm searches for a tree structure that
minimizes the score for a given set of DNA sequences. It uses the mutual distance
matrix of the leaves as the input. While the ACO for TSP visits the respective cities
once to construct a round trip, ants in tree constructing algorithm visit leaves and
vertices of the tree to construct a suffix representation of the bifurcating tree. The
algorithm is shown to compete with conventional methods of the exhaustive search
or the sequential insertion method, taken by the most popular methods.

4.4.5 The RNA Secondary Structure Prediction

Ribonucleic acid (RNA) is a nucleic acid polymer (like DNA) consisting of nu-
cleotide monomers. Unlike deoxyribonucleic acid (DNA), which contains deoxyri-
bose and thymine, RNA nucleotides contain ribose rings and uracil. As pointed out
in Section 4.2.2, RNA serves as the template for translation of genes into proteins,
transferring amino acids to the ribosome to form proteins, and also translating the
transcript into proteins.

Like protein secondary structure (discussed in Section 4.2.3), RNA secondary
structure may be conveniently viewed as an intermediate step in the formation of
a three dimensional structure [13]. RNA secondary structure is composed primarily
of double-stranded RNA regions formed by folding the single-stranded molecule
on itself. To produce such double-stranded regions, a downstream sequence of the
bases in RNA must be complementary to another upstream sequence so that Watson-
Crick base pairing can occur between the complementary nucleotides G-C and A-U
(analogous to the G-C and A-T base pairs in DNA). Among the several recognizable
“domains” of secondary structure three well known ones are hairpin loops, bulges
and internal loops. Figure 4.17 shows the folding of a single stranded RNA molecule
into a hairpin structure.

Secondary structure of RNA molecules can be predicted computationally by cal-
culating the minimum free energy (MFE) structure for all different combinations of
hydrogen bonds and domains. Neethling and Engelbrecht [78] attempted to optimize
the structure of RNA molecules using a modified PSO algorithm. The SetPSO, which
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Fig. 4.17. Illustrating the formation of a hair-pin RNA secondary structure

the authors proposed for this purpose, can operate on mathematical sets in order to
solve set-based combinatorial optimization problems in discrete search spaces. In
SetPSO, the position of each particle denotes a set and this necessitates the redefini-
tion of the addition and subtraction operators suitably. The addition of the position
vectors of two particles here essentially means the union of the two sets, which they
represent (i.e. A + B now represents the set of all elements which belong to both
A and B). On the other hand the subtraction operation is basically the set-theoretic
difference between two sets A and B (i.e. A−B denotes a set of all elements which
belong to A but not to B).

In the course of folding back of RNA, the process of binding of the adjacent
complementary bases is known as stacking. A stack or stem representing a valid
RNA secondary structure should satisfy a few constraints like each base can pair
with only one canonical base, no pseudo knots should be allowed etc. The collection
of all feasible stems (i.e. those obeying the constraints) forms a universal set U.
Each particle of the SetPSO is then initialized as a randomly chosen subset of U.
Positions and velocities of these particles are updated using the modified addition
and subtraction operators with a view to minimizing the thermodynamic free energy
function defined for the RNA structure [79]. Although the SetPSO based algorithm
yielded near-optimal configuration for RNA molecules in a number of benchmarks,
further research is necessary to select a more robust energy function, which can
eliminate the formation of pseudo-knots in the predicted structure.

4.4.6 Protein Secondary Structure Prediction

Protein secondary structures have already been introduced in Section 4.2.3. Protein
structures are primarily determined by techniques such as NMRI (nuclear-magnetic
resonance imaging) and X-ray crystallography, which are expensive in terms of
equipment-cost, computation and time. In addition, they require isolation, purifica-
tion and crystallization of the target protein. Computational approaches to protein
structure prediction are therefore very attractive and cost effective. Since the pro-
cesses involved in the folding of proteins are very complex and only partially under-
stood simplified models like Dill’s Hydrophobic-Polar (HP) have become one of the
major tools for studying proteins [80]. The HP model is based on the observation that
hydrophobic interaction is the driving force for protein folding and the hydrophobic-
ity of amino acids is the main force for development of a native conformation of
small globular proteins [80], [81]. In the HP model, each amino acid can be either of
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Fig. 4.18. A sample protein conformation in the 2D HP model. The underlying protein se-
quence (Sequence 1 from Table 1) is HPHPPHHPHPPHPHHPPHPH; black squares represent
hydrophobic amino-acids, while white squares symbolize polar amino-acids

two types: H (hydrophobic, i.e., non-polar) or P (hydrophilic, i.e., polar). For sim-
plicity, we denote H by “l” (black) and P by “0” (white). The protein conformations
of this sequence are restricted to self-avoiding paths on a lattice. An example for a
protein conformation under a 2D HP lattice model is illustrated in Figure 4.18.

But, finding the optimal folds even in case of the simplest two-dimensional
HP model is computationally hard and knows no polynomial time solution [82].
Shmygelska and Hoos proposed a modified version of the ACO for solving this NP-
hard problem [83], [84]. The ants, in their method, first randomly select a starting
point within the given protein sequence. From this starting point, the given protein
sequence is folded in both directions, adding one amino-acid symbol at a time. In this
way, the tours of these ants construct candidate conformation for a given HP protein
sequence, apply local search to achieve further improvements, and finally update the
pheromone trails based on the quality of the solutions found. The ant system incor-
porates a local search element as a means of by-passing local minima and preventing
the algorithm from premature convergence.

Chu et al. [85] extended the 2-D solutions of the HP protein folding problems
to the 3-D case by using a parallel ant colony system. They proposed a Multi Ant
Colony Optimization (MACOS) algorithm for optimizing the 3-D HP lattice con-
figuration. The MACOS utilizes multiple colonies of artificial ants. It employs sep-
arate pheromone matrices for each colony and allows limited cooperation between
different colonies.

4.4.7 Fragment Assembly Problem (FAP)

The fragment assembly problem (FAP) deals with the sequencing of DNA. Currently
strands of DNA, longer than approximately 500 base pairs, cannot be sequenced
very accurately. As a consequence, in order to sequence larger strands of DNA,
they are first broken into smaller pieces. The FAP is then to reconstruct the original
molecule’s sequence from the smaller fragment sequences. FAP is basically a per-
mutation problem, similar in spirit to the TSP, but with some important differences
(circular tours, noise, and special relationships between entities) [15]. It is also NP-
complete in nature. Meksangsouy and Chaiyaratana [86] attempted to solve the DNA
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fragment reordering problem with the ant colony systems. The authors investigated
two types of assembly problems: single-contig and multiple-contig problems. The
simulation results indicate that in single-contig problems, the ant colony system
algorithm outperforms the nearest neighbor heuristic algorithm when multiple-contig
problems are considered.

4.5 A Few Open-ended Problems and Future Research Directions

In the last section, we discussed the research works already undertaken for making an
efficient use of SI tools in bioinformatics. The papers published in this context, may
be small in volume, but are of immense significance to the researchers of tomorrow.
We note that the SI algorithms are yet to be applied to a huge lot of NP-hard problems
from computational biology, for which no universally acceptable solution is known
till date. In the present Section, we address a few research problems of this kind and
provide hints on their possible solution through the application of SI algorithms.

4.5.1 Identifying Gene Regulatory Networks

A Gene Regulatory Network (GRN) may be defined as a collection of genes in a cell
that interact with one another, governing the rate of transcription [87]. Inferring the
network from gene expression data obtained through DNA microarray constitutes
one of the most challenging problems in the field of bioinformatics. Genes can be
viewed as nodes in a complex network, with input being proteins such as transcrip-
tion factors, and outputs being the level of gene expression. The node itself can also
be viewed as a function which can be obtained by combining basic functions upon
the inputs (in the Boolean network described below these are Boolean functions or
gates computed using the basic AND, OR and NOT gates in electronics). These func-
tions have been interpreted as performing a kind of information processing within the
cell which determines cellular behavior.

PSO can be utilized very effectively to solve the GRN identification problem.
Each particle may represent the real valued expression levels of all the genes. Each
gene has a specific expression level for another gene; thus a total of N genes cor-
respond to N2 expression levels. Fitness of the particles may be computed from
the absolute error with generated expression pattern (sum of all expressions) from
the target expression pattern. Investigations of the same problem with evolutionary
algorithms can be found in [88], [89], [90], [91].

4.5.2 Protein Tertiary Structure Prediction and Folding

Once a protein sequence has been determined, deducing its unique 3-D native struc-
ture is a daunting task. Experimental methods to determine detailed protein structure,
such as x-ray diffraction studies and nuclear magnetic resonance (NMR) analy-
sis, are highly labor intensive. Since it was discovered that proteins are capable
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of folding into their unique functional 3D structures without any additional genetic
mechanisms, over 25 years of effort has been expended into the prediction of 3D
structure from sequence. Despite the large amount of effort expended, the protein
folding or protein structure prediction problem, as it has come to be known, remains
largely unsolved [92].

Since PSO is known as a fast and accurate global optimization method, it may
be integrated in the ab initio approach to protein tertiary structure prediction [93],
[94], [95]. The ab initio approach is a mixture of science and engineering. The sci-
ence is in understanding how the three-dimensional structure of a protein is attained.
The engineering portion is in finding the 3-Dstructure from a given the sequence.
The ab initio folding process can be broken down into two components: devising
a scoring function that can distinguish between correct/good (native or native like)
structures from incorrect (non-native) ones, and a search method to explore the con-
formational space. The PSO may be used in the searching phase in order to enhance
the performance of the process as a whole.

4.5.3 Characterization of Metabolic Pathways between Different Genomes

In biochemistry, a metabolic pathway is a series of chemical reactions occurring
within a cell, catalyzed by enzymes, resulting in either the formation of a metabolic
product to be used or stored by the cell, or the initiation of another metabolic pathway
(then called a flux generating step). Many pathways are elaborate, and involve a step
by step modification of the initial substance to shape it into the product with the exact
chemical structure desired [96].

The goal of characterizing the metabolic pathways is to estimate the “best” set of
parameter values, which minimizes the error between the process data and the model
metabolic network response. This parameter estimation problem can be formulated
as a non-convex, nonlinear optimization problem and can therefore be solved us-
ing global optimization techniques. This feature makes the problem ideal for the
application of algorithms like PSO.

4.5.4 Characterization of Metabolic Pathways between Different Genomes

One of the most promising applications of bioinformatics appears in computer-aided
molecular design (CAMD). In pharmaceutical development, this effort is focused on
modeling the drugs and the biological receptors that the drugs bind to so that better
binding, and therefore, more potent or precise drugs can be developed [97], [98].
SI algorithms like PSO may find important applications for the design of a ligand
molecule, which can bind to the active site of a target protein.

Unlike the GA based methods [99], [100], PSO or ACO have not been applied to
the molecular design problem till date. The formulation of the drug design problem
with PSO requires the control of a fitness function. The fitness function must be
capable of determining which of two arbitrary molecules is better for a specific task.
The algorithm may begin by generating a population of particles each representing
one randomly oriented molecule. The individual molecules in a population are then
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evolved towards greater fitness by using the velocity updating schemes of the PSO
or its variants. However, finding a suitable representation of the particles (thereby
enabling them to contain information about the each random molecule) constitutes a
major research issue in this direction.

4.6 Conclusions

With an explosive growth of the annotated genomic sequences in available form,
bioinformatics has emerged as a challenging and fascinating field of science. It
presents the perfect harmony of statistics, biology and computational intelligence
methods for analyzing and processing biological information in the form of gene,
DNA, RNA and proteins. SI algorithms on the other hand, have recently gained wide
popularity among the researchers, for their amazing ability in finding near optimal
solutions to a number of NP hard, real world search problems. A survey of the bioin-
formatics literature reveals that the field has a plethora of problems that need fast
and robust search mechanisms. Problems belonging to this category include (but
are not limited to) the multiple sequence alignment (MSA), protein secondary and
tertiary structure prediction, protein ligand docking, promoter identification and the
reconstruction of evolutionary trees. Classical deterministic search algorithms and
the derivative based optimization techniques are of no use for them as the search
space may be enormously large and discontinuous at several points. SI presents a
collection of multi-agent parallel search techniques which can be very effective for
solving bioinformatics related tasks of this kind. We fervently hope that the SI com-
munity will make significant contribution to the emerging research area of modern
computational biology in near future.

This article surveyed several important applications of SI tools in bioinformatics.
We also illustrated a few open-ended research problems of computational biology,
where the SI algorithms like PSO and ACO may find very good use. Even though
the current approaches in biological computing with SI algorithms are very helpful
in identifying patterns and functions of proteins, genes etc., the final results are far
from being perfect.

There are a few general issues which should be addressed by the researchers in
future in order to exploit the SI algorithms to their full potential in bioinformatics:
firstly, the basic velocity updating scheme in PSO or the pheromone trail updating
mechanism in ACO are common to all applications; research should now focus on the
design of problem specific operators to get better results. Secondly, the parameters
of the ACO or PSO require extensive experimentation so that the appropriate range
of values can be identified for different bioinformatics tasks. Finally, algorithms like
PSO or ACO and their variants involve a large degree of randomness and different
runs of the same program may yield different results; so it is necessary to incorpo-
rate problem specific domain knowledge in the SI tools to reduce randomness and
computational time and current research should progress in this direction also.
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