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Abstract 

 
The analogy between Immune Systems and Intrusion 

Detection Systems encourage the use of Artificial Immune 

Systems for anomaly detection in computer networks. This 

paper describes a technique of applying Artificial Immune 

System along with Genetic algorithm to develop an 

Intrusion Detection System. Far from developing Primary 

Immune Response, as most of the related works do, it 

attempts to evolve this Primary Immune Response to a 

Secondary Immune Response using the concept of 

memory cells prevalent in Natural Immune Systems. A 

Genetic Algorithm using genetic operators- selection, 

cloning, crossover and mutation- facilitates this. Memory 

cells formed enable faster detection of already 

encountered attacks. These memory cells, being highly 

random in nature, are dependent on the evolution of the 

detectors and guarantee greater immunity from anomalies 

and attacks. The fact that the whole procedure is 

enveloped in the concepts of Approximate Binding and 

Memory Cells of lightweight of Natural Immune Systems 

makes this system reliable, robust and quick responding. 

 

1. Introduction 
 

An intrusion is defined as any set of actions that 

attempt to compromise the integrity, confidentiality or 

availability of a resource [1]. Intrusion Detection Systems 

(IDS) are developed to safeguard the computer network 

from these attacks.  

In this paper, we attempt to use Artificial Immune 

(AIS) System and Genetic Algorithm (GA) to develop an 

IDS, which is host based and uses anomaly detection. The 

proposed technique monitors all incoming requests on the 

host and blocks it in case of an anomaly, thereby making 

the system reactive. We use AIS to develop both Primary 

and Secondary Immune Responses. Genetic Algorithm 

facilitates the evolution of Secondary Immune Response 

from the Primary Immune Response. The concept of 

lightweight, which is an important feature of Natural 

Immune System, has been incorporated during the 

Primary and Secondary Immune Responses. The 

uniqueness of this paper is the composite effect of 

Genetic Algorithm and Artificial Immune System to 

develop a Secondary Immune Response from Primary 

Immune Response, the effectiveness of which is validated 

by experimented results. 

The different approaches to IDS have been narrated in 

various papers [2][4][10][14][15]. Li [3] applies GA in 

IDS by modeling network connection information as 57 

gene chromosomes with hexadecimal representation. The 

novel approach of Artificial Immune System was 

developed to overcome the weaknesses of Network-based 

IDS’s. An Artificial Immune System framework called 

LISYS introduced by Forrest et al. [5] is specialized for 

the problem of Network Intrusion Detection. It uses a 49-

bit compressed representation of TCP SYN packets 

introduced by Hofmeyr [1][5][6][7]. Hofmeyr and Forrest 

[5] discuss a secondary response, which is similar to our 

work. They achieve the Secondary Response in two steps. 

In the first step, the response of the mature detectors has 

been provided with an extended lifetime during the 

training stage. In the second step, a human intervention 

not a system intervention, leads to the formation of a 

memory detector. 

This paper is organized as follows: Section 2 discusses 

the system we have implemented. Section 3 analyzes the 

experimental results and finally Section 4 presents the 

concluding remarks of this work. 

 

2. IDS-EVOLUSIRS 

 
2.1. System Overview 
Intrusion Detection System – Evolutionary Secondary 

Immune Response System (IDS-EVOLUSIRS) is 

developed in four stages: 

1) Data Conversion 

2) Generation and Training of Detectors 

3) Intrusion Detection 

4) Memory Cell Identification 



Embedded in each stage is the concept of lightweight 

of the Natural Immune System. It has been implemented 

as follows: 

Approximate Binding. A single detector is capable of 

detecting any number of intrusions as long as the affinity 

of the detector-intrusion binding is above a particular 

threshold, thus enhancing the detection capability of the 

intrusion detection system [11]. 

Memory Cells. A detector stores information about 

previously detected intrusions. Storing these as memory 

cells enables the system to respond quickly when the 

same intrusions are encountered in the future [11][12]. 

Gene Expression. Detector diversity can be maintained 

by generating a vast number of detectors from new 

combinations of segments stored as memory cell, 

ensuring the effective detection of a wide variety of 

intrusions [9][12]. 

The concept of Approximate Binding is incorporated 

in the training phase of detectors, whereas the Memory 

Cells concept has been implemented in the detection stage 

of the system. The concept of Gene Expression has not 

yet been implemented in our system, but we plan to 

incorporate it in the next phase of our system. 

 

Table 1. Representation of fieldsTable 1. Representation of fieldsTable 1. Representation of fieldsTable 1. Representation of fields    
 

 

2.2. Data Conversion 
The IDS-EVOLUSIRS uses two datasets self and non-

self. The data is taken from the DARPA dataset, which is 

a DARPA/MIT Lincoln Laboratory off-line intrusion 

detection evaluation data set [13]. The following fields 

have been considered in the order mentioned in [3]. 

1. Destination IP Address 

2. Source IP Address 

3. Destination Port Number 

4. Duration 

5. Protocol 

6. Source Port Number 

The requests are converted into binary strings of 

length 134 by concatenating the fields in the order 

mentioned, padding it with zeros wherever necessary. The 

maximum value of each of the fields along with the length 

of their equivalent binary strings is listed in Table 1: 

 
    

Figure 1. Figure 1. Figure 1. Figure 1. Negative selection    

 
    

Figure 2. Figure 2. Figure 2. Figure 2. Generation and training of detectors    
 

2.3. Detector Generation 
The detectors are represented as a set of randomly 

generated binary strings that are trained to differentiate 

between the self and non-self connections. Training is 

Name of the Field Minimum and  

Maximum Value 

 Binary 

Strings 

Length 

Destination IP Address 0.0.0.0 - 255.255.255.255 38 bits 

Source IP Address 0.0.0.0 - 255.255.255.255 38 bits 

Dest. Port No 0 – 65535 16 bits 

Duration 0 – 999 seconds 10 bits 

Protocol 0 – 65535 16 bits 

Source Port No 0 – 65535 16 bits 



done using the Negative Selection algorithm with the 

intention of refining the detector set against the self and 

the non self (intrusions). The refinement procedure, as 

shown in Figure 1, uses a variation of the pattern 

matching algorithm known as the r-Contiguous bits 

algorithm. It discards any detectors matching the self, 

thereby generating a new detector in its place. 

The output is then trained against the non-self 

connections using the same algorithm. The number of 

contiguous bits (‘r’) matching the detector determines the 

fitness of that detector, which in turn determines the 

amount of affinity between the detector and the anomaly 

string. Once the detector has been presented to all the self 

and non-self connections, it forms the “Mature Detector 

Set”, as shown in Figure 2, and is not subject to further 

change. This detector set is used in the Primary Response 

of the IDS-EVOLUSIRS. 

 

Figure 3. Figure 3. Figure 3. Figure 3. IDS-EVOLUSIRS 
    

2.4. Intrusion Detection 
Once the training of the detectors is complete, it is 

now ready to face a real time connection. On facing a 

typical request from an anonymous and external node, the 

system evaluates this request using the concept of the 

fitness value to determine whether the request is an 

anomaly or not. Higher the fitness value of the request, 

greater is the possibility that the incoming request is an 

anomaly. In case of IDS-EVOLUSIRS, this idea has been 

extended. If a match is found at 13 contiguous locations, 

we classify it as a hit, 13 contiguous locations being 

specific to our system. But, the system is activated only if 

3 or more sister detectors are activated by the request. 

Thus, a request matching 3 or more detectors at 13 or 

more contiguous locations classifies it as an anomaly as 

shown in Figure 3. 

    

2.5. Memory Cell Identification 
The adaptive and evolutionary property of Genetic 

algorithms has been used to evolve the highly fit sister 

detectors activated when an anomaly has been 

encountered. The genetic operators – selection, cloning, 

crossover and mutation - have been used for this purpose. 

When an anomaly is encountered, the sister detectors 

activated as a result is called the set of “Activated 

Detectors”, which are candidates for memory cells. Then, 

the genetic operator of selection is applied to determine 

which of these detectors should be cloned. The cloning 

threshold is set by the following formula: 

Cloning Threshold = Sum of fitness of all the detectors 

                                    Total number of detectors 

Those activated detectors having a fitness value 

greater than or equal to the cloning threshold undergo the 

cloning. The number of clones to be generated for the 

candidate detectors is determined by the following 

formula: 

Number of Clones = Int{Fitness of detector*10 / 

Total Fitness} 

Once the process of cloning is complete, the clones 

and the remaining activated detectors together form the 

set of “Winner Detectors”. 

Subjecting these Winner Detectors to the genetic 

operators of Mutation and Crossover facilitates the 

evolution of these detectors. After a substantial number of 

generations, the detector with fitness value greater than all 

the Winner Detectors is treated as a “Memory Cell”. 

 

3. Experimental Results 
 

The dataset used for the evaluation of our Intrusion 

Detection System is the 1998 DARPA Intrusion Detection 

Evaluation Data Set. Although this dataset is quite old, it 

is nevertheless widely used to evaluate intrusion detection 

systems. The ‘tcpdump.list’ files have been used for 

training as well as testing of the system. 

 

3.1. Experimental Setup 
As stated in the Offline Evaluation Plan of the 

DARPA Dataset, of the seven weeks of the 1998 dataset, 

the first six weeks of data are used as training. This 

comprises of 30,000 self records and 165 non self. The 

seventh week of data is used to test the performance of 

the IDS size of which is 5000 with 4019 self and 981 non-

self. The entire set of data is converted into binary strings 

and a set of 100 binary strings is randomly generated to 

represent potential detectors, each with the same length 

(134 bits) as the data in the training dataset. 



The Negative Selection algorithm used to train the 

detectors uses the r-Contiguous bits algorithm to refine 

the data against the non-self data set. The fitness ‘r’ of a 

detector is defined as the number of contiguous matching 

bits of the strings. A number of different values of ‘r’ 

have been tried. We have observed that for any value less 

than or equal to 12, even the self data matches the 

detectors. Further, for any value greater than or equal to 

14, all the non-self data fails to match the detectors, and 

the “Mature Detector Set” is not formed. In either case, 

the Negative Selection algorithm fails. Thus, we have hit 

upon a unique value of ‘r’ equal to 13, where IDS-

EVOLUSIRS is successful. The condition of activation of 

a detector is that it must match at 13 or more contiguous 

locations. Thus we have a single detector, which is 

capable of detecting any number of intrusions as long as 

the affinity of the detector-intrusion binding is above this 

threshold value 13. This implements the concept of 

approximate binding. However, for the recognition of a 

string as non-self, after experimental results, we decided 

that a minimum of 3 detectors must be activated by the 

request. Therefore, an incoming request is classified as an 

anomaly only when it matches at least 3 detectors, at at 

least 13 or more contiguous locations. The detectors are 

generated till these two conditions are met. 

During training of the detector set, if a non-self 

(anomaly) fails to match 3 or more detectors, the non-self 

is classified as a hole. The proposed solution to this 

problem is to randomly generate detectors till the anomaly 

matches at least 3 detectors, therefore overcoming the 

problem of holes. 

Once training is complete, the system is now ready to 

face real time requests. If a incoming request is classified 

as an anomaly, the detectors are activated, constituting the 

“Activated Detector Set” which undergoes the genetic 

operations of selection, cloning, crossover and mutation. 

After experimental analysis, the probabilities of mutation 

and crossover have been fixed to 0.3 and 0.7 respectively. 

A random number is generated, and depending on its 

value, the selected detector or detectors undergo mutation 

or crossover respectively. Mutation is performed by 

randomly selecting a detector from the activated set and 

deliberately complimenting the bits between two 

randomly selected locations of the detector. Two-Point-

Crossover is performed on any two randomly selected 

detectors by swapping the bits between two randomly 

selected crossover points. 

The above process of applying the genetic operators 

continues till a detector having a fitness value greater than 

all those in the “Winner Detector Set” is generated. This 

detector then becomes a Memory Cell, and is stored in a 

separate file aloof from the population of the detectors. 

This memory cell is used to generate Secondary Immune 

Response, should a similar anomaly attack the system in 

the future. Detector diversity has been maintained by 

creating a memory cell from the fittest detectors (“Winner 

Detectors”) formed as a result of the process of Genetic 

algorithm. During this process, the detectors mutate and 

crossover, exchanging effective detector fragments, 

resulting in the formation of a memory cell, which has a 

higher fitness value than the “Winner Detectors” 

participating in this process.  This memory cell, therefore, 

ensures more effective detection. In this manner we 

implement the concept of Memory Cells in the system. 

 

Table 2.Table 2.Table 2.Table 2. Content of distinct memory cells    

 

 

3.2. Experimental Discussions 
Distinct memory cells. On performing the experiment 

using the “Mature Detector Set” on the test data, 

comprising of both self as well as non self connections, 

we conclude that the system was able to correctly classify 

all the test data. The outcome of the experiment was to 

have a set of memory cells of size 66. (This is subject to 

slight variance each time the experiment is carried out 

owing to the random nature of genetic operators) 

The Table 2 summarizes the Primary Immune 

Response, listing the first 5 detectors saved as memory 

cells formed during exposure of the system to the test 

data. A “NO” in column 7 of the table indicates the 

formation of a new memory cell. On the other hand, if a 

previously seen intrusion is encountered, it triggers        

the Secondary Immune Response, resulting in a     

memory cell detecting it, indicated by a “YES” in     

column 7. The formation of memory cells was the result 

of the use  of Genetic algorithms for the evolution of the  

Winner Detectors. Without the use of Genetic algorithms 

in AIS, we would only have a history of past attacks, and 

only attacks completely resembling the known attacks 

could have been prevented.    
Connections with same fitness value. During 

experiments, it occurred to us that it was possible to have 

memory cells with the same fitness values, but different 

connections. Figure 4 shows the fitness values and the 

corresponding number of distinct connections of 66 
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distinct memory cells formed during the test period. The 

problem of having the same fitness value with distinct 

connections has been addressed by considering matching 

of contiguous locations in addition to the usual 

comparison of the fitness values. This helps in detecting 

the already seen attacks in a much more reliable way. 
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Figure 4. Figure 4. Figure 4. Figure 4. Number of connections with the same 
fitness 
    
Dependence of memory cells on a particular field of 

the connection. From Table 2, we conclude that the 

fitness of a memory cell would vary each time the 

experiment is run and that no specific field of the anomaly  

is said to be important in the formation of a new memory  

cell. However, it has been observed that, when an 

anomaly is encountered for which a memory cell is 

already present, most of the times, the Destination IP and 

Source IP remain unchanged. But, the number of memory 

cells formed for each Source IP and Destination IP 

address varies. 
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Figure 5. Figure 5. Figure 5. Figure 5. Number of memory cells corresponding to 
Source_IP 
    

As Figures 5 and 6 illustrate, the number of Distinct 

Destination IP is less than the number of Distinct Source 

IP. This means that the Destination IP remains more or 

less constant over a number of Source IP. 
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Figure 6. Figure 6. Figure 6. Figure 6. Number of memory cells corresponding to 
Destination_IP 
    
Number of distinct memory cells. From experimental 

results, we observe that the DISTINCT memory cell that 

has the maximum number of hits is most of the times the 

one with fitness value equal to the MEAN fitness value. 

The MEAN fitness value is calculated by taking half the 

sum of the minimum fitness value and the maximum 

fitness value of the memory cells of the set. This can be 

observed from Figure 7, which shows that the detector 

with fitness value 22 is the one with the maximum 

number of hits. 
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Figure 7. Figure 7. Figure 7. Figure 7. Number of distinct memory cells 

    
The experimental results report the achievement of a 

superior anomaly detection rate, which was possible by 

the unique procedure involving GA and AIS. The trained 



detectors could detect all the anomalies during the 

Primary Immune Response and the winner detectors 

could classify all the previously seen requests as 

anomalies during the Secondary Immune Response 

because of the GA facilitating the working of the AIS. 
    

4. Conclusions 
 

This paper illustrated the use of memory cells for 

developing a Secondary Immune Response in an Intrusion 

Detection System. Our work differs from other Intrusion 

Detection Systems in that it has encapsulated Secondary 

Immune Response by incorporating the use of memory 

cells that enable faster detection of an already 

encountered anomaly. Moreover, it is observed that the 

nature of memory cells is highly random and is dependent 

on the evolution of the detectors using genetic operators. 

This is possible because of the evolving nature of Genetic 

algorithms and the adaptability induced by Artificial 

Immune System. This random nature of memory cells 

makes the system less predictive and enhances the 

detection capability of the system to trap similar 

anomalies. 

In our paper, we have provided a local solution for the 

problem of holes. In the future, we intend to provide a 

global solution for the same. Although our detector set 

was trained against a sufficiently diverse set of samples, it 

is possible to encounter a non-self pattern that cannot be 

detected by the existing detector set. Ultimately, this 

problem of holes can be handled if we have an expression 

code for anomalies. Thus, our future work will focus on 

development of such Gene Expressions, which will tackle 

the problem of holes globally. 

 

References 
 

[1] Steven Andrew Hofmeyr, “An Immunological Model 

of Distributed Detection and its Application to 

Computer Security” University of New Mexico. May 

1999. 

[2] Ajith Abraham, Crina Grosan, Carlos Martin-Vide, 

“Evolutionary Design of Intrusion Detection 

Programs”, International Journal of Network 

Security, Vol.4, No.3, PP.328–339, Mar. 2007. 

[3] Wei Li, “Using Genetic Algorithms for Network 

Intrusion Detection”, Proceedings of the United 

States Department of Energy Cyber Security Group 

2004 Training Conference, Kansas City, Kansas, 

May 24-27, 2004, CD ROM Proceedings, 8 pages 

[4] J. Balthrop, F. Esponda, S. Forrest, M. Glickman, 

“Coverage and Generalization in an Artificial 

Immune System”, Proceedings of the Genetic and 

Evolutionary Computation Conference, Pages: 3 – 

10, 2002. 

[5] S. Hofmeyr, S. Forrest, “Immunity by Design: An 

Artificial Immune System”, In: Proceedings of the 

Genetic and Evolutionary Computation Conference, 

vol. 2, pp. 1289-1296. 

[6] S. A. Hofmeyr and S. Forrest, “Architecture for an 

artificial immune system,” Evolutionary 

Computation, vol. 7(1), pp. 45–68, 2000. 

[7] A. Somayaji, S. A. Hofmeyr, and S. Forrest. 

“Principles of a computer immune system”, In 

Proceedings of the Second New Security Paradigms 

Workshop, 1997. 

[8] R. A. Goldsby, T. J. Kindt, B. A. Osborne, and W. 

H., Freeman. Kubi “Immunology”, W. H. Freeman 

and Co., 5th ed edition, 2002. 

[9] Tizard, I. R., “Immunology: Introduction”, 4th Ed, 

Saunders College Publishing, 1995. 

[10] Jungwon Kim and Peter Bentley, “The Human 

Immune System and Network Intrusion Detection”, 

7th European Congress on Intelligent Techniques 

and Soft Computing (EUFIT '99), Aachen, 

Germany, September 13- 19. 

[11] Paul, W. E., 1993, “The Immune System: An 

Introduction”, in Fundamental Immunology 3rd Ed., 

W. E. Paul (Ed), Raven Press Ltd. 

[12] J. Balthrop, F. Esponda, S. Forrest, M. Glickman, 

“Coverage and Generalization in an Artificial 

Immune System”, Proceedings of Genetic and 

Evolutionary Computation Conference (GECCO) 

2002. 

[13] DARPA/MIT Lincoln Laboratory off-line intrusion 

detection evaluation data set: 

http://www.ll.mit.edu/IST/ideval/ (accessed on April 

10, 2008) 

[14] Sandhya Peddabachigari, Ajith Abraham, Crina 

Grosan and Johnson Thomas, Modeling Intrusion 

Detection System Using Hybrid Intelligent Systems, 

Journal of Network and Computer Applications, 

Elsevier Science, Volume 30, Issue 1, pp. 114-132, 

2007. 

[15] Yuehui Chen and Ajith Abraham and Ju Yang, 

Feature Deduction and Intrusion Detection Using 

Flexible Neural Trees, Second IEEE International 

Symposium on Neural Networks (ISNN 

2005), Lecture Notes in Computer Science Vol. 

3498,  J. Wang, X. Liao and Zhang Yi (Eds.) 

Springer Verlag, Germany,  pp. 439- 446, 2005. 


