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Abstract

This paper suggests a decision support system for tactical air combat environment where not
much prior information is available about the decision regions. We proposed a combination of
unsupervised learning for clustering the data (to develop decision regions) and a feed forward
neural network to classify the decision regions accurately. The clustered data is used as the
inputs to the multi-layered feed forward neural network, which is trained using several higher
order learning paradigms. Experiment results reveal that the proposed method is e2cient.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Several decision support systems have been developed mostly in various 7elds in-
cluding medical diagnosis, business management, control system, command and control
of defence, air tra2c control and so on [12,19,16]. Usually previous experience or ex-
pert knowledge is often used to design decision support systems. Several adaptive
learning frameworks for constructing intelligent decision support systems have been
proposed [1,3]. To develop an intelligent decision support system, we need a holistic
view of the various tasks to be carried out including data and knowledge manage-
ment (reasoning techniques) [9,18]. The focus of this paper is to develop a tactical
air combat decision support system (TACDSS) with minimal prior knowledge, which
could also provide optimal decision scores. This paper is an extension of our previous
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Fig. 1. Concurrent unsupervised and supervised training of neural network for TACDSS.

work where we had implemented evolutionary-fuzzy system [6] and diBerent fuzzy
inference methods using diBerent learning techniques [4,5]. As shown in Fig. 1, we
propose a concurrent unsupervised neural network to cluster the decision regions and
a supervised feed forward neural network trained using diBerent higher-order learn-
ing paradigms to automatically generate the decision scores. Section 2 presents the
problem of decision making in tactical air combat system. In Section 3, we introduce
some theoretical concepts of self-organization map (SOM) followed by feed forward
neural network learning paradigms namely Levenberg–Marquardt (LM), quasi-Newton
(QN) and scale conjugate gradient (SCG) algorithms [2]. Experimentation results are
provided in Section 5 and some conclusions are also provided towards the end.

2. The tactical air combat environment (TACE)

The goal of the project is to develop the decision support system for tactical en-
vironment. This section will explain the way to develop the decision support system
with the support of cognitive work analysis (CWA) [21]. Asset management in TACE
is an important task of the airborne early warning command and control (AEW& C).
Its task will be to regularly collect and update information of the environment such
as weather, speed and direction of wind for an aircraft. These will create the large
amount of information that being processed by operators in a dynamic environment.
Other tasks include providing information about the state of assets such as fuel and
weapons, information of enemy aircraft/vehicle/ships (quantity and type). Additional
procurement of assets may be initiated in a timely manner such that replacement could
be achieved immediately when required. Tasks also include coordination with other
controllers to ensure that there is su2cient asset at the ground base. There are more
tasks that the mission system operator or commander will be required to perform to
manage eBectively especially when it becomes overwhelming during a real tactical air
combat environment as explained by the AEW& C [7].
The decision support system not only requires being intelligent but also should in-

corporate human machine interaction and consider human as the integral part of the
system. The CWA is a system design technique to provide corporation between the
human and computing system. CWA is suitable to analyze complex systems that has
high-level of cognitive input from human operators, which contributes to the strong
success during unpredictable situations and assist hard decision-making. The decision
support system should have high level of automation and information integration with
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a role of operation shift to high task level that involves problem solving, hard decision
making, conceptual understanding, planning and workload management.

2.1. The activity context of TACE

There are various activities (work functions) in the TACE system. The work func-
tions could be broadly divided into 4 functions namely (a) mission planning and re-
porting (b) system set up, con7guration and shutdown (c) surveillance and (d) asset
control. The major classes of mission context are namely (a) on ground and not in
aircraft (b) on ground in aircraft (c) on way to station (d) on station (e) returning
to base (f) on ground and in aircraft and (g) on ground not in aircraft [17]. The
activity context of AEW& C will be concerned about the crew at each stage of the
mission, and their changing preoccupations as the mission progresses. For example,
the mission planning is a preoccupation in the earlier phases of a mission and mission
reporting is a preoccupation at the later stages of mission. To achieve these objectives,
the TACE must incorporate all the priorities and be capable of long-term understand-
ing of the patterns of regional activity, real-time understanding of the current tactical
situation, coordinate and maintain safety of assets under its control, and self preserva-
tion. The purpose-related functions must be able to provide information related to the
work domain including development of the tactical picture, evaluation of the tactical
situation, communication, and implementation of protective measures. Finally, AEW&
C will be equipped with physical devices such as radar for gathering information from
the environment and a mission data-processing computer for storing and processing
information. TACE work domain analysis provides physical device solutions at the
higher-level work domain functions. Thus if the ability to exchange information and
communicate is compromised through de7ciencies in the equipment design, then the
ability to establish, update, and disseminate the tactical picture and to exercise con-
trol over friendly assets is also compromised. However, if the de7ciency is in the
equipment functioning by reduction of electronic and radio emissions, the presence
of platforms will be communicated less eBectively, which could result in the reduc-
tion of protection level of platform, sensors, and information systems from friend and
enemy.

2.2. The simple scenario of tactical air combat environment

Fig. 2 presents a typical scenario of air combat tactical environment. The Airborne
Early Warning and Control (AEW& C) is performing surveillance in a particular area
of operation. It has two hornets (F/A-18s) under its control at the ground base as shown
“+” in the left corner of Fig. 2. An air-to-air fuel tanker (KB707) “ ” is on station
and the location and status are known to the AEW& C. Two of the hornets are on
patrol in the area of Combat Air Patrol (CAP). Sometime later, the AEW& C on-board
sensors detects 4 hostile aircrafts (Mig-29) shown as “O”. When the hostile aircrafts
enter the surveillance region (shown as dashed circle) the mission system software is
able to identify the enemy aircraft and its distance from the Hornets in the ground
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Fig. 2. A simple scenario of the air combat.

base or in the CAP. The mission operator has few options to make a decision on the
allocation of hornets to intercept the enemy aircraft.

• Send the Hornet directly to the spotted area and intercept.
• Call the Hornet in the area back to ground base and send another Hornet from the
ground base.

• Call the Hornet in the area to refuel before intercepting the enemy aircraft.

The mission operator will base his decisions on a number of decision factors, such
as:

• Fuel used and weapon status of hornet in the area.
• Interrupt time of Hornet in the ground base and the Hornet at the CAP to stop the
hostile.

• The speed of the enemy 7ghter aircraft and the type of weapons it posses.
• The information of enemy aircraft with type of aircraft, weapon, number of aircraft.

From the above simple scenario, it is evident that there are several important decision
factors of the tactical environment that might directly aBect the air combat decision. In
the simple tactical air combat, the four decision factors that could aBect the decision
options for calling the Hornet in the CAP or the Hornet at the ground base are the
following:

• “fuel status”—quantity of fuel available to perform the intercept,
• “weapon possession status”—quantity of weapons available in the Hornet,
• “interrupt time”—time required by the hornet to interrupt the hostile, and
• “danger situation”—information of the Hornet and the hostile in the battle7eld.
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Table 1
Decision factors for the tactical air combat

Fuel used Time intercept Weapon status Danger situation Decision

Full Fast Su2cient Very dangerous Good
Half Normal Enough Dangerous Acceptable
Low Slow Insu2cient Endanger Bad

Each factors has diBerence range of unit such as the fuel status (0–1000 l), in-
terrupt time (0–60 min), weapon status (0–100%) and danger situation (0 to 10
points). We used the following two expert rules for developing the rule-based inference
system.

• The decision selection will have small value if the fuel status is low, the interrupt
time is slow, the hornet has low weapon status, and the danger situation is high.

• The decision selection will have high value if the fuel status is full, the interrupt
time is fast, the hornet has high weapon status and the danger situation is low.

In the air combat environment, decision-making is always based on all states of deci-
sion factors. But sometimes, a mission operator or commander could make a decision
based on an important factor, such as the fuel used is too low, the enemy has more
powerful weapons, quality and quantity of enemy aircraft and so on. Table 1 shows
some typical scores (decision selection point) taking into account of the various tactical
air combat decision factors.

3. Self-organizing feature maps

Kohonen’s self-organizing map (SOM) algorithm introduces the fundamental idea of
unsupervised, competitive learning, self-organization, and global ordering [10,11]. Ad-
justing weights of neurons in a local neighborhood around the winning neuron leads
to global ordering through continuous learning. This operation of the SOM algorithm
shows the ability of biological neurons that perform global ordering based on local
interactions. This global order leads to the creation of natural structures and biolog-
ically motivated con7gurations and shapes, which are created according to laws of
minimum energy, time, or complexity [22]. In the SOM learning algorithm, the weight
adjustments are provided not only for a winning neuron but also for its neighbors. A
Competitive learning of the SOM algorithm will 7nd the best matching neuron as the
winner for a given input vector x. The winning neuron’s weight adjustment will also
be shared by its neighbors in a certain neighborhood. Thus, the neighboring neurons
will learn from the same input vector x. The “learning rate” is also called the neigh-
borhood kernel. It is a function of both time (iteration step) and the winning neuron
spatial neighborhood Nj(k). This spatial neighborhood is a time-dependent function that
de7nes the set of neurons that are topographically close to the winning neuron. The
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neurons in the spatial neighborhood adjust their weights according to the same learn-
ing rule but with amount depending on their position with respect to the winner. After
adjusting the weight of the neighborhood neurons of the winning neuron, the SOM
algorithm will continue to adjust the weight of the neighbor neurons until the itera-
tions are completed. As a result of weight adjustment, a group of neurons are obtained
forming a cluster and the algorithm is repeated to search another winning neuron until
all the input data is processed. SOM algorithm is used to learn the decision regions
(clusters).

4. Learning decision regions using supervised learning paradigms

Once the clusters are de7ned using SOM, the next step is to apply the supervised
learning to train a neural network to learn the diBerent decision regions for the given
input data. The supervised learning of neural networks can be viewed as a function
optimization problem, wherein higher-order optimization methods using gradient infor-
mation are used to improve the rate of convergence. In our experiments, we studied
the performance of Levenberg–Marquardt (LM) [8], Quasi-Newton (QN) [13] and the
scale conjugate gradient (SCG) [15] algorithms.

4.1. Levenberg–Marquardt (LM)

When the performance function has the form of a sum of squares, then the Hessian
matrix H can be approximated to H=J TJ ; and the gradient can be computed as g=J Te,
where J is the Jacobian matrix, which contains 7rst derivatives of the network errors
with respect to the weights, and e is a vector of network errors. The Jacobian matrix
can be computed through a standard backpropagation technique that is less complex
than computing the Hessian matrix. The LM algorithm uses this approximation to the
Hessian matrix in the following Newton-like update:

xk+1 = xk − [J TJ + 
I ]−1J Te:

When the scalar 
 is zero, this is just Newton’s method, using the approximate Hessian
matrix. When 
 is large, this becomes gradient descent with a small step size. As
Newton’s method is more accurate, 
 is decreased after each successful step (reduction
in performance function) and is increased only when a tentative step would increase the
performance function. By doing this, the performance function will always be reduced
at each iteration of the algorithm [14].

4.2. Quasi-Newton (QN)

The quasi-Newton method was derived from quadratic objective function. The inverse
of the Hessian matrix B = H−1 is used to bias the gradient direction, Bt−1 is an old
value of B. In the quasi-Newton training method, the weights are updated using,

Wt+1 =Wt − �Btgt :
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B matrix here is not computed. It is successively estimated employing rank 1 or rank
2 updates, following each line search in a sequence of search directions,

Bt = Bt +SBt:

The two major formulas to compute SBt as follows:

SBt =
ddT

dTSg
− Bt − 1SgSgTBt − 1

SgTBt − 1Sg
(1)

or

SBt =
(
1 +

SgTBt − 1Sg
dTSg

)
ddT

dTSg
− dSgTBt − 1 + Bt − 1SgdT

dTSg
; (2)

where d= wt − wt−1 and Sg= gt − gt−1.
Eq. (1) is called the DFP (Davidon–Fletcher–Powell) formula and (2) is called the

BFGS (BroydenFletcher–Goldfarb–Shannon) method.

4.3. Scale conjugate gradient (SCG) algorithm

The conjugate gradient methods are originally derived from quadratic minimization
and the minimum of the objective function E can be e2ciently found within N itera-
tions. With initial gradient ginitial =�E=�w|W=Winitial , and direction vector dinitial =−ginitial,
the conjugate gradient method recursively constructs two vector sequences as follows:

g(t + 1) = g(t) + �(t)Hd(t);

d(t + 1) =−g(t + 1) + �(t)d(t);
where

�(t) =
g(t)Tg(t)
d(t)THd(t)

and

�(t) =
g(t + 1)Tg(t + 1)

g(t)Tg(t)
;

where t is the time instant and t + 1 is next iteration time, d is called the conjugate
direction and H is the Hessian matrix of the objective function E. To reduce the
computational time, a scaled conjugate gradient (SCG) algorithm was developed by
Moller [15]. Moller’s approach avoids the line search per learning iteration by using
Levenberg–Marquardt way of scaling the step size.

5. Experiment results and performance analysis

The master data set is in accordance with Table 1 comprises of 1000 datasets.
Each record consists of the TACE data namely ‘fuel status’, ‘interrupt time’, ‘weapon
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Fig. 3. Developed TACE clusters using SOM (a) 80% and (b) 90% data.

status’ and ‘danger situation’. To avoid any bias on the data, from the master dataset,
we randomly created two sets of training (Dataset A—90% and Dataset B—80%) and
test data (10% and 20%), respectively. All the experimentations were repeated three
times and the average errors are reported.

5.1. Unsupervised training of SOM

We used the Matlab SOM toolbox developed by Vesanto [23,24]. SOM analysis
provided three clusters: C1; C2 and C3. The developed clusters for the two data sets
A and B are shown in Figs. 3 (a) and (b).
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Fig. 4. The MSE of training dataset A and B for the three training methods.

5.2. Learning the decision regions

We used a feed-forward neural network trained [20] using LM, QN and SCG al-
gorithms. Given input data, the network was supposed to learn the three clustered
decision regions. The three clusters were assigned numerical values of 0.1, 0.5 and 1,
respectively. We adopted a trial and error approach to decide the number of hidden
layers. Figs. 4 (a) and (b) illustrate the convergence of mean squared error for (a)
dataset A and (b) dataset B using LM, QN and SCG approaches.
The comparison of actual and target output for both Datasets A and B using the

three approaches are illustrated in Figs. 5 and 7 (training) and Figs. 6 and 8 (testing).
Figs. 5–8 Table 2 shows the RMSE of training and test performance. Empirical results
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Fig. 5. Actual and target output of training dataset A using three learning paradigms.

Fig. 6. Actual and target output of test dataset A using three learning paradigms.

reveal that even though LM gave the best training error for both datasets, SCG gave
the best generalization performance.

6. Conclusion

In this paper, we proposed a hybrid unsupervised–supervised training method to de-
velop an intelligent decision support system for a tactical air combat environment when
no priori information about the decision regions are available. We also investigated the
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Fig. 7. Actual and target output of training dataset B using three learning paradigms.

Fig. 8. Actual and target output of test dataset B using three learning paradigms.

Table 2
Comparative performance of the diBerent learning algorithms

Learning method Training Test
Dataset A Dataset B Dataset A Dataset B

LM 0.0028 0.0085 0.0253 0.0253
QN 0.0209 0.0223 0.0357 0.0328
SCG 0.0327 0.0429 0.0470 0.0484
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performance of three neural network-learning paradigms to learn the diBerent decision
regions. Even though LM gave the best training performance in spite of the compu-
tational complexity, SCG gave the best generalization performance for both datasets.
Our future research will incorporate several other clustering algorithms, Bayesian rea-
soning and hidden Markov decision models to further granulate the decision regions
and improve the overall performance.
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