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Abstract
This paper investigates the design of game playing agents, which should automatically play an asymmetric hide-and-

search-based board game with imperfect information, called Scotland Yard. Neural network approaches have been

developed to make the agents behave human-like in the sense that they would assess the game environment in a way a

human would assess it. Specifically, a thorough investigation has been conducted on the application of adversarial neural

network combined with Q-learning for designing the game playing agents in the game. The searchers, called detectives and

the hider, called Mister X (Mr. X) have been modeled as neural network agents, which play the game of Scotland Yard.

Though it is a type of two-player (or, two-sided) game, all the five detectives must cooperate to capture the hider to win the

game. A special kind of feature space has been designed for both detectives and Mr. X that would aid the process of

cooperation among the detectives. Rigorous experiments have been conducted, and the performance in each experiment

has been noted. The evidence from the obtained results demonstrates that the designed neural agents could show promising

performance in terms of learning the game, cooperating, and making efforts to win the game.

Keywords Deep reinforcement learning � Multi-agent system � Intelligent game agents � Adversarial models �
Expert systems

1 Introduction

Game is defined as any activity that has the four traits:

goals, rules, feedback system, and voluntary participation

[1]. Board games such as ‘Senet,’ ‘Mancala’ and ‘Go’ were

invented in the 3000 BC as a form of recreation, and the

ability to play a board game well is regarded as the sign of

intelligence and learning. Based on the balance of the game

[2] during the game play, games can be classified into two

different groups: symmetric and asymmetric. In a sym-

metric game, options are the same for each side of the

players. Because of the similar options to play the game,

each side of the players continues to apply their part of the

strategy chosen from the available options to win the game

as soon as possible. This fact makes the symmetric games

short, e.g., Ludo [3]. Asymmetric board games are those

games in which the players do not stand on the equal

ground. Availability of different options provides different

advantages and disadvantages to each player. In asym-

metric games, the players do not focus more on the short-

term strategies rather on the long-term strategy to win the

game. Availability of different options and varying strate-

gies makes the asymmetric games more complex, yet

interesting to play. However, it should be noted that the

asymmetric games can still have statistical balance, even if

the options available for each individual side are not bal-

anced against each other.
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A subclass of asymmetric games with imperfect infor-

mation is the class of hide-and-search games which are

played by two parties called hider(s) and seeker(s). The

goal of the seeker(s) is to capture the hider(s) in finite time.

Many different versions of the hide-and-search game exist

which are based on the number of hiders and number of

seekers. Available literature suggests that present research

in the area of hide-and-search games focuses more on

mathematical techniques for finding optimal strategies for

the seekers to capture the hider(s) in finite time [4, 5]. In

our present research, we investigate adversarial neural

network learning approach in playing a hide-and-search

board game called Scotland Yard.

Scotland Yard is a popular asymmetric board game

which won the prestigious Spiel des Jahres (Game of the

Year) award in the year 1983. This game uses a hide-and-

search mechanism during the game [6] in which the

seekers, called detectives, have to determine the location of

the mobile hider based on the limited amount of informa-

tion. The detectives should cooperate in a coalition to solve

a variant of the pursuit–evasion problem [7] to capture the

hider, called Mister X (Mr. X). Scotland Yard has three

properties [8] that make it a very challenging problem to

solve using adversarial learning mechanisms: (1) The

seekers (detectives) perform public moves while Mr. X can

perform both public and private moves. Therefore, imper-

fect information is available to the detectives. (2) There are

five detectives and it requires that all of them should

cooperate in some fashion to catch Mr. X. (3) The game is

asymmetric, and hence, the game is imbalanced in its goals

that make automatic adaptation to the situations harder.

Machines can play the board games either using search-

based heuristics or learning-based heuristics. Searching can

be carried out in a game tree or a graph, application of

which depends on the properties of the game itself [9–11].

Learning-based heuristics have been applied in board

games [12] and one of the most successful applications of

learning is the application of deep neural network to master

the game of Go that also employs tree search for enu-

merating the possible moves [13]. Other researches suggest

that the tree search could be reinforced to make the search

more efficient and applicable in reality [14]. Recently,

Scotland Yard has been modeled as a search game by using

heuristic search algorithms. One of such techniques was

attempted in [8, 15] in which Monte Carlo Tree Search

(MCTS) technique was used as a heuristic search algo-

rithm. In a different development over the study of this

game, a complexity analysis has been performed by

Sevenster [16], where it has been shown that the general-

ized version of the game is PSPACE-complete. Further, in

this work, it has also been shown that if the detectives are

ignorant of the whereabouts of the Mr. X, the Scotland

Yard game is NP-complete. Therefore, it is indeed hard to

solve the game of Scotland Yard using traditional search-

based heuristics in polynomial time and the problems

remain open, thereby making it an interesting problem to

study. In a recent survey, it has been discussed that neuro-

evolution can be a better alternative to other procedural

search-based heuristics [17]. Furthermore, hyper-heuristic,

which is possibly a combination of smaller heuristics,

could solve the game problems in more efficient way [18].

In this work, we attempted to model this complex and open

problem of Scotland Yard by essentially learning the pat-

tern that Mr. X follows during its hiding in the board

(map).

It is trivial to state that it is a two-player game (essen-

tially, two-sided) game in which each side attempts to win

by applying its part of strategy. The strategy of one side

becomes an adversary for another side and vice-versa. If

both the sides are modeled using mathematical approxi-

mators such as neural networks, the decisive strategy

constructed by neural network(s) at one side is adversarial

to the decisive strategy constructed by the other side. Such

a combination of neural network model could be referred

as an adversarial neural network that learns through rein-

forcement, and therefore, the methodology could be called

as deep reinforcement learning. In our present research, we

investigate the application of adversarial neural network

that also incorporates Q-learning technique to play the

Scotland Yard board game. We hypothesize that neural

networks with various depths would result in different

degree of learning in the behavior of the hider (Mr. X) and

the seekers in the Scotland Yard game. Furthermore, we

also incorporate the cooperative strategies in designing the

adversarial neural networks for the hider (Mr. X) as well as

the seekers (detectives) to play the game in finite time.

Rigorous experiments have been conducted to obtain the

results in the form of win-to-loss ratios. Conceptual infer-

ences have been made from these obtained results.

1.1 Summary of contributions

Our contribution in the present work can be summarized as

follows:

• We propose and investigate the applicability of adver-

sarial neural networks for playing a hide-and-search

board game called Scotland Yard.

• Two different models of the adversarial neural net-

works have been developed and rigorously experi-

mented to learn the behavior of Mr. X in the game and

further to incorporate the coalition among the

detectives.

• Conceptual inferences have been made from the

obtained results of the developed models.
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• This investigative study could aid in the present

research in the applied field of machine learning and

hide-and-search game.

The paper has been organized as follows: Sect. 1 intro-

duces the problem and our major contribution in this

research, Sect. 2 presents a brief explanation of the Scot-

land Yard game, the rules of the game, and fundamental

motivation behind the use of neural network to design the

game agents, Sect. 3 elaborates the methodology proposed

and implemented in this research, and Sect. 4 describes the

experimental setup and the experimental evaluation of our

proposed methods. The work is summarized in Sect. 5.

2 Background and motivation

2.1 Scotland Yard board game

The game of Scotland Yard was introduced in 1983, and

the original version was first published by Ravensburger,

and the English language version of the game was mar-

keted by Milton Bradley [19]. The Scotland Yard board

game is played by 6 players: 5 searchers called detectives

and 1 hider, called Mr. X. The game is essentially a two-

player game in which the five detectives work as one team

to capture Mr. X in a region which has many different

routes presented on a map. A graph of a portion of the map

used in the Scotland Yard game is shown in Fig. 1.

2.1.1 Rules of the game

There are 199 vertices (nodes) numbered from 1 thorough

to 199. The vertices are connected by 4 different kinds of

edges that represent different transportation modes: bus,

taxi, underground tunnel, and boat. Each vertex can hold at

most one player, and each player can occupy at most one

vertex at one time. The vertex occupied by a player at a

time is called the location of the player at that time. There

are 18 predefined vertices where all the six players can start

at by randomly choosing one of the 18 vertices. Each

detective can have maximum 10 taxi tickets, 8 bus tickets,

and 4 underground tickets. Mr. X can have 4 taxi tickets, 3

bus tickets, and 3 underground tickets. The movement of

the players is alternating starting with Mr. X. A sequence

of moves by all the six players (5 detectives and Mr. X) is

called a ‘round.’ There are maximum 24 rounds in Scot-

land Yard game.

Each player looses a ticket based on the type of the

chosen edge in moving from one vertex to another. The

interesting aspect is that when a detective looses a ticket, it

gets added to the ticket of Mr. X. However, vice-versa is

not true. When Mr. X plays a ticket, the ticket is perma-

nently removed from the game. This aspect makes this

game a (pseudo) zero-sum game in which detectives would

want to minimize their expenditure on the tickets and Mr.

X would want to maximize the chance of getting additional

tickets. It is alright to call this game as a pseudo zero-sum

game because when Mr. X plays a ticket, the ticket is

permanently lost, whereas this is not the case with the

detectives. In addition, Mr. X also has a black fare ticket

that allows him to move along any type of edge, including

the boat ride. Sometimes, Mr. X may also play one of his

double-move tickets, and at that round of play, detectives

have to skip their turn.

During the game play, Mr. X keeps his location a secret,

and only after moving on rounds 3, 8, 13, 18, and 24, he

announces his location. Detectives are well informed about

the ticket used by Mr. X in his movement from one vertex

to another. Mr. X is captured when any one of the detec-

tives moves onto the node which Mr. X is occupying. Mr.

X’s goal is to avoid being captured by the detectives until

no detective has any ticket left or none of them can perform

a move. It should be noted that a detective cannot perform

the move when it does not have a valid ticket to move from

its presently occupied node.

2.2 Motivation behind the use of neural
networks

It has been mentioned earlier that Scotland Yard game has

imperfect information. The information that is available is

imperfect because of the fact that the detectives are una-

ware of the location of Mr. X and they are allowed to know

the location at some specific times. In our present work, the

very first job was to transform this problem of imperfect

information into a problem with pseudo-perfect or near-

perfect information. Though it is a challenge at the first

place, it is quite motivating to investigate the way a
Fig. 1 A graph of a portion of the map used in Scotland Yard board

game
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learning model perceives this aspect of the game. However,

it should be noted that the transformation-based modeling

would affect the way a learning model learns during the

game play. We tried to imitate the fact that a living human

player would play the Scotland Yard game in a different

sense which depends on the locations of the players, tokens

left and from his own meta-intelligence. A living human

being could be biased by his own judgments during the

game, and modeling this aspect completely in the machine

is very complex to undertake as a task [20–22] in our

present work. However, our present version of the mod-

eling does take care of some kind of judgments and

cooperations among human beings to make the agents

possible to adapt to game dynamics and possibly win the

game.

The idea behind the cooperation among the agents in

Scotland Yard further fueled after the cryptography

experiment [23] conducted by Google, in which Google

used 3 neural networks, namely Alice, Bob, and Eve. The

experiment included cooperations among the neural net-

works for encryption–decryption experiments and also

demonstrated promising results. Scotland Yard game has

the perfect scenario to investigate this fact. The five

detectives must communicate and cooperate among them-

selves to capture the nearly invisible Mr. X.

The Scotland Yard game is incredibly complex, and

manually coding all the possibilities would be near

impossible, and factually, it would take exponential time as

shown in a complexity study of the game [16]. Converting

the problem to neuro-solvable or neuro-computable would

make the underlying topology more adaptable and flexible

in which the game agents have continuous interaction with

the present scenario of the environment of the game. As

has been demonstrated in the past, the capability of the

artificial intelligent agents in a game, a neural net can be

incredibly powerful in this aspect, and furthermore, it does

not require any human intervention [24–26].

Neural networks have a successful history of being well-

studied and well-adapted method for many different real-

world applications [27–31]. The neural network model

designed here is called ‘adversarial’ because there are two

different types of agents, one for Mr. X and other for the

detectives. These players—the neural agents—play the

Scotland Yard game in an automated setting. They improve

their knowledge about the system during the play and

continue to improve based on their experiences. Since the

adaptation of the neural networks is continuous and there is

continual feedback mechanism governing the experience,

the learning is recurrent and deeply reinforced. The fol-

lowing section elaborates on the methodology developed in

this research.

3 Methodology

In this section, we present the architectural topology of the

developed model, the scoring mechanism, the feature space

used for the neural agents, and the learning steps.

3.1 Architectural topology

The input to the neural agent is a set of features which

represent essentially the presently assessed environment of

the game. The output of the neural agent is a move (or, a

set of moves) that would be determined from the available

inputs. It also includes the essential hidden computation

layers which are used to stabilize the learning and adap-

tation in the neural network. An abstract design of a neural

agent designed in this work is shown in Fig. 2.

We have used a Q-learning methodology [32] that also

includes an additional querying mechanism. The principal

reason behind the use of the querying mechanism is that the

final layer of the intended neural network cannot be fixed

before hand. Some neurons in the final layer might need to

output 2 different valid moves for the player in the question

(that is the player for whom the move is to be decided), and

other might need to output as high as 8 valid moves. The

way to fix this issue was to make the output layer large

enough (in terms of the number of output neurons) to have

one entry for each valid move possible from every node.

Then, one could take a dot product with the list of valid

moves for the player in the question and then take its

maximum. Instead, we chose to append the contemplated

move to the observation and query them together to the

model function. The output of the model function would be

saved. Such a query would be performed for each valid

move for the player in the question. The maximum value of

Fig. 2 An abstract design of a neural agent for the Scotland Yard

game (‘dynamic’ mentioned for the output layer represents for the

dynamic activation of the neurons in the output layer based on the

presented features for a specific player. The output layer can be

visualized as a dynamically activating layer which would represent

the moves)
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the output would determine which action the player would

take. In this way, we could fix the size of the output layer.

3.2 Action space in the game

The action space is the moving of the unit (Mr. X or

detectives) from one node to a node that is immediately

accessible (exactly one node jump away) using one of the

three methods of transport.

• Subway allows the node jump to cover multiple nodes

in between but is only accessible from a smaller

selection of predefined nodes.

• Bus can cover a smaller number of nodes per node

jump, but has a larger selection of nodes from which it

can be accessed.

• Taxi allows the unit to travel exactly through exactly

one node per jump, but can be accessed from every

single node on the map.

3.3 Scoring mechanism (rewards) in Q-learning

The rewards added to each agent were based on the out-

come of the game and the performance of the agent in that

particular game. The scoring scheme used is shown in

Eq. (1).

reward ¼
þ 100 for a win

� 100 for a loss

(
ð1Þ

We initially started out with a constant reward system. This

means that if any detective catches Mr. X, all the detectives

are rewarded. However, such a reward system might deter

the effectiveness of learning for the detectives during

learning the game, because, if a detective wins when it is

not chasing Mr. X, he might misinterpret the reward

affecting its own learning. Considering this aspect of

learning, we modified the scoring system in such a way that

the detectives would be more aggressive. In the modified

scoring system, a detective is rewarded based on how far he

is from Mr. X in terms of number of vertices which follows

the proportionality relation,

reward / f ðdistÞ�1 ð2Þ

More specifically, if the distance is more, the reward is

exponentially lower when the detectives win. That means,

if a detective i is closer to Mr. X than another detective j, it

should get higher reward than detective j. When the

detectives lose, the absolute value of the negative reward is

lower when the detective is closer to Mr. X at the end of the

game. The equation used for computing the corrected

reward from the final reward is given in (3).

rewardi ¼
Dmax � Ddi;X

Dmax

� rewardi ð3Þ

where Dmax is the maximum path length from Mr. X to the

detective i, Ddi;X is the actual distance from the detective i

to Mr. X, and rewardi is the reward for the detective i.

3.4 Designing the feature space

In learning the neural agents, the feature space plays the

most contributing part in modeling the imperfect infor-

mation as perfect information. If the feature space is ade-

quate, the model could be robust and highly reliable in

terms of its decisive capability [33]. To transform the game

with imperfect information to a game with almost perfect

information, the following parameters have been consid-

ered: (a) number of rounds to the next announcement of the

location by Mr. X, (b) the used tokens, and (c) the last

known location. All these considered parameters could be

monitored even by a human agent, and our detective agent

would mimic the same. Any more information than the

mentioned would make a biased detective agent, and the

model cannot be said to be fully reliable. The detective

must learn the game and the behavior of Mr. X given

sufficient training simulation and continual recurrent

learning.

In our present development on the automatic agents, the

location of the hider (Mr. X) is revealed every fifth round

and hidden for the rest. Our designed feature space com-

pletely reflects the game in a realistic scenario without

disclosing any additional details that would make any one

of the parties (hider or searchers) stronger than the coun-

terpart. The vertices have been one-hot-encoded and then

added to the feature space. Since the vertices are numbered

from 1 to 199, each vertex should get a unique feature

vector. The feature space used by both Mr. X and the

detectives has been depicted as follows.

3.4.1 Feature space for Mr. X neural agent

The neural agent for Mr. X uses the following essential

features where the length of the features are given inside

the brace. The overall length of the feature vector is

199þ 3þ 995þ 15þ 1 ¼ 1213.

1. One-hot encoded location of Mr. X (199)

2. Number of tokens (taxi, bus, and underground) left to

use by Mr. X (3)

3. One-hot encoded locations of each detective

(199� 5 ¼ 995)

4. Number of tokens (taxi, bus, and underground) still left

with each detective (3� 5 ¼ 15)

5. Round number (1)
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3.4.2 Feature space used by the detective neural agents

The detectives have a little more unconventional feature

space as shown below.

1. One-hot encoded last revealed position of Mr. X. If

Mr. X has not revealed his location yet, a zero vector

would be appended. (199)

2. The number of rounds until Mr. X reveals his position

next (1)

3. One-hot encoded location of all the detectives

(199� 5 ¼ 995)

4. Tokens still left with each detective (3� 5 ¼ 15)

5. Tokens used by Mr. X in its last 5 turns (3� 5 ¼ 15)

6. An additional feature vector based on which kind of

model is being investigated.

In this work, we investigated the cooperation among the

detectives using two different neural agent architectures:

(a) single neural agent for all the detectives behaving as the

controlling head of the team and directing the moves of all

the detectives (refer Fig. 3) and (b) individual neural agent

for each detective (refer Fig. 3). For the former design of

the neural agent for the detectives, a one-hot encoded

feature vector of length 5 has been appended which

essentially denotes the detective number. So, the length of

the feature vector for a single neural agent is 1225þ 5 ¼
1230 and for individual neural agents, the length is 1225

(199þ 1þ 995þ 15þ 15).

3.5 Underlying algorithm

In our present work, the core algorithm is a combination of

Q-learning and multilayered neural networks making the

model a reinforced learner which continuously finetunes

itself by improving with experience during the game play.

Q-learning is a model-free reinforcement learning tech-

nique [34] which is basically used to find an optimal

selection policy for any given finite Markov decision

process (MDP) [35]. It operates by leaning an action–value

pair function that ultimately gives the expected outcome of

taking an action in a given state and by following the

optimal policy thereafter. Q-learning is a greedy learner

and has been proved to be optimal in terms of the maxi-

mum reward returned after all successive steps [32] in the

game.

The mathematical model of the problem consists of an

agent, a set of states S, and a set of actions in each state

denoted as A. Let us denote an action as a (2 A), the agent

can move from a state sið2 SÞ to another state sjð2 SÞ. This
action rewards the agent at the state si. A reward can be a

numerical score. The goal of the agent is to optimize (either

maximize or minimize, depending on the problem at hand)

the total rewards. To solve this optimization problem, Q-

learning offers the agent to choose the optimal action at

each state that it reaches. Such an optimal policy would

definitely aid to achieve the long-term award in the game

and suitable for the Scotland Yard game. The reward is a

weighted sum of the expected values of the rewards to be

achieved in all future steps starting from the current state si,

where the weight for a step from a state si and Dt steps into
the future is computed as cDt. The parameter c is a called

the discount factor, which is responsible for a trade-off

between sooner and later rewards. c lies in the range [0, 1]

and can be understood as the likelihood to succeed at every

future step Dt.
So, algorithmically the state pair transformation func-

tion, denoted as Q can be written as

Q : S� A! R; ð4Þ

where Q generates a real number from the state–action

pair. Initially, Q function returns a predefined fixed value.

Afterward, each time the agent takes an action a from the

state si to move to state sj and the Q is updated to fit more

into the realistic scenario which is greedy in some sense.

The iterative update equation for Q is given in Eq. (5).

Fig. 3 Modeling of the neural agents in single model and multiple

model; a model is nothing but a function approximator (f, g, or fi) that

produces the outcome based on the input features at any given time.

a Single neural agent for all the detectives virtually behaving as the

head of the detectives who instructs them and b each detective is a

neural agent cooperating with each other
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Qðst; atÞ  Qðst; atÞ þ at:frtþ1 þ c:max
a

Qðstþ1; aÞ

� Qðst; atÞg:
ð5Þ

Here at is the learning rate (at 2 ð0; 1�), and rtþ1 is the

reward achieved after performing an action at in the state

st. An episode of the algorithm finishes when the state stþ1
becomes the final state where the value of Q is set to 0.

A neural network is used as the function approximation

model, which is combined with Q-learning to create the

final learning algorithm for training the detectives and Mr.

X based on their own feature space and game theoretic

perspective. At each step of the game, there is a particular

move that a player can make to maximize its chances of

winning. In this way, for every possible state of a discrete

step game, there will be a certain move. A list of these

moves can be tabulated by extensive simulations, forming a

lookup table. However, in a game having a very large

number of states (such as Scotland Yard), such an approach

is computationally not feasible. So, the neural network has

been used to approximate the state space. The neural net-

work approximates the optimum action space during the

game play. In this approach, the neural network could be

trained by a smaller number of iterations (simulations) as it

could approximate the optimum actions of previously

unseen states, by already learning the states that are similar

to the present set of states.

The rewards obtained throughout the game were boot-

strapped together and added only at the end of every game.

This sped up the learning rate as compared to when the

agents were trying to learn at every round. The reward in

the present round can be written as

reward½roundcurr� ¼ Reward½roundcurr�
þ 0:9b � game reward;

ð6Þ

where b is the multiplicative factor which can be obtained

from the total number of rounds played (Nround) and current

round (roundcurr). The game reward is the score that is

based on the outcome of the game.

b ¼Nrounds � roundcurr ð7Þ

game reward ¼
þ 100 for a win

� 100 for a loss

(
ð8Þ

Equation (6) is responsible for reducing the cumulative

impact of the moves which have occurred at the beginning

of the game on the reward function while simultaneously

increasing the rewards at the end of the game. This is done

as the moves done at the later stages will be more

responsible for deciding the outcome of the game rather

than the moves done at the beginning of the game.

A process flow diagram demonstrating the working

process of the model is shown in Fig. 4.

4 Experimental evaluation

In this section, the experimental setup and the obtained

results have been elaborated.

4.1 Experiment environment

All the simulations have been conducted in High-Perfor-

mance Computing Cluster system with 14 independent

processors, and each machine has 32 GB of main memory.

Python along with its relevant packages (Tensorflow [36],

pandas [37]) has been used for writing the software. In this

experiment, in addition to the discussed methodology, we

also investigated various other kinds of game playing

agents to play the Scotland Yard board game. A game

playing agent in Scotland Yard could be either random

move generator or learner (function approximation model).

Both these kinds of agents can explore the search space

(the map) to take an optimal decision on their movement

from one location to another. To activate this characteristic

of the agents, we added a probabilistic exploration

parameter which ranges from 0 to 1. Since the agents have

to learn to play the game, the whole process of the simu-

lation is divided into (a) training phase and (b) testing

phase. The testing phase is completely independent, and

the agents lack any kind of support (in terms of feedback)

during this phase. They explore the map only during the

training phase.

In the exploration phase of learning, there are two

possible ways the agent can make a decision. The first way

is by taking what the agent believes to be the optimal path

based on previous experiences. The second way is by

taking a random path or ‘exploring’ the map. Both these

modes need to be used so that the agent does not only try to

win the game, but also at the same time tries to explore the

map and figure out relatively newer strategies that were not

seen earlier. These modes are selected based on a random

probability between 0 and 1. At the start of the simulations,

the probability for exploration is set to 1. As the number of

games played increases, this probability decreases and

finally becomes 0, where the agent is trying to play opti-

mally, thereby making itself fit for the testing phase.

During the testing phase, there is no exploration and the

model is purely trying to act optimally.

As mentioned earlier, we have used two different kinds

of agents such as random move generators and learning-

based move generators. The random move generators are

the agents that generate random moves given a set of

inputs, though there is no relation between a move and the

inputs. The learning-based generators or the learners use

the function approximation models to generate the moves

based on their inputs. Further, the function approximation
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model could be single model or multiple models (as shown

in Fig. 3). In the case of multiple model-based move

generator, the functions fis are the random move generator.

All possible types of gaming agents have been simulated

and investigated. In what follows, we describe the purpose

of our experiments conducted in this work.

4.2 Purpose of our experiments

We had two possible approaches to design the automatic

adversarial game from the viewpoint of the detectives. We

needed to figure out a way for them to communicate with

each other. With regard to this situation and idea, the

architecture could be built as a central hive mind or a

collection of neural networks learning to work with each

other. The detectives could also be made to move

according to a random move generator. Mr. X could either

be trained along with the detectives in an adversarial

fashion, or the moves of Mr. X could be a preset pattern.

The complexity of each network was also varied between

each experiment. By combining each of these separate

aspects between the detectives and Mr. X, we wished to see

which would bring the highest possible improvement. Our

experiment purpose was also to see the behavior of the

opposition parties given their agent architectures. Each of

the seven experiments reflects a different set of parameters

to test the built networks. This would help us in under-

standing the solution better and open new perspective from

the machine learning point of view. The results for each of

the seven experiments have been depicted in the following

subsection.

4.3 Results

The results show the performance of the game during the

training and the testing phase. We measure the perfor-

mance using the parameter given in Eq. (9). ‘Game num-

ber’ in the X-axis in testing phase denotes the number of

games that have been played so far between the different

models. As the number of games increases, the probability

for exploration as is lowered and the probability of

exploitation is increased. Experiments 1 to 5 are simulated

for 25,000 times (0–25,000). Experiment 6 is simulated for

100,000 times, and experiment 7 is simulated for 200,000

times.

Performance ¼ Number of games the detectives win

� Number of game Mr. X wins

ð9Þ

4.3.1 Hyperparameters setting

The hyperparameters related to neural networks and the

Q-learning are set as follows. The neural networks are fully

connected (i.e., multilayer perceptron) that uses ReLU

(rectified linear unit) activation model [38]. Adam (a

stochastic gradient descent technique) [39] optimizer was

used for training the neural networks with learning rate

being set to 0.001. The neural network architectures for Mr.

X and the detectives are provided below. Further, the

architectural hyperparameters related to the neural net-

works are explained in each experiment as and when

required.

Fig. 4 A process flow diagram

of the model, and the numbers

are the important milestones: (1)

The game decides whose turn it

is and selects the particular

neural network. The game

consists of agents D1–D5 and

Mr. X. The game gives out the

general observation along with a

list of valid moves. (2) Each

move is independently

appended to the general

observation and queried through

the neural network. (3, 4) From

the list, the maximum action

(optimum) is chosen, and the

corresponding move is

communicated back to the game

to make the move. The list is

stored as well, to learn from it

once the final result is out
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The experiments 1 to 4 have the following neural

architecture. For Mr. X, size of the input layer (= feature

space of Mr. X ? observations from the game =

1213þ ð199þ 3Þ ¼ 1415); number of hidden layers = 4

(l1 : 708; l2 : 708; l3 : 354; l4 : 354);
1 number of output = 1.

For detectives, the input layer size and the hidden layer

information are as follows:

• Single model – input layer (feature space ? observation

from the game = feature space ? possible next state ?

token used) = 1230þ 199þ 3 ¼ 1432; number of

hidden layers = 4 (l1 : 716; l2 : 716; l3 : 358; l4 : 358)

• Multiple models – input layer (feature space ? possible

next state ? token used) = 1225þ 199þ 3 ¼ 1427;

number of hidden layers = 4 (l1 : 714; l2 :

714; l3 : 357; l4 : 357:)

For Q-learning, learning rate (at) is set to 1, the discount

factor is set to 0.9, and the intermediate reward has been set

to 0. The intermediate rewards have been calculated by

using the final reward and then extending the calculations

for rewards backward through the game.

4.3.2 Experiment 1

In the first experiment, each detective uses its own random

move generator; Mr. X uses a single model that learns

continuously during the game and generates a move. As

mentioned earlier, the learning agent for Mr. X is essen-

tially a fully connected neural network that is combined

with Q-learning. However, Mr. X explores the map initially

during the training phase and gradually stops exploring and

exploits more to get the optimal moves. The number of

simulations for experiment 1 is 25,001. This experiment

was conducted to test the effectiveness of the random

behavior that the gaming agent possesses during the game

play. The game performance during training and testing is

shown in Fig. 5. It can be observed that detectives are

winning more games at the start, Mr. X is exploring the

map and both the sides, in essence, making the random

moves during their play. However, once Mr. X starts

lowering its exploration and increasing its exploitation of

the map space, the detectives start losing since they are

untrained about the game.

4.3.3 Experiment 2

In this experiment, the detectives use a single model that

generates the random moves for the detectives. However,

since the moves are randomized, there is no theoretical and

computational difference between a random multi-model

(Experiment 1) and random single model. The

characteristics of Mr. X in this experiment remain identical

as in experiment 1 that uses a single learning model

combining both neural network and Q-learning. The game

performance during training and testing is shown in Fig. 6.

4.3.4 Experiment 3

In this experiment, the detectives use a single shared model

for that learns the game along with exploring the map

during the training phase. The architecture of the learner is

identical to the one used by Mr. X in our experiment 1 and

experiment 2. Similar to experiment 2, the detectives were

restricted to only exploit the map space toward the end of

their training. Mr. X was allowed to use random moves

using a single model. The game performance during

training and testing is shown in Fig. 7.

4.3.5 Experiment 4

In this experiment, the detectivesusemultiple separatemodels

of learning with identical architecture mentioned in our

experiment 3 alongwith exploring themap during the training

phase. Theywere also restricted to only exploit the map space

toward the end of their training. Mr. X was allowed to use

random moves using a single model. The game performance

during training and testing is shown in Fig. 8.

In our randomness experiments, we observed that the

detectives were relatively better when they were using a

single model for generating their moves. However, this

would make the game as if there is a central player control-

ling all the detectives andmoving the pawns. There would be

no scope for coordination and communication between the

five detectives playing the game. Also, the performance plot

demonstrates that, given more simulations, the detectives

would start coordinating among each other. Losing games

does not directly imply that communication cannot be

established. Hence, we decided to still stick with the multi-

model variant for detectives during the adversarial neural

network experiments. The multi-model agents would pro-

vide turn specializations to the players. Furthermore, it was

believed that neural network architecture with more number

of layers for the detectives would result in better game per-

formance. Hence, the following three experiments were

performed using the neural networks. During the training

phase, these neural networks would be learning the game,

and in the testing phase, they are left to play the game alone

without any environmental supports.

4.3.6 Experiment 5

In this experiment, each detective is a neural agent with the

fully connected network architecture. The neural networks

for the detectives are identical with regard to their1 li denotes the number of neurons in the layer i.
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Fig. 5 Game performance for Experiment 1. a Experiment 1—training. b Experiment 1—testing

Fig. 6 Game performance for Experiment 2. a Experiment 2—training. b Experiment 2—testing

Fig. 7 Game performance for Experiment 3. a Experiment 3—training. b Experiment 3—testing
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architecture which is as follows: input layer size = 1427;

number of hidden layers = 8 (l1�4 : 714; l5 : 357; l6 :
357; l7 : 179; l8 : 179). Further, each detective explores the

map at the beginning of the training and gradually reducing

their exploration and focusing on exploitation performance.

Mr. X was designed with a neural network architecture,

Input layer size = 1415; Number of hidden layers = 1

(l1 : 708). Mr. X also included exploration of the map and

was continuously learning during the training phase. The

game performance during training and testing is shown in

Fig. 9.

The peak of the training graph exhibits a very interesting

characteristic. A positive slope in the plot means at that

vicinity the detectives are winning more games than losing,

and a negative slope means otherwise. That peak denotes

the exploration until which the detectives’ policy along

with random exploration was better than that of Mr.

X. However, in our previous experiments, at exploration

set to 0, the detectives were losing as the experience of Mr.

X had already increased, which made it stronger. This got

translated into a monotonically losing run for the detectives

as can be noticed in the previous graph.

4.3.7 Experiment 6

We hypothesized that if the number of simulation is

increased and the detectives are equipped with more

complex network architecture, they would learn more.

Hence, in this experiment, each detective used a deep fully

connected neural network architecture with the following

architecture: input layer size = 1427; number of hidden

layers = 20 (l1�4 : 714; l5�8 : 357; l9�12 : 179; l13�16 : 90;
l17�20 : 45). The architecture for Mr. X was identical as

mentioned in experiment 5. The number of simulation was

increased to 100,000. It was observed that the detectives

still had the advantage till exploration = 0.2.

4.3.8 Experiment 7

We conducted an identical experiment like experiment 6 to

access the performance of the adversarial neural agents

with more number of simulations. Each detective used the

identical 22 layered fully connected neural network

architecture as explained in experiment 6. The architecture

for Mr. X was identical as mentioned in the former

experiment. The number of simulation was doubled to

200,000. The testing phase performance is observed to be

quite interesting in this experiment (please see Fig. 11b).

The figure suggests that the testing is improved with more

number of simulations giving the neural agents for detec-

tives a chance to make themselves smarter with time,

because of the fact that the exploitation performance is

better than the one seen in experiment 6. Observing the

training performance toward the exploration of between 0.2

and 0 in Figs. 10a and 11a, it can be said that the increased

simulation number does improve the quality of learning in

the detective agents.

4.4 Summary of experimental results

A summary of experimental results and the performance of

the game playing agents during training and testing phase

are depicted in Table 1. Further, the relative game score for

each experiment during training and testing is viewed in

Fig. 12. The comparative plot shows the improvement in

the neural agents with the increase in the number of sim-

ulations. However, the performance during training is

better than the performance observed during testing. The

experiment 5 to 6 could demonstrate promising

Fig. 8 Game performance for Experiment 4. a Experiment 4—training. b Experiment 4—testing
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Fig. 9 Game performance for Experiment 5. a Experiment 5—training. b Experiment 5—testing

Fig. 10 Game performance for Experiment 6. a Experiment 6—training. b Experiment 6—testing

Fig. 11 Game performance for Experiment 7. a Experiment 7—training. b Experiment 7—testing
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improvement in the relative game performance during the

training and the testing phase. Few of the experiments such

as experiment 2 and 3 use a shared detective model that in

essence makes it a single (detective) player playing five

different moves—one for each detective. The rest of the

experiments uses multiple detectives (multiple opponents),

and via episodic learning these players optimize their set of

move-based various environmental inputs during the game

playing. One way to understand this setting is to view a

multiple opponent game in which the opponents are com-

municating among themselves in search for a solution in

the complex domain. However, this property is automati-

cally realized by the neural network models for the

detectives. Since this is a two-sided game and strategy of

each player influences the strategy of another while the

game is being played, there should exist Nash equilibria

during this game play.

Furthermore, the following inferences could be made

from the experimental results that are presented in the

figures. The training curve for all the experiments

conducted in this research followed a similar pattern.

Detectives always started out by winning larger number of

games when the exploration rate was high. This eventually

saturates by the time game progresses till the exploration

rate is 0.2 and then starts decreasing. However, this satu-

ration point was much later when there were more number

of layers for the detectives’ neural networks and also when

Mr. X was not making random moves as these are difficult

for the detectives to predict, which is highly adversarial

even for human experts. The training was ultimately not

stable for every case involving random Mr. X as the

detectives would not be able to completely learn the ran-

dom moves without a deeper and complex enough network

architecture and would ultimately started failing in training

much earlier. When Mr. X has a neural network, the

training is much more stable as the detectives are able to

better learn the pseudo-random movements of Mr. X by

adapting to the predictions proposed by the Mr. X’s neural

engine. However, even with a simpler network, Mr. X has

too large of an advantage due to its movements being

Table 1 Summary of experimental results with scores for detectives and Mr. X and the performance (score difference) in each experiment. ‘þ’
game score represents that the detectives are better than Mr. X, and ‘-’ game score represents that Mr. X is better than the detectives

Experiment Training phase scores Testing phase scores

Detectives (searchers) Mr. X (hider) Score difference Detectives (searchers) Mr. X (hider) Score difference

Experiment 1 12,458 12,543 � 85 10,906 14,095 � 3189

Experiment 2 12,429 12,572 � 143 10,899 14,102 � 3203

Experiment 2 12,414 12,587 � 173 10,993 14,008 � 3015

Experiment 4 12,275 12,726 � 451 10,642 14,359 � 3717

Experiment 5 13,404 11,597 ? 1807 10,584 14,417 � 3833

Experiment 6 53,194 46,807 ? 6387 41,621 58,380 � 16,759

Experiment 7 109,235 90,766 ? 18,469 444 557 � 113

Fig. 12 Relative game

performance with regard to the

number of simulation during

training and testing (X-axis:

experiment number, Y-axis:

game score/number of

simulations; legends: first bar—

training, second bar—testing)
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hidden. This is why the detectives will always start losing

when they take optimum movements, that is, when the

exploration rate becomes low. However, as we increase the

number of layers and the complexity of the detective net-

works, the saturation point where detectives start losing

more than they win becomes closer to exploration rate 0.

We can infer with more layers the detectives become better

at making optimum movements to catch Mr.X.

5 Conclusion and future directions

In this work, a thorough investigation has been carried out

to test and validate the design of game playing agents,

which should automatically play a hide-and-search-based

board game called Scotland Yard. The agents are nothing

but a hyper-heuristic combined with deep neural network

and Q-learning strategy. Rigorous experimental evaluation

has been done and the obtained results suggest the fol-

lowing important observations:

• Given more simulations, the detectives can gain an

advantage. However, in our present experimental setup,

it was not possible to increase the number of simulation

or the depth of the neural network beyond the mentioned

values because of the limitations in computational

resources. This aids to the weakness of our present

research by limiting us to do the statistical validation.

• However, with a 22 layered deep neural network with

200,000 simulations was able to exhibit remarkable

performance in which the detectives’ win is comparably

far better than Mr. X’s wins. This result further increases

interest in exploring the possibility of deep adversarial

learners for the game and tests whether our hypothesis in

the aforementioned point could be validated.

• The number of simulations required cannot be pre-

decided, but should be sufficiently large given the state

space of the problem.

• It is difficult to exactly identify the communication

between the detectives. It was observed as if the

detectives are predicting each other’s moves. However,

this is not entirely true.

• With the shared reward system designed in this work,

the detectives can learn each other’s tendencies and

change their own behavior to have a bigger impact on

the team’s success.

• This shared reward system is the channel through

which the detectives communicate.

There are very limited research on the automated solution

for the Scotland Yard game, and a direct comparison of our

present work with the available literature (in [8, 15]) would

not be relevant and meaningful.

In future, to enhance the performance, a better com-

munication system between the detectives should be

designed or the presently designed model should be

improved in terms of the model complexity along with

attempts made to reduce the game learning time (number

of simulations). Again, statistical validation should be

attempted to compute an estimate of the game performance

for various number of simulations. Further, this problem

could also be modeled as a solution for traffic problems,

with more detectives as motor vehicles; one can define

conditions for traffic congestions and optimal control.
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Appendix 1: Some additional details

Scotland Yard: the implemented version

In our present work, we implement the original Scotland

Yard board game. This might bear some similarities to a

gamewith same name that is played inTokyo (ScotlandYard

Tokyo), and in Switzerland (Scotland Yard - Swiss Edition).

For additional clarification, we again provide information on

the version that is being implemented in this work. There are

two teams in this game. The two teams are of Mr. X. (alone)

and 5Detectives out to catch him.Mr. X.moves covertly and

his position is revealed only 5 times throughout the entire

game. The detectivesmust cleverly corner and captureMr. X

by the end of their game. Each location on the map is a node,

numbered from 1 to 199. To travel between nodes, a player

can use one of 3 transportation mechanisms: taxi, bus and

subway, each of which has different connectivity across the

map. Each of these services can be availed using tokens

given to the players at the start of the game.We have not used

double turns and waterways in our implementation of the

game. What makes the game more interesting is that after

each move by a detective, the detective would hand its used

token used to Mr. X, who can use it himself in his covert

movements. The overall result is more overlap between the

two parties, and the detectives being able to affect the game

in more than one way.

Q-learning: configuration

We have used the following configuration for the Q-Net-

work. The detectives and Mr. X move using a static net-

work until the turn is done. Each of their moves is stored in
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the replay memory. At the end of the game, the appropriate

reward is given according to which a team won (either Mr.

X or detective side). After the game is done and during the

learning phase, the reward is back-propagated through each

move made during the entire game. As we move backwards

through the memory, the reward is diminished exponen-

tially. In this way, greater weight is given to the late game

turns.

Exploration is linearly decreased from 1 to 0 (as shown

in above figures) depending on the total number of turns in

the game. Exploration is defined as the probability that the

agent will take a random move instead using the network.

The reward system is ?100 for a win, -100 for a loss.

For the detectives, the reward is calculated dynamically

based on the distance of the detective from Mr. X when the

game is over. The closer a detective is to Mr. X, during a

win it will have a higher fraction of the ?100 reward, and

for a loss it will have a lower fraction of the -100 reward.
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