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This paper presents the concept of temporal association rules in order to solve the problem of
handling time series by including time expressions into association rules. Actually, temporal
databases are continually appended or updated so that the discovered rules need to be updated.
Re-running the temporal mining algorithm every time is ineffective since it neglects the
previously discovered rules, and repeats the work done previously. Furthermore, existing
incremental mining techniques cannot deal with temporal association rules. In this paper, an
incremental algorithm to maintain the temporal association rules in a transaction database is
proposed. The algorithm benefits from the results of earlier mining to derive the final mining
output. The experimental results on both the synthetic and the real dataset illustrate a significant
improvement over the conventional approach of mining the entire updated database.
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1. Introduction

Data mining is the process of extracting interesting (non-trivial, implicit, previously unknown and potentially useful)
information or patterns from large information repositories and it is the core process of Knowledge Discovery in Database (KDD)
[1]. Data mining techniques include association rules mining, classification, clustering, mining time series, and sequential pattern
mining, to name a few, with association rules mining receiving a significant research attention [2].

Many algorithms for discovering association rules in transactiondatabases have beendeveloped andwidely studied:Apriori and
its variations, partitioning, sampling, TreeProjection, and FP-growth algorithms [3–5,23]. Furthermore, other variants of mining
algorithms were presented to provide more mining capabilities, such as incremental updating, mining of generalized and multi-
level rules, mining of quantitative rules, mining of multi-dimensional rules, constraint-based rule mining, mining with multiple
minimum supports, mining associations among correlated or infrequent items, andmining of temporal association rules [2,20,21].

Recently, temporal data mining has become a core technical data processing technique to deal with changing data. Temporal
data exist extensively in economics, finance, communication, and other areas such as weather forecasting [6]. Temporal
Association Rules (TAR) is an interesting extension to association rules by including a temporal dimension. When considering the
time dimension, it leads to different forms of association rules such as discovering association rules that may hold during some
time intervals but not during others [7].

Different methodologies were proposed to explore the problem of discovering temporal association rules. In the previous
works, discovering association rules was performed on a given subset of a database specified by time. However, these works did
not consider the individual exhibition period of each item. The exhibition period of an item is the time duration from the partition
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when this item appears in the transaction database to the partition when this item no longer exists [2]. That is, the exhibition
period is the time duration when the item is available to be purchased. Hence, these works cannot be effectively applied to a
temporal transaction database, such as a publication database, where the exhibition periods of the items are different from one
another. As a result, the concept of general temporal association rules has been proposed where the items are allowed to have
different exhibition periods, and their supports are made in accordance with their exhibition periods [8]. The accompanying
mining measures, support and confidence, have been reformulated to reflect this newmining model. Also, newmining algorithms
have been presented for the general temporal association rules in transaction databases such as Progressive PartitionMiner (PPM)
[8], and Segmented Progressive Filter (SPF) [12–15,22]. On the other hand, other algorithms have been proposed for mining
temporal association rules with numerical attributes such as the TAR algorithm [9].

As a matter of fact, temporal databases are often appended by adding new transactions. Hence, the previously discovered rules
have to be maintained by discarding the rules that become insignificant and including new valid ones. Currently, some algorithms
are proposed for the incremental mining of temporal association rules with numerical attributes [10]. However, the incremental
mining of temporal transaction databases is still at its infancy. Moreover, the incremental temporal mining algorithms with
numerical attributes cannot be easily adapted to the transaction database. In the case of numerical attributes, we deal with objects.
Each object has a unique ID and a set of numerical attributes. The database is viewed as sequence of snapshots of objects. The
interestingness measures used are density and strength instead of confidence. A temporal association rule is discovered fromwhat
is called base cubes instead of itemsets as long as it achieves theminimum support and strength. Moreover, Many algorithms have
been proposed for the incremental mining of association rules such as Fast UPdate algorithm (FUP), The Update Large Itemsets
algorithm (ULI), Negative Border with Partitioning (NBP), Update With Early Pruning algorithm (UWEP), New Fast UPdate
algorithm (NFUP), Fast Incremental Mining (FIM) algorithm and Pre-FUFP Algorithm [16–19]. Some of these algorithms address
the problem of determining when to update, while the others simply treat arbitrary insertions and deletions of transactions.
Unfortunately, none of these algorithms address the incremental mining of temporal association rules.

In this paper, the Incremental Temporal Association RulesMining (ITARM) is proposed. It is used tomaintain temporal frequent
itemsets after the temporal transaction database has been updated. The proposed algorithm employs the skeleton of the
incremental procedure of the Sliding-Window Filtering algorithm (SWF) [11].

Rest of the paper is organized as follows. Section 2 gives a description of some preliminaries in temporal association rules mining.
Section 3 provides a reviewof some relatedworks and Section 4 presents the proposed algorithm ITARM in detail and its correctness is
proven in Section5. Theperformanceof theproposedalgorithmis empirically evaluated in Section6 andSection7 concludes thepaper.
2. Preliminaries

This Section presents some preliminaries to facilitate the presentation of the proposed algorithm. For a given temporal database
DB, let n be the number of partitions with a time granularity, such as month, quarter, year. dbs,e denotes the part of the transaction
database formed by a continuous region from partition Ps to partition Pe and |dbs,e|=∑h= s

e |Ph| where dbs,epDB and |Ph| is the
number of transactions in the partition Ph. An item ys,e is termed as a temporal item of a given item y, meaning that Ps is the starting
partition of y and Pe is the ending partition of y [8,12].
Table 1
An illustrative transaction database where the items have individual exhibition periods. An itemset xs,e is called a maximal Temporal Itemset (TI) in a partial database dbs,e.
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Example 1. Table 1 shows a publication database DB containing the transaction data from January 2009 to February 2009. The
number of transactions recorded in March is the incremental database db. The original database DB is segmented into two
partitions P1 and P2 in accordance with the “month” granularity and db contains one partition P3. The partial database db2,3p
(DB∪db) consists of partitions P2 and P3. The publication date of each item is shown on the right side of Table 1. It is worth
mentioning that, in the publication database, each item usually has the same cut-off date of the item exhibition period. A temporal
item E2,3 denotes that the exhibition period of E2,3 is from the beginning time of partition P2 to the end time of partition P3.if s is the
latest starting partition number of all items belonging to x in the temporal database and e is the earliest ending partition number of
the items belonging to x [8,12]. In this case, (s, e) is referred to as the Maximal Common exhibition Period (MCP) of the itemset x
and is denoted by MCP(x). For example, as shown in Table 1, itemset DE2,3 is a maximal temporal itemset, whereas DE3,3 is not a
maximal temporal itemset because MCP(D)=(1,3) and MCP(E)=(2,3) hence MCP(DE)=(2,3). A temporal itemset zs,e is called a
temporal Sub-Itemset (SI) of a maximal temporal itemset xs,e if z⊂x [13]. For example, the maximal temporal itemset BDE2,3 has
the sub-itemsets {B2,3, D2,3, E2,3, BD2,3, BE2,3, DE2,3}. The relative support of a temporal itemset x is given by the following
equation:
where
supp xMCP xð Þ� �
=

j T∈dbMCP xð Þ jxpT
n oj

jdbMCP xð Þj

Where thenumerator indicates thenumberof transactions in thepartialdatabasedbs,e that containx. Thegeneral temporal association

rule is defined as an implication in the form (X⇒Y)MCP(XY) with the following support and confidence:
supp X⇒Yð ÞMCP XYð Þ� �
= supp X∪Yð ÞMCP XYð Þ� �

supp x∪yð ÞMCP xð Þ� �
=

j T∈dbMCP xyð Þ jx; ypT
n oj

jdbMCP xyð Þj

conf X⇒Yð ÞMCP XYð Þ =
supp X∪Yð ÞMCP XYð Þ� �

supp Xð ÞMCP XYð Þ� �
The general temporal association rule is termed to be frequent within its MCP if and only if its support is not smaller than the
minimum support threshold (min_sup), and its confidence is not smaller than the minimum confidence needed (min_conf) [2].
Consequently, the problem of mining general temporal associations can be decomposed into the following three steps [8,13]:

1. Generate all frequent maximal temporal itemsets (TIs) with their support values.
2. Generate the support values of all corresponding temporal sub-itemsets (SIs) of frequent TIs.
3. Generate all temporal association rules that satisfy min_conf using the frequent TIs and/or SIs.

3. Related work

Several algorithms have been proposed for mining temporal association rules. Most of these algorithms are based on dividing
the temporal transaction database into several partitions according to the time granularity imposed, and then mining temporal
association rules by finding frequent temporal itemsets within these partitions.

Among these algorithms, Lee et al. proposed the PPM algorithm to discover general temporal association rules in a publication
database [8]. The basic idea of PPM is to first partition the publication database in light of exhibition periods of items and then
progressively accumulate the occurrence count of each candidate 2-itemset based on the intrinsic partitioning characteristics. The
PPM algorithm is designed to employ a filtering threshold in each partition to prune out those cumulatively infrequent 2-itemsets
early on. Also, it employs the scan reduction technique to reduce the number of database scans depending on the feature that the
number of candidate 2-itemsets generated by PPM is very close to the number of frequent 2-itemsets.

Also, the Segmented Progressive Filter algorithm (SPF) is proposed for mining temporal association rules where the exhibition
periods of the items are allowed to be different from one to another [12,13]. The algorithm consists of two procedures: the first
procedure segments the database into sub-databases in such a way that items in each sub-database will have either a common
starting time or a common ending time. Then, for each sub-database, the second procedure progressively filters candidate 2-
itemsets with cumulative filtering thresholds either forward or backward in time. This feature allows SPF to adopt the scan
reduction technique by generating all candidate k-itemsets from candidate 2-itemsets directly. Then, these candidates are
transformed to TI's and the corresponding SI's are generated. Finally, the database is scanned once to determine all frequent TI's
and SI's.

Moreover, Huang et al. devised the TWo end AssocIation miNer algorithm (Twain) to give more precise frequent exhibition
periods of frequent temporal itemsets [2]. Twain employs the start time and the end time of each item to provide precise frequent
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exhibition period. It generates candidate 2-itemsets with their Maximal Frequent Common exhibition Periods (MFCPs) while
progressively handling itemsets from one partition to another. Along with one scan of the database, Twain can generate frequent
2-itemsets directly according to the cumulative filtering threshold. Then, it adopts the scan reduction technique to generate all
frequent k-itemsets from the generated frequent 2-itemsets.

4. The proposed algorithm

The main objective of the proposed algorithm is to maintain temporal frequent itemsets after the temporal transaction
database has been updated. The algorithm employs the skeleton of the incremental procedure of the Sliding-Window Filtering
algorithm (SWF) [11]. The idea of SWF is similar to temporal mining algorithms such as PPM, SPF and Twain. All these algorithms
are similar in partitioning the temporal database according to a time granularity and generating the candidate 2-itemsets. They
require two database scans: the first for generating candidate 2-itemsets and the second for checking candidate k-itemsets
generated directly from candidate 2-itemsets.

The proposed algorithm depends on storing only candidate 2-itemsets generated from the previous mining process with their
support counts instead of storing all the previously found frequent itemsets. Its main idea is based on updating these candidates
and utilizing the scan reduction technique to find new frequent itemsets with only one database scan. In the traditional approach,
re-running a temporal mining algorithm costs at least two database scans. Hence, one of the important features of the proposed
algorithm is to reduce the number of database scans required for the updating process.

In practice, the incremental algorithm is not invoked every time a transaction is added to the database. However, it is
invoked after a non-trivial number of transactions are added. In our case, the proposed algorithm is invoked when no more
transactions can be recorded in the imposed time granularity (e.g. current month). However, it is also designed to handle the
problem of extending a given partition several times. Sometimes, the increment database transactions are recorded in the same
time granularity of the last partition of the original database (e.g. the same month). When the proposed algorithm is invoked, it
first decides whether the incremental database will be added to the last partition or it will be treated as a new partition. The
flowchart of the ITARM algorithm is depicted in Fig. 1. The algorithm consists of two main procedures: the Incremental
procedure, which actually performs the incremental mining and the Update_C2 procedure, which performs preprocessing
for the Incremental procedure. The proposed algorithm first checks if the time stamp of the incremental database is equal to
the time stamp of the transactions of the last partition of the original database. If yes, the algorithm makes some preprocessing
by calling Update_C2 procedure then merging the transactions of last partition of original database with the incremental
database before calling the incremental procedure. If no, the algorithm calls the incremental procedure of the ITARM algorithm
directly.

Fig. 2 illustrates the incremental procedure of the ITARM algorithm and Table 2 shows the meaning of various symbols used.
First, the algorithm finds the candidate 2-itemsets of the incremental database. Second, it updates the counts of the stored
candidate 2-itemsets with the counts of the candidate 2-itemsets of the incremental database. That is, the support counts of the
common itemsets are summed while the counts of remaining itemsets are kept as it is. In the third step, a relative minimum
Fig. 1. The general flowchart of the ITARM algorithm.



Fig. 2. The incremental procedure of the ITARM algorithm.
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support count is used to filter the candidates in order to employ the scan reduction technique. In the fourth step, the algorithm
applies the scan reduction technique by generating all candidate k-itemsets from candidate (k−1)-itemsets directly. Then, these
candidates are transformed to temporal itemsets and the corresponding sub-itemsets are generated based on these temporal
itemsets in the fifth step. Finally, the frequent temporal itemsets and sub-itemsets can be determined by scanning the updated
database only once.

On the other hand, if the transactions of the incremental database are recorded with the same time stamp of the transactions of
the last partition of the original database, some preprocessing is needed before applying the incremental procedure. Both the
transactions of the incremental database and the transactions of the last partition of the original database are joined. Hence, the
counts of the stored candidate 2-itemsets of the original database should be updated. Fig. 3 shows the Update_C2 procedure of the
proposed algorithm. This procedure scans the transactions of the last partition of the original database to subtract the counts of the
candidate 2-itemsets occurring in the last partition from the counts of the stored candidate 2-itemsets. Example 2 illustrates how
the ITARM algorithm works in the two cases.



Table 2
The list of symbols used in the proposed algorithm.

Symbol Meaning

N The number of partitions
DB The original database
Db The incremental database
DB+db The updated database
min_sup The minimum support
C2
DB The candidate 2-itemsets in DB

C2
db The candidate 2-itemsets in db

C2
DB+db The new candidate 2-itemsets in DB+db

CDB+db The candidate itemsets of all sizes in DB+db
L′ The set of frequent itemsets in DB+db
X An itemset
X.start The starting partition number of x
X.support The number of transactions containing X in the database
X.supportDB The number of transactions containing X in DB
X.supportdb The number of transactions containing X in db
X.supportDB+db The number of transactions containing X in DB+db
X.supportp The number of transactions containing X in partition p
|Pm| The number of transactions in partition m
SX The set of all subsets of a given temporal itemset
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Example 2. Recall the transaction database shown in Table 1, where the transaction database DB is assumed to be segmented into
two partitions P1 and P2 according to the month time granularity from January 2009 to February 2009. Suppose that
min_sup=30% and min_conf=75%.

As evident from Table 1, the transactions of the incremental database are recorded in March, while the transactions of last
partition of the original database P2 are recorded in February. Hence, the incremental procedure will be applied directly without
any preprocessing. Table 3.a shows the candidate 2-itemsets that are obtained from a previous temporal mining process using a
temporal association rules mining algorithm. The proposed algorithm first finds the candidate 2-itemsets of the incremental
database with their support counts. The results are also illustrated in Table 3b. Then, the algorithm begins to determine the
candidate 2-itemsets of the updated database by updating the support counts of the candidate 2-itemsets of both the original and
the incremental databases. Table 4 shows the new candidate 2-itemsets after the proposed algorithm updates the support counts
of BC to be 5 and CE to be 3. Each candidate itemset has two attributes: the start and the count attributes. The start attribute
indicates the start partition that itemset occurs and the count attribute indicates the support count from the start partition to the
end partition. Then, a filtering process is performed to determine new candidate 2-itemsets, which are those itemsets that have
support count equal to or greater than the relative minimum support count. For example, the itemset BC occurs from P1 to P3.
Its relative minimum support count is equal to [min_sup⁎Σ3

m=1|Pm|]=[12×30%]=4 where 12 is the number of transactions
from P1 to P3. This item has a support count greater than relative support count (5N4) hence it will be in the set of new candidate
2-itemsets. Note that although the itemset BD appears in two transactions of P1 and in one transaction of P3, its final count is one
not three as shown in Table 3. This is because these counts are not the total support counts over the whole database. It is just
relative counts employed to be able to utilize the scan reduction technique. However, the real support counts are computed for all
itemsets of all sizes in the database scan.

Table 4 depicts the new candidate 2-itemsets BC, BF and CE. The scan reduction technique is then applied to the new candidate
2-itemsets to generate high-level candidates. However in our case, no more candidates are produced. Then, these candidates are
transformed to temporal itemsets (TI's) and sub-temporal itemsets (SI's) by calculating themaximal common exhibition period of the
Fig. 3. The Update_C2 procedure of the ITARM algorithm.



Table 4
Update candidate 2-itemsets in DB+db.

P1+P2+P3

C2 Start Count Relative support

AD 3 1 (4×30%)=2
BC 1 5 (12×30%)=4
BD 3 1 (4×30%)=2
BE 3 1 (4×30%)=2
BF 3 3 (4×30%)=2
CE 2 3 (8×30%)=3
CF 3 1 (4×30%)=2
DE 2 2 (8×30%)=3
DF 3 1 (4×30%)=2
EF 3 1 (4×30%)=2

Table 3
(a) Candidate 2-itemsets in DB, (b) Candidate 2-itemsets in db.

C2 Start Count

(a) P1+P2
BC 1 4
CE 2 2
DE 2 2

(b) P3
AD 3 1
BC 3 1
BD 3 1
BE 3 1
BF 3 3
CE 3 1
CF 3 1
DF 3 1
EF 3 1
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items that appear ineach itemset. For example, the itemset CE consists of two itemsCandE. SinceMCP(C)=(1,3) andMCP(E)=(2,3),
we have MCP(CE)=(2,3). Hence, the TI will be CE2,3 as shown in Table 5 and the corresponding SI's are generated (C2,3 and E2,3) as
shown in Table 6. After that, the proposed algorithm scans the updated database to calculate the support counts of all TI's and SI's as
shown in Table 7. Table 8 illustrates the new frequent temporal itemsets in the updated database.

On the other hand, if the transactions of the incremental database are recorded in February instead of March, then this means
they are to be considered as an extension to the P2 transactions, instead of being a new partition P3. Therefore, the proposed
algorithm joins both transactions in one partition P2. However, before this joining, the proposed algorithm updates the stored
candidate 2-itemsets of the original database by scanning P2. That is, by removing any occurrence count of any itemset in P2 from
the counts of the stored candidate 2-itemsets of the original database. Table 9a shows the updated candidate 2-itemsets of the
original database after removing P2 from the original database and merging it with P3 to be the new P2. Also, Table 9b depicts the
candidate 2-itemsets of the incremental database with their support counts. Then, the algorithm begins to determine the
candidate 2-itemsets of the updated database by updating the support counts of the candidate 2-itemsets of both the original and
the incremental databases. The results of the updating process are illustrated in Table 10. After that, the algorithm proceeds in the
same way as explained above.
Table 5
Generate temporal itemsets in DB+db.



Table 6
Generate sub-temporal itemsets in DB+db.

TI's SI's

BC1,3 B1,3

C1,3

BF3,3 B3,3

F3,3

CE2,3 C2,3

E2,3

Table 7
Update the support counts of temporal and sub-temporal itemsets.

Scanning the updated database for TI's and SI's

Candidate itemsets Counts Relative support

SI's B1,3 8 (12×30%)=4
C1,3 6 (12×30%)=4
B3,3 3 (4×30%)=2
F3,3 3 (4×30%)=2
C2,3 4 (8×30%)=3
E2,3 4 (8×30%)=3

TI's BC1,3 5 (12×30%)=4
BF3,3 3 (4×30%)=2
CE2,3 3 (8×30%)=3
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The computational complexity of the proposed algorithm can be studied in terms of both the number of database scans and the
number of comparisons made. As mentioned earlier, the proposed algorithm needs only one database scan in order to make the
update, while SPF and Twain algorithms need two database scans. Assuming that the time needed to scan all the transactions of
the database is n, the proposed algorithm needs time (n) while both SPF and Twain need time (2n). Hence, each of these
algorithms, including the proposed algorithm, are of order O(n) in terms of number of database scans. For the number of
comparisons needed, the number of comparisons performed in the only database scan of the proposed algorithm is equivalent
to the number of comparisons performed in the second database scan of both SPF and Twain algorithms. To update the candidate
2-itemsets, another scan of the whole database is required for both SPF and Twain, while the proposed algorithm just scans the
incremental database. The proposed algorithm handles the incremental database in the same way that both SPF and Twain handle
the last partition of the database in the first scan. Consequently, the number of comparisons needed by the proposed algorithm is
just equal to the number of comparisons needed by the other two algorithms in handling one partition.
5. Correctness of proposed algorithm

In this section, the correctness of the proposed algorithm is proved using the same definitions provided in [8]. Generally, TAR
algorithms deal with two types of candidate itemsets, 1) Type α: the candidate itemsets that were carried over from the previous
progressive candidate set in the previous phase and remain as candidate itemsets after the current partition is included into
consideration, and 2) type β: the candidate itemsets that were not in the progressive candidate set in the previous phase, but are
newly selected after only taking the current data partition into account. Let Nph(X) be the number of transactions in partition Ph
that contain itemset X. The region ratio of an itemset is defined as follows:
Table 8
The frequent temporal itemsets in DB+db.

Frequent itemsets Counts

L1 B1,3 8
C1,3 6
B3,3 3
F3,3 3
C2,3 4
E2,3 4

L2 BC1,3 5
BF3,3 3
CE2,3 3



Table 9
(a) Candidate 2-itemsets in DB, (b) candidate 2-itemsets in db.

C2 Start Count

(a) P1
BC 1 2

(b) P2
AB 2 1
AC 2 1
AD 2 1
BC 2 3
BD 2 1
BE 2 2
BF 2 3
CD 2 1
CE 2 3
CF 2 1
DE 2 2
DF 2 1
EF 2 1
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Definition 1. A region ratio of an itemset X for the transaction database dbi,j, denoted by ri,j(X), is
Table 1
Update

Upda

C2

AB
AC
AD
BC
BD
BE
BF
CD
CE
CF
DE
DF
EF
ri; j Xð Þ =
∑
j

h= i
jNph Xð Þ j

jdbi;j j
From the definition, it is clear that the region ratio of an itemset is the support of that itemset if only the part of transaction
database dbi,j is considered.

Lemma 1. A 2-itemset X remains in the candidate 2-itemsets after the processing of partition Pj if and only if there exists an i such that
for any integer t in the interval [i, j], ri,t (X)≥min_sup where min_sup is the minimal support required.

Proof. To prove the “if” condition, consider the following two cases:first, suppose the 2-itemsetX is not in the candidate 2-itemsets
before the processing of partition Pi . Since ri,i (X)≥min_sup, ItemsetXwill be selected as a typeβ candidate itemset by our proposed
algorithm after the processing of partition Pi. On the other hand, if the itemset X is already in the candidate 2-itemsets in DB before
the processing of partition Pi , itemset Xwill remain as a type α candidate itemset. Obviously, for the above two cases, itemset Xwill
remain in candidate 2-itemsets throughout the processing from Pi to Pj since for any integer t in the interval [i, j], ri,t (X2)≥min_sup.
To prove the “only if” condition, i.e., if X remains in candidate 2-itemsets after the processing of partition Pj, then there exists an i
such that for any t in the interval [i, j], ri,t (X)≥min_sup. Note that itemset X can be either type α or type β candidate itemset in the
candidate 2-itemsets after the processing of partition Pj. Suppose X is a type β candidate itemset there, then this implication follows
by setting j= i since ri,i (X)≥min_sup.

On the other hand, suppose that X is a type α candidate itemset after the processing of Pj, which means itemset X has become a
type β candidate itemset in a previous phase. Then, wewill trace backward the type of itemset X from partition Pj (i.e., looking over
0
candidate 2-itemsets in DB+db.

te candidate 2-itemsets in DB+db P1+P2

Start Count Relative support

2 1 (8×30%)=3
2 1 (8×30%)=3
2 1 (8×30%)=3
1 5 (12×30%)=4
2 1 (8×30%)=3
2 2 (8×30%)=3
2 3 (8×30%)=3
2 1 (8×30%)=3
2 3 (8×30%)=3
2 1 (8×30%)=3
2 2 (8×30%)=3
2 1 (8×30%)=3
2 1 (8×30%)=3
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Pj, Pj−1, Pj−2, etc.) until the partition that records itemset X as a type β candidate itemset is first encountered. Referring to the
partition identified above as partition Pi, we have, for any t in the interval [i, j], ri,t (X)≥min_sup, completing the lemma proof. □

Lemma 2. An itemset X remains in candidate itemsets after the processing of partition Pj if and only if there exists an i such that
ri,j (X)≥min_sup, where min_sup is the minimal support required.

Proof. Clearly, the proof of “only if” condition follows directly from Lemma 1. To prove the “if” condition of this lemma. If there
exists an i such that ri,j (X)≥min_sup, then let u be the largest v such that ri,v (X)bmin_sup. If such a u does not exist, it follows from
Lemma 1 that itemset Xwill remain in the candidate itemsets after the processing of partition Pj. If such a u exists, we have ru+1,j

(X)≥min_sup since ri,u (X2)bmin_sup and ri,j (X2)≥min_sup. It again follows from Lemma 1 that itemset X will remain in the
candidate itemsets after the processing of partition Pj, completing the lemma proof. □

Lemma 2 leads to the following theorem that states the completeness of candidates 2-itemsets generated by the proposed
algorithm.

Theorem 1. If there exists a frequent itemset Xt,n in the transaction database dbt,n such that rt,n (X)≥min_sup, then X will be in the
candidate itemsets produced by the proposed algorithm.

Proof. Let n be the number of partitions of the transaction database. Since the itemset Xt,n is a frequent itemset, we have
rt,n (X)≥min_sup, which essentially is a special case of Lemma 2 for i= t and j=n, proving this theorem. □

Moreover, let Ci,j, i≤ j, be the set of progressive candidate itemsets generated by the proposed algorithm with respect to
database dbi,j after the processing of Pj. We then have the following lemma.

Lemma 3. For i≤ t≤ j, then Ct,j⊂Ci,j.

Proof. Assume that there exists a 2-itemset X∈Ct,j. From the “only if” implication of Lemma 2, it follows that there exists an h such
that rh,j (X)≥min_sup, where t≤h≤ j. Since i≤ t≤ j, we have i≤h≤ j. Then, according to the “if” implication of Lemma 2, itemset X is
also in Ci,j, i.e., X∈Ci,j. The fact that Ct,j⊂Ci,j follows. □

Theorem 1 and Lemma 3 lead to the following theorem which states the correctness of the proposed algorithm.

Theorem 2. If there exists a frequent k-itemset Xk
t,n in the transaction database dbt,n such that rt,n (Xk)≥s, then Xk

t,n will be produced by
the proposed algorithm.

Proof. Since itemset Xk
t,n is frequent, we have rt,n (Xk)≥min_sup. As mentioned above, all of its sub-itemsets Xh

t,ns (hbk). will be
frequent with rt,n (Xh)≥min_sup. Precisely, X2

t,ns are in essence special cases of Xh
t,nswith h=2. Thus, according to the implication

of Theorem 1, X2swill be in the candidate set of itemsets produced by the proposed algorithm. In this way, according to the anti-
monotone Apriori-like heuristic, i.e., if any length k itemset Xk

i,n is not frequent in the database, its length (k+1) super-itemset
Xk+ 1
i,n will never be frequent, the super-itemset Xk

t,n of X2
t,nwill be produced by the proposed algorithm, proving this theorem. □

In addition, if there exists a frequent TI 3-itemset ABCt,n, for example, in the transaction database dbt,n, meaning that rt,n
(ABC)≥min_sup, then we have rt,n(AB)≥min_sup, rt,n (AC)≥min_sup, and rt,n (BC)≥min_sup. According to Theorem 1, all SIs of
ABCt,n (ABt,n, ACt,n, BCt,n, At,n, Bt,n, and Ct,n) will be in the progressive candidate set of itemsets produced by the proposed algorithm.
Hence, Theorem 2 states the correctness of the proposed algorithm.
6. Experimental results

In this section, a performance comparison of the proposed algorithm with some other temporal algorithms is presented. The
comparison is conducted with the SPF [12,13] and Twain [2] algorithms as they are recent algorithms for mining general temporal
association rules. The comparisons are evaluated from different aspects including: run time, minimum support, original database
size and incremental database size. All the experiments are performed on a 1.8 GHz Intel Core 2 Duo PC machine with 1 Gigabytes
main memory, running on Microsoft Windows XP Professional and all the programs are coded in C#.

The experiments were performed on synthetic publication databases, used in the experimental results of the previously
mining algorithms introduced in [2,8,12,13]. In essence, a publication database is a set of transactions where each transaction
T is a set of items, where each item contains an individual exhibition period. For the simplicity of presentation, the notation
[Tx− Iy−Dz−dr (Nm−Ln−Po)] is used to represent a dataset in which x is the average size of the transactions, y is the
average size of maximal potentially frequent itemsets, z is the number of transactions in the original database (in thousands),
r is the number of transactions in the incremental database (in thousands), m is the number of distinct items (in thousands),
n is the number of maximal potentially frequent itemsets (in thousands), and o is the number of partitions.

Also, a real dataset (BMS-POS) from KDDCUP web site is used to evaluate the performance of the proposed algorithm. It is the
same dataset that is used to evaluate the performance of the Twain algorithm [2]. The BMS-POS dataset contains several years'
worth of point-of sale data from a large electronics retailer. Since this retailer has so many different products, product categories
are used as items. The transaction in this dataset is a customer's purchase transaction consisting of all the product categories



Fig. 5. The run time under various minimum supports.

Fig. 4. The run time under various minimum supports.
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purchased at one time. The goal for this dataset is to find associations between product categories purchased by customers in a
single visit to the retailer. The dataset contains 515,597 transactions and 1657 distinct items. The maximum transaction size is
equal to 164 while the average transaction size is equal to 6.5.
Fig. 6. The run time under various minimum supports.



Fig. 7. The run time under various minimum supports.

Fig. 8. The run time under various minimum supports.
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In the first experiment, several datasets are used to investigate the run time of the proposed algorithm comparing with the
other two algorithms by varying the minimum support from 0.1% to 1%. The experimental results on various datasets are shown in
Figs. 4, 5 and 6 with different sizes of the original database 50 k, 100 k and 150 k respectively. In addition, Fig. 7 illustrates the
relative performance of the proposed algorithm on the real dataset (BMS-POS). Figs. 8 and 9 depict the performance of the
Fig. 9. The run time under various minimum supports.



Fig. 10. The run time under various minimum supports.

Fig. 11. The run time under various minimum supports.
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proposed algorithm for various values of m and n on the dataset T10-I4-D100-d20. In all these datasets, the incremental database
has a new time stamp. Figs. 10 and 11 illustrate the performance of the proposed algorithmwhen the incremental database has the
same time stamp as that of the last partition of the original database. Experimental results reveal that no matter what the
Fig. 12. The time needed to generate candidate itemsets.



Fig. 13. Speedup ratio.
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combination of different parameters is, the proposed algorithm performs significantly better than the other two algorithms in
terms of the run time. This is due to the scan reduction achieved by the proposed algorithmwhere it needs only one database scan
to perform the update, while both the SPF and Twain algorithms need two database scans to perform the update.
Fig. 14. Scalability with the number of transactions in DB.

Fig. 15. Scalability with the number of transactions in db.
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From Figs. 4–11, it can be noted that the margin grows as the minimum support decreases, due to the large number of frequent
itemsets produced with the low support thresholds, while this number decreases with high support thresholds. Fig. 12 shows the
time needed by each algorithm to generate all the candidate itemsets. It can be seen that the proposed algorithm reduces
significantly the time needed to generate the candidate itemsets with respect to the other two algorithms. In addition, Fig. 13
illustrates the speedup ratio achieved by the proposed algorithm with respect to SPF and Twain algorithms. The proposed
algorithm reaches to a speedup ratio up to 1.33 faster than the SPF algorithm and 1.23 faster than the Twain algorithm.

Moreover, two different experiments are designed to investigate the scalability of the proposed algorithm against different
sizes of both the original and the incremental databases. Three different minimum support thresholds are considered in these
experiments: 0.3%, 0.5% and 1%. Fig. 14 depicts the scale-up performance of the proposed algorithm as the size of the original
database increaseswhile the size of the incremental database is fixed. Also, Fig. 15 shows the scalability of the algorithm by varying
the size of the incremental database. It can be noticed that the run time of the proposed algorithm increases linearly as the number
of transactions in the database increases. This shows that the proposed algorithm can utilize the information carried from the
previous mining well and can incrementally generate frequent itemsets efficiently.

7. Conclusion

The concept of temporal association rule (TAR) has been introduced in order to solve the problem of handling time series by
including time expressions into association rules. We have presented an algorithm called ITARM for updating temporal association
rules in the transactiondatabase. Theproposed algorithmreduces the timeneeded for generatingnewcandidatesby storing candidate
2-itemsets. It presents a technique to update the previously generated candidates instead of re-generating them from scratch. The
experiments showa significant improvement over the traditional approach ofmining thewhole updated database. In all experiments,
the proposed algorithm consistently outperforms SPF and TWAIN in terms of run time. Moreover, the experiments also show that the
proposed algorithm is scalable and can work with large databases.
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