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a b s t r a c t 

Breast cancer is a decisive disease worldwide. It is one of the most widely spread cancer among women. 

As per the survey, one out of eight women in the world are at risk of breast cancer at some point of time 

in her life. One of the methods to reduce breast cancer mortality rate is timely detection and effective 

treatment. That is why, more accurate classification of a breast cancer tumor has become a challenging 

problem in the medical field. Many classification techniques are proposed in the literature. Today, expert 

systems and machine learning techniques are being extensively used in the breast cancer classification 

problem. They provide high classification accuracy and effective diagnostic capabilities. In this paper, we 

have proposed a novel Gauss-Newton representation based algorithm (GNRBA) for breast cancer classifi- 

cation. It uses the sparse representation with training sample selection. Until now, sparse representation 

has been successfully applied in pattern recognition only. The proposed method introduces a novel Gauss- 

Newton based approach to find the optimal weights for the training samples for classification. In addi- 

tion, it evaluates the sparsity in a computationally efficient way as compared to the conventional l 1 -norm 

method. The effectiveness of the GNRBA is examined on the Wisconsin Breast Cancer Database (WBCD) 

and the Wisconsin Diagnosis Breast Cancer (WDBC) database from the UCI Machine Learning repository. 

Various performance measures like classification accuracy, sensitivity, specificity, confusion matrices, a 

statistical test and the area under the receiver operating characteristic (AUC) are reported to show the 

superiority of the proposed method as compared to classical models. The experimental results show that 

the proposed GNRBA could be a good alternative for breast cancer classification for clinical experts. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

According to American Cancer Society’s report, 2017 ( https://

www.cancer.org ), breast cancer is the second major cause of death

among women. There is a possibility that 1 in 37 (about 2.7%)

woman may die from breast cancer. The chance of develop-

ing breast cancer in women increases significantly, as they get

older ( McPherson, Steel, & Dixon, 20 0 0 ). Yet there is no estab-

lished theory regarding the causes and treatment of the disease

( Christoyianni, Dermatas, & Kokkinakis, 20 0 0; Rodrigues, Chang, &

Suri, 2006 ). Breast cancer arises due to uncontrolled growth of

cells. A normal cell in its life cycle grows in size, divide into new

cells and die at the proper time. However, cancerous cells behave

differently from normal cells. Any changes or mutation in DNA can
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ffect normal cells to become cancerous. Some genes control the

ehavior of normal cells, such as cell growth, division into new

ells and repair or perish at the proper time. One such gene is

alled Proto-oncogenes that control the cell growth. When it mu-

ates (changes) or there are too many replicas of it, it becomes

 "bad" gene. This bad gene is called oncogenes. Further, another

ene called tumor suppressor genes slow down cell division rate

a process known as apoptosis). When these genes do not func-

ion properly, uncontrolled growth of cells occurs. This can lead

o cancer. Sometimes, certain inherited DNA mutations (changes)

lso increase the risk of developing breast cancer. The mutations

f oncogenes and/or tumor suppressor genes are also influenced

y some other factors such as radiation or cancer-causing chemi-

als. Yet the causes of mutations that lead to breast cancer are still

nknown ( Hanahan & Weinberg, 2011 ). 

Cancerous cells usually accumulate to form a lump called a

umor or a mass that can be seen with X-Ray or felt by hands.

owever, not all tumors are cancerous. Non-cancerous tumors are

alled benign. Tumors that are cancerous are called malignant. Ma-

http://dx.doi.org/10.1016/j.eswa.2017.05.035
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ignant (cancerous) tumor can spread into surrounding tissues or

istant metastasis. Malignant tumors can spread when the cancer

ells get into the blood or lymph system and are transferred to

he nearby parts of the body. Mostly, breast cancer starts in the

ucts that carry milk to the nipple (ductal cancers). Some begin

n the glands that make breast milk (lobular cancers). There are

lso some other types of cancer that start in other breast tissues

ike sarcomas and lymphomas, but they are very rare. The malig-

ant tumor found in the breast tissue is identified as breast cancer

 Muto, Bussey, & Morson, 1975 ). Benign breast tumor is also the

esult of abnormal growths inside the breast. However, they grow

eliberately, and do not spread outside the breast. They are not life

hreatening. However, some benign tumors can increase the risk of

etting breast cancer. The most common symptom of breast cancer

s a new painless lump or hard mass developed inside the breast.

ometimes breast cancer can be soft and painful. For this reason, it

s suggested that any breast lump or growth needs to be checked

y the doctor to identify whether it is benign or malignant. It also

educes the impact of getting future cancer risk. 

A lot of research around the world is going on to detect the

auses of breast cancer and to develop a preventive measure. Early

etection of breast cancer and finding state-of-the-art cancer treat-

ent could be a preventive measure to reduce its mortality rate

 Christoyianni et al., 20 0 0; Rodrigues et al., 20 06 ). Diagnosis of

reast cancer at an early stage is associated with improved out-

ome because timely treatment can be given preventing the loco

egional spread or distant metastasis. During its early stage, a tu-

or is small and has not spread, can be localized for effective

reatment. Regular screening is the most reliable way of early

reast cancer detection. This will be a reliable method of predict-

ng the prognosis of a woman with this disease. Normally, breast

ancer diagnosis is clinical and biological in nature, performed by

octors. The development of more effective diagnostic techniques

nd improved treatment planning has attracted significant atten-

ion to breast cancer cases. The most common techniques available

or breast cancer diagnosis are biopsy, mammography, ultrasound

US) imaging, magnetic resonance imaging (MRI) scans and exper-

mental breast imaging. 

Among these techniques, mammography is the first modality

or screening or detection of breast cancer. In this technique, the

octor to look for the symptoms of breast cancer uses an X-ray

mage of the breast (mammogram). Usually, symptoms like small

hite spots called calcifications, lump or tumor and other sus-

icious area indicate signs of breast cancer. However, the radi-

logist’s decision may vary while interpreting the mammography

 Elmore, Wells, Lee, Howard, & Feinstein, 1994 ). Moreover, mam-

ography suffers from limitations such as false-negative results,

alse-positive results, etc. Ultrasound is often used to examine

ome changes in the breast that can be felt but not visualized on

 mammogram. It may also be used for woman with dense breast

issues. Further, it is also used to guide a biopsy needle into the

uspicious area that can be taken out and tested for cancer. How-

ver, breast ultrasound imaging test solely depends on the skill and

xperience of the doctor interpreting the images. Breast biopsy is

 technique usually followed after getting suspicious results from

 screening test. Cells from suspicious area is taken out by a sur-

eon and tested in the laboratory to detect the presence of cancer

ells. There are different types of biopsy such as fine needle aspi-

ation cytology (FNAC) biopsy, core needle biopsy, surgical biopsy

nd lymph node biopsy. FNAC is a standard work-up in patients

ith suspected breast cancer. A doctor takes the tissue sample, ir-

espective of the prescribed biopsy, and a pathologist for final di-

gnosis examines it. The judgement given by the multidisciplinary

ncology board consisting of radiologist, oncologist and pathologist

s the final decision in breast cancer diagnosis. However, machine

earning techniques could assist them to improve their diagnos-
ic capability. It will further reduce the errors committed due to

atigue or inexperience. In addition, they can expedite examining

edical data in a shorter time with details ( ̧S ahan, Polat, Kodaz, &

üne ̧s , 2007 ). 

A wide variety of methods based on machine learning, expert

ystems and soft computing have been proposed in the literature,

o solve the breast cancer diagnosis problem ( Bhardwaj & Tiwari,

015; Malmir, Farokhi, & Sabbaghi-Nadooshan, 2013; Marcano-

edeño, Quintanilla-Domínguez, & Andina, 2011 ). Earlier, data min-

ng and machine learning techniques were integrated into a com-

uter aided diagnosis (CAD) system for classification of breast can-

er. The successful execution of this approach transformed the

reast cancer diagnosis into a 2-class (benign or malignant) clas-

ification problem ( Wolberg, Street, & Mangasarian, 1995 ). The ob-

ective of breast cancer classification is to identify an unknown tu-

or sample (test sample) as benign or malignant by using labeled

raining samples. Almost all the methods consider WBCD taken

rom the UCI machine learning repository ( Bache & Lichman, 2013 )

o experiment. 

Quinlan (1996) proposed a 10 – fold cross validation in con-

unction with C4.5 tree method. The author was silent about the

ffect of changing the training samples on the classification accu-

acy. Hamilton, Shan, and Cercone (1996) used a rule induction al-

orithm based on the approximate classification method to achieve

n accuracy of 96%, which is low. Abonyi and Szeifert (2003) ap-

lied the supervised fuzzy clustering technique and obtained an

ccuracy of 95.57%. This is also a lower classification rate and thus,

ot fit for clinical usages. Ş ahan et al. (2007) employed a hybrid

achine learning method in breast cancer diagnosis. The method

nvolves two stages. Firstly, fuzzy-artificial immune system was ap-

lied to reduce the dimension of the dataset. Secondly, k-NN per-

orms the classification in the reduced space. In this manner, the

rocessing time for classification is reduced. The method achieved

 high classification accuracy of 99.14% via 10-fold cross validation.

owever, the authors did not investigate the effect of partitioning

he training and the test samples. 

Peng, Wu, and Jiang (2010) suggested a technique which in-

egrates wrapper-based and filter-based feature extraction meth-

ds. Such feature extraction methods are efficient enough to se-

ect a subset of features from original feature space, without loss

f significant information. The method achieved an accuracy of

9.5%. The method suffers from computational complexity. Re-

ently, Chen (2014) extended the idea of feature selection to clus-

er analysis techniques to improve their operation. The author pro-

osed a hybrid intelligent technique for breast cancer diagnosis.

hen, Yang, Liu, and Liu (2011) used rough set (RS) theory for fea-

ure selection. The authors implemented RS to select the signif-

cant optimal feature followed by support vector machine (SVM)

or classification. They applied a subset that contains five optimal

eatures. These authors worked in a high dimensional space using

VM. 

Übeyli (2007) applied five different classifiers using neural

etworks for breast cancer diagnosis. The Levenberg-Marquardt

lgorithm is used to train the dataset for different classifiers.

heng, Yoon, and Lam (2014) proposed a hybrid method (K-

eans + SVM) and achieved a classification accuracy of 97.38% us-

ng 10-fold cross validation. The above authors used highly compu-

ational complex methods for classification. 

Örkcü and Bal (2011) implemented back propagation neu-

al network (BPNN), binary coded genetic algorithm (GA)

nd real coded GA for breast cancer diagnosis. Marcano-

edeño et al. (2011) explained a novel artificial metaplastic-

ty multilayer perceptron (MLP) for breast cancer diagnosis.

almir et al. (2013) trained an MLP using an imperialistic com-

etitive algorithm (ICA) and particle swarm optimization (PSO)

or 40 iterations to achieve a classification accuracy of 97.75%
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and 97.63% respectively. Koyuncu and Ceylan (2013) implemented

rotation forest artificial neural network (ANN) using 9-classifiers

and achieved a classification accuracy of 98.05%. Xue, Zhang, and

Browne (2014) proposed a novel technique for initializing and

updating in PSO for feature selection to achieve an accuracy of

94.74%. It is observed that most of the authors used neural net-

work for classification, which is inherently complex. 

Bhardwaj and Tiwari (2015) proposed a genetically optimized

neural network (GONN) algorithm to carry out the breast cancer

classification. The method used GA to develop an optimized neural

network architecture. The method implements new crossover and

mutation operators for GA. However, the computational complex-

ity is more due to the use of GA and ANN. Further, the authors in-

vestigated the diagnosis problem on WBCD only. Moreover, to deal

with real life problem, efficiency of methods on the breast can-

cer represented by imaging techniques like mammography, US etc.

need to be evaluated. The imaging techniques define the diagnostic

features based on analysis of the images and are usually not very

well correlated with a class. In this paper, our focus is on evalua-

tion of GNRBA on two different breast cancer datasets (WBCD and

WDBC). The performance of GNRBA on different imaging modali-

ties is beyond the scope of the paper and can be considered as our

future work. Nilashi, Ibrahim, Ahmadi, and Shahmoradi (2017) pro-

posed a knowledge-based system, which uses expectation maxi-

mization to cluster the data into similar groups. The method uses

classification and regression trees to generate a set of fuzzy rules.

Classification of breast cancer is done based on the fuzzy rules.

Further, to deal with multi-collinearity problem, principal compo-

nent analysis (PCA) is used. The method shows a good classifica-

tion accuracy on WBCD and mammography mass datasets. How-

ever, the method is based on non-incremental data mining tech-

nique and evaluated on small datasets. Sometimes, classification

algorithms may be influenced by certain properties of the diagnos-

tic images such as mammography. Early detection of breast can-

cer may depend on factors like differences in instrument setting or

breast positioning by the operator. Taking these limitations into ac-

count, Magna et al. (2016) proposed an adaptive artificial immune

based system to investigate the properties of classification meth-

ods, applied to mammography images. The classification methods

are trained to measure bilateral asymmetry between paired regions

of the right and left breasts. Still, such a system requires proper

investigation to identify focal and global asymmetric features. Ad-

ditionally, attention is required to extract features to localize the

source of asymmetry. Wang, Hu, Li, Liu, and Zhu (2016) proposed

an automatic quantitative image analysis method for classification

of breast cell nuclei as benign or malignant. The author uses breast

cell histopathology (BCH) images. Segmentation of cell nuclei is

done by using wavelet decomposition and multi-scale region grow-

ing. A double-strategy splitting model is used to partition the over-

lapping cells. A hybrid technique, which includes SVM and chain-

like genetic algorithm to extract optimal features (shape-based and

texture-based features) for classification of cell nuclei, is presented.

The method shows a good classification accuracy of 96.19%, using

68 BCH images. However, to prove the robustness of the method,

evaluation on a large dataset is preferred. 

Nowadays, computer-aided diagnosis (CAD) systems are gaining

attention on the breast cancer classification problem for automatic

diagnosis. Abdel-Zaher and Eldeib (2016) proposed a CAD sys-

tem based on deep-belief neural network. The network uses back

propagation with Levenberg-Marquardt learning. The method uses

WBCD for breast cancer classification. Nevertheless, such algorithm

has inherent high computational complexity. Therefore, it is diffi-

cult to implement them on any commercially available hardware,

to assist doctors in early detection of breast cancer. Moon, Chen,

Chang, Shin, Lo, and Chang (2016) proposed an adaptive CAD sys-

tem for classification of breast tumor. The CAD system utilizes tu-
or sizes for classification. US images of breast tumor detected

uring screening are used for classification. The CAD system uses

uantitative morphological and texture features for classification.

owever, speckle noise and other artifacts that are inherent in US

mage may degrade the performance of such a system. To over-

ome such problems, Abdel-Nasser, Melendez, Moreno, Omer, and

uig (2017) proposed a super-resolution based CAD system. The

ystem uses multiple US images of breast instead of a single im-

ge. The CAD system uses four different steps like super-resolution

omputation, segmentation, feature extraction and classification to

etect tumors and classify them as benign or malignant. The idea

an be extended to other medical imaging modalities. Nowadays, a

ew ultrasound elastography imaging technique called shear wave

lastography (SWE) is increasingly used for classification of breast

esion. SWE provides opportunity to evaluate elasticity parame-

ers of breast, an important information about cancerous tissue.

charya et al. (2017) proposed a method for automatic characteri-

ation of malignant breast lesion. The method uses SWE to evalu-

te discrete wavelet coefficients in three different levels. Features

ike run length statistics and Hu’s moments are extracted from

he coefficients. Significant features are then extracted by using

equential forward selection methods and ranked using the Reli-

fF ranking technique. Different classifiers for classification of be-

ign and malignant lesions use the ranked features. The method

chieved a classification accuracy of 93.59%. 

Recently, sparse-based representation methods are being suc-

essfully implemented in pattern recognition for face recognition

nd verification ( Mei, Ling, & Jacobs, 2011; Yuan, Liu, & Yan, 2012 ).

t requires that a test face image be sparsely represented by the

ontributions of each class. A group of similar training face images

epresents a class. For each class, the contribution ability is rep-

esented by the weighted sum of the training images. The class

ontribution ability reflects the contribution of each class on a test

mage. Then the test face image is classified in a class having max-

mum class contribution ability. Here, sparse indicates that weight-

ng coefficients of some of the training face images in a class are

ero with respect to the matched class. The extent of sparsity of

he weighting coefficients can be evaluated by using l 1 - norm of

he weighting coefficient vector ( Mahmoudi & Sapiro, 2012; Zhang,

ang, & Feng, 2011 ). A smaller norm indicates a stronger sparsity.

n reality, conventional sparse based representation methods tend

o minimize the l 1 -norm of the coefficient vector. 

To the best of our knowledge, sparse-based representation

ethods are not applied to breast cancer classification problem.

his motivates us to apply it to breast cancer classification. Here,

e propose a novel Gauss-Newton representation based (GNRBA)

ethod for the breast cancer classification problem. It is wise to

eiterate the fact that labeled tumor features represents training

amples and an unknown tumor sample represents test sample.

he proposed method is based on sparse representation of a test

ample by the linear weighted sum of all the training samples.

irst, a subset of significant training samples (tumor features) is

elected from the total training samples by using the Euclidean

istance measure. All the significant training samples in the sub-

et belongs to either of the two classes i.e. benign or malignant.

hen, for each class, the proposed method evaluates the class con-

ribution ability. The maximum class contribution ability criteria

re used to classify a test sample. The block diagram of the pro-

osed method is shown in Fig. 1 . 

The main contributions of the proposed method are: (1) Selec-

ion of a subset of significant training samples which are compati-

le with the proposed GNRBA to obtain accurate classification in a

educed dimension space. (2) Evaluation of sparsity of the weight-

ng coefficients with reduced computational complexity. (3) Provid-

ng an optimal solution to evaluate the sparsity of weighting coef-

cients, as compared to the conventional l 1 -norm method. To show
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Fig. 1. Block diagram of the proposed GNRBA. 

Table 1 

Description of WBCD. 

Attribute number Attribute Description Values Mean Standard deviation 

1 Clump thickness 1–10 4 .44 2 .83 

2 Uniformity of cell size 1–10 3 .15 3 .07 

3 Uniformity of cell shape 1–10 3 .22 2 .99 

4 Marginal adhesion 1–10 2 .83 2 .86 

5 Single epithelial cell size 1–10 2 .23 2 .22 

6 Bare nuclei 1–10 3 .54 3 .64 

7 Bland chromatin 1–10 3 .45 2 .45 

8 Normal nucleoli 1–10 2 .87 3 .05 

9 Mitoses 1–10 1 .60 1 .73 
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he accuracy of the proposed method, we have compared with

ther methods applied to WBCD. From the study, it is observed

hat most of the above discussed methods use WBCD to experi-

ent ( Abdel-Zaher & Eldeib, 2016; Bhardwaj & Tiwari, 2015; Chen

t al., 2011; Koyuncu & Ceylan, 2013; Malmir et al., 2013; Nilashi

t al., 2017 ). To the best of our knowledge, very few researchers

ave used WDBC to experiment. In this paper, we have considered

oth WBCD and WDBC to experiment to show the robustness of

ur proposed method. The results show that the proposed method

erforms well as compared to the other methods. Further, it can

e a better alternative to the well-established expert systems and

achine learning methods. Nevertheless, we can verify the method

sing some private data as well but then such data won’t be avail-

ble for public and verification would be difficult. The rest of the

aper is organized as follows. Section 2 describes the databases

sed to experiment. Section 3 presents the proposed method. Ex-

erimental results and discussion are presented in Section 4 . Fi-

ally, Section 5 is the conclusion. 

. Breast cancer database 

In this paper, we have carried out the experiment on WBCD and

DBC database ( Bache & Lichman, 2013; Bennett & Mangasarian,

992; Mangasarian & Wolberg, 1990; Mangasarian, Setiono, & Wol-

erg, 1990; Wolberg & Mangasarian, 1990 ). The UCI machine learn-

ng repository contains two types of breast cancer datasets taken

rom human breast tissue, for breast cancer classification problem. 

WBCD : This dataset contains tumor features of Fine Needle As-

irates (FNA) of human breast tissue. It contains tumor features of

99 subjects. The dataset has 9 attributes along with a class label

benign or malignant) and a subject ID, corresponding to each sub-

ect. The name and value of each of the 9 attributes are listed in

able 1 . Each attribute is an integer value [1–10], where the value
f 10 represents the critical state. Out of the 699 subjects, 16 sub-

ects have some attribute values missing. Thus, they are not in-

luded in the experiment. We consider only the rest 683 subjects.

ut of the 683 subjects, 4 4 4 are in the benign class and 239 in the

alignant class. The primary objective of the breast cancer clas-

ification problem is to correctly classify the tumor feature of an

nknown subject as benign or malignant. 

WDBC : This dataset contains tumor features obtained from a

igital image of breast FNA. In this dataset, 32 tumor features of

69 subjects are presented. The 32 features represent (a) 30 actual

umor features, (b) a subject ID number and (c) a class label, which

enotes each subject has benign or malignant tumor. For each sub-

ect, 10 attributes of cell nuclei (visible in a digital image of breast

NA) are obtained, such as radius, texture, perimeter, area, smooth-

ess, compactness, concavity, symmetry, concave points and fractal

imension. Then different measurement like mean, standard error

nd maximum of these 10 attributes are calculated which results

n 30 features, as depicted in Table 2 . These measurements are

onsidered as tumor features in the dataset. As the measurements

re in different scales, we need to normalize the dataset before

raining. 

. Proposed method 

In this paper, we have proposed a novel GNRBA for solving

reast cancer classification problem. The proposed work is based

n sparse representation of a test sample by the linear weighted

um of all the training samples. The input training samples are

aken from the database. The classification task is performed in

wo steps. In the first step, a subset of the most significant train-

ng samples is selected. In the second step, the subset is utilized to

lassify the unknown test sample. 
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Table 2 

Description of WDBC database. 

Attribute number Attributes Attributes range 

Mean Standard error Maximum 

1 Radius 6 .98–28.11 0 .112 – 2.873 7 .93 – 36.04 

2 Texture 9 .71–39.28 0 .36–4.89 12 .02–49.54 

3 Perimeter 43 .79–188.50 0 .76–21.98 50 .41–251.20 

4 Area 143 .50–2501.00 6 .80–542.20 185 .20–4254.00 

5 Smoothness 0 .053–0.163 0 .002–0.031 0 .071–0.223 

6 Compactness 0 .019–0.345 0 .002–0.135 0 .027–1.058 

7 Concavity 0 .0 0 0–0.427 0 .0 0 0–0.396 0 .0 0 0–1.252 

8 Concave points 0 .0 0 0–0.201 0 .0 0 0–0.053 0 .0 0 0–0.291 

9 Symmetry 0 .106–0.304 0 .008–0.079 0 .157–0.664 

10 Fractal dimension 0 .050–0.097 0 .001–0.030 0 .055–0.208 
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3.1. Subset selection 

Let X = [ x 1 , x 2 , ���, x t ] 
T denotes a set of t training samples taken

from the database, where T represents the matrix transpose. Each

element x i for i = 1, 2, ���, t is a training sample (tumor feature

of a subject) that belongs to either of the two classes i.e. benign

or malignant, as discussed in Section 2 . In sparse representation,

the class contribution ability is guided by the training samples of

that class. The training samples that minimize their class contribu-

tion ability are treated as the unsuitable samples. On the contrary,

the samples that maximize their ability are considered as suitable

training samples. Earlier research has shown that the training sam-

ples that are nearest to the test sample are considered useful for

accurate classification. Therefore, we need to select a subset of the

training samples nearest to the test sample in order to maximize

their class contribution ability. In the literature, many approaches

are available to find the distance measure between the training

samples and the test sample. Then this measure is used to select

the nearest and the farthest training samples from the test sam-

ple ( Xu, Zhang, Yang, & Yang, 2011 ). In this paper, we have taken

the Euclidean distance d i to calculate the distance between a test

sample y and a training sample x i as given below. 

d i = ‖ 

y − x i ‖ 2 (1)

From Eq. (1) , a small d i value indicates the training sample x i is

nearest to the test sample y . A large d i indicates that the sample

x i is an unsuitable training sample. Thus, we use Eq. (1) to select

a subset containing an N number of suitable training samples. The

remaining training samples are discarded. Let X S = [ x 1 , x 2 , ���, x N ] 
T 

be the subset of the N selected suitable training samples. The class

labels (benign or malignant) of the corresponding training samples

in the subset are saved in C = [ c 1 , c 2 , ���, c N ] 
T . 

3.2. GNRBA 

In this section, we explain the proposed GNRBA to classify the

unknown test sample. The subset ( X S ) of the training samples is

used as the input to the method. The proposed GNRBA represents

a test sample y as a linear weighted summation of the training

samples, given as follows: 

y = x 1 β1 + x 2 β2 + · · · + x N βN (2)

where, y is an unknown test sample; β = [ β1 , β2 , ���, βN ] is a vec-

tor consisting of N weighting coefficients assigned to each training

sample x i for i = 1, 2, ���, N . Each sample x i from the subset be-

longs to either of the two class i.e. benign or malignant. Let the

benign class contain a C B number of samples and malignant class

contains C M 

samples such that C B + C M 

= N . Then Eq. (2) can also

be represented as: 

y = x β + x m 

βm 

(3)
b b 
here x b for b = 1, 2, ���, C B is a training sample that belongs to

enign class having a weighting coefficient βb . Note that x m 

is a

raining sample that belongs to malignant class having a weighting

oefficient βm 

for m = 1, 2, ���, C M 

. Now Eq. (3) represents a test

ample as a weighted summation of training samples from each

lass. In addition, it also represents the class contribution ability

f each class, which is guided by all the training samples of that

lass. 

Initially, β is taken randomly. Different random values of β will

nconsistently represent the contribution of training samples to-

ards their class. So, it is required to generate the optimal β such

hat it consistently represents the contribution of training samples.

n other words, if β is the best solution, contribution of the train-

ng samples towards their class can be calculated according to the

lements of β . In the literature, it is suggested that, a method to

nd optimal β is to optimize the sum of square error (SSE), which

s given as follows ( Gill, Murray, & Wright, 1981 ) 

SE = min 

β
‖ 

y − X S β‖ 

2 
2 + λ‖ 

β‖ 

2 
2 (4)

here λ is a regularization parameter used to obtain a stable so-

ution by avoiding singularity. 

We have used the Gauss-Newton formula ( Gill et al., 1981 ) to

inimize the objective function in Eq. (4) in order to generate the

ptimal β . The update equation is given as follows, 

next = βnow 

+ �β (5)

here �β = ( X T S X S + λI ) −1 X T S �Y , I is the identity matrix and �Y

epresents the difference between the desired output value and the

ctual output value when the input is X as defined in ( Gill et al.,

981 ). 

The proposed method is easy to implement with less compu-

ational complexity as compared to the conventional sparse rep-

esentation method. The regularization parameter tends to zero,

hen approaching optimum point. However, in this paper, we have

sed the regularization parameter, λ= 0.01 as suggested in ( Jang,

un, & Mizutani, 1997; Zhang et al., 2011 ) for this update. Specif-

cally, we have to decide a stopping criterion to obtain best β ,

hich is an optimum solution. The termination condition used to

btain the best β can be the maximum number of iterations or

ntil the objective function converges. We have considered the for-

er as the stopping criteria. Once the optimal β is obtained using

q. (5) , class contribution ability of the N selected training samples

n the subset ( X S ) can be used to represent the test sample. 

However, the selected training samples in the subset might

e from different classes. Therefore, we consider the sum of the

eighted training samples from the same class (i.e. class contribu-

ion ability) to represent the test sample. Then the sum is used

o compute the distance between the test sample and the class

ontribution of each class. If the selected training samples in the

ubset are from k th class, then their class contribution ability is
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Table 3 

Parameters setting for the proposed GNRBA. 

Parameters Value 

WBCD WDBC 

Size of the subset, N 74 (50–50 partition) 160 (50–50 partition) 

92 (60–40 partition) 54 (60–40 partition) 

2 (70–30 partition) 43 (70–30 partition) 

2 (10-fold cross validation) 43 (10-fold cross validation) 

Regularization parameter, λ 0 .01 0 .01 

Termination criteria 50 iterations 50 iterations 
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alculated as: 

 k = 

N k ∑ 

i =1 

βi X Si (6) 

here, N k is the number of training samples from k th class; β i is

he i th coefficient value of the i th training sample X Si and X k in-

icates the class contribution ability of k th class. Then the sum in

q. (6) is utilized to classify the test sample y by using 

 k = ‖ 

y − X k ‖ 2 (7) 

In Eq. (7) , a smaller distance D k between test sample y and X k 

ndicates a greater contribution of the k th class to represent the

est sample. Hence, the test sample is classified into the class k .

he steps of the proposed GNRBA are presented as follows 

Algorithm of the proposed GNRBA for classification of breast

ancer. 

Input : X , training samples i.e. tumor features from WBCD/WDBC database. 

Output : classification of the testing samples or unknown tumor feature. 

1. for j = 1 to T (number of testing samples) 

2. Calculate d i between X and y j ( i th test sample) using Eq. (1) 

3. X S = min d i { X i } for i = 1, 2, ���, N (selection of subset) 

4. if class of X S =benign 

5. label = 1 

6. else 

7. label = 2 

8. end if 

9. for iteration = 1 to termination criteria 

10. find optimal β using (5) 

11. end for 

12. for c = 1 to 2 (number of classes) 

13. for k = 1 to N 

14. if c = label 

15. find X k using (6) 

16. end if 

17. end for 

18. end for 

19. for k = 1 to 2 

20. find D k using (7) 

21. end for 

22. if min{D k } = 1 

23. class = benign 

24. else 

25. class = malignant 

26. end if 

27. end for 

. Results and discussions 

The proposed GNRBA is implemented in MATLAB and on a MAC

omputer using Intel core i5. Two different datasets (WBCD and

DBC) as discussed in Section 2 , are used to demonstrate the per-

ormance of the proposed method. Experiments are carried out

n the two datasets with the parameters setting, as described in

able 3 . To justify the robustness of the proposed approach, the

oisiness of the evaluation dataset is performed. Attribute noise

as been generated and introduced in the training and test sam-

les of both the datasets. 
In expert systems and machine learning techniques, a usual

ractice is to split the entire dataset into two distinct sets. To de-

ermine the performance of the proposed method as compared

ith other methods, we have partitioned the entire dataset in

our different ways. A standard 50–50 training – testing partition

s used, where half of the samples from the dataset are used to

rain the classifier and the remaining samples are used for testing.

o show the influence of training data on the proposed method,

e have also partitioned the dataset (60–40), (70–30) training and

esting ratios, respectively. The process of partitioning the database

WBCD and WDBC) into training and testing sets is represented in

ables 4 and 5 , respectively. 

In addition, a 10-fold cross validation technique ( Hastie, Tibshi-

ani, & Friedman, 2009 ) is also used to measure the robustness of

he proposed method. 10-fold cross validation method partitions

he entire data set into ten blocks of equal size. While implement-

ng the 10-fold cross validation in the proposed GNRBA, we have

sed 90% of the dataset for training and the remaining 10% for test-

ng. The total number of test samples, cover the whole dataset (i.e.

0 repetitions of the 10% of testing data, exchanged in all runs).

or each dataset, we evaluate 10-fold cross validation 10 times. The

verage accuracy of all the runs is taken as the final classification

ccuracy. 

The WBCD database contains a total of 683 samples. For 10 –

old cross validation, these samples are divided into 10 blocks. Each

lock is used for testing in one run. The process is repeated 10

imes, by exchanging the blocks in each run. As the total sample

s not a multiple of 10, hence, 68 samples are used for testing in

 runs and 71 samples are used for testing in the last run. In this

ay, the testing samples cover the whole dataset. 

The WDBC database contains a total of 569 samples. It is wise

o reiterate that, here the total sample is not a multiple of 10. For

0 – fold cross validation, 57 samples are used for testing in 9 runs

nd 56 samples are used for testing in the final run. In this way,

he testing samples cover the whole dataset. 

Validation of the classification method is a necessary step to

valuate its performance and limitations. Moreover, in the litera-

ure, it is also suggested to validate a method before applying for

linical use. In this paper, we have presented different validation

easures like classification accuracy (CA), sensitivity, specificity,

onfusion matrix, receiver operating characteristic (ROC) curves

nd area under ROC curves (AUC), to evaluate the performance of

he proposed GNRBA ( Fawcett, 2006; Sokolova & Lapalme, 2009 ). 

We have carried out experiments on WBCD and WDBC to show

he dependence of the GNRBA on N (size of the subset). The ex-

erimental results are presented in Fig. 2 . The results show the

ariation of CA with respect to N , for different training – testing

artition. 

From Fig. 2 , it is observed that when the value of N is small,

he GNRBA tends to obtain highest classification accuracy. The rea-

on behind this is that, when N is small, many of the unsuitable

raining samples that put a negative effect on the classification of

he test sample, are eliminated. Normally, the value of N is kept in

he range(0.05 × t , 0.02 × t ), where t is the total number of train-
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Table 4 

Training and testing set partition of WBCD (Total 683 samples). 

Training-testing partition ratio Number of samples in training Number of samples in testing 

Total training samples Benign Malignant Total testing samples Benign Malignant 

50–50 341 222 119 342 222 120 

60–40 410 266 144 273 178 95 

70–30 478 311 167 205 133 72 

Table 5 

Training and testing set partition of WDBC (Total 569 samples). 

Training-testing partition ratio Number of samples in training Number of samples in testing 

Total training samples Benign Malignant Total testing samples Benign Malignant 

50–50 284 139 145 285 218 67 

60–40 340 183 157 229 174 55 

70–30 397 224 173 172 133 39 

Fig. 2. Variation of CA with respect to N using GNRBA. (a) WBCD (b) WDBC. 

Table 6 

Comparison of classification accuracy on WBCD. 

Training-testing partition ratio BPNN Koza’s model GONN GNRBA 

50–50 89 .81% 89 .63% 97 .73% 98 .56% 

60–40 92 .28% 92 .84% 99 .11% 99 .27% 

70–30 93 .45% 94 .14% 99 .21% 100% 

10–fold cross validation 89 .11% 93 .47% 99 .26% 99 .23% 
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ing samples. From Fig. 2 (a), it is observed that for N = 74, 92 and 2,

our proposed method results in the highest CA of 98.56% for 50 –

50 partition, 99.27% for 60 – 40 partition, 100% for 70 – 30 parti-

tion respectively. From Fig. 2 (b), it is observed that N = 160, 54 and

43 produces a maximum CA of 97.54% for 50 – 50 partition, 98.25%

for 60 – 40 partition, 98.86% for 70 – 30 partition respectively. It

is to be noted that all these values of N are within the specified

range. Fig. 2 shows that the selection of N works appropriately on

both the datasets, which indicates that inclusion of too many train-

ing samples affects the classification accuracy. In real time applica-

tions such as clinical diagnosis, first the value of N is set to the

range(0.05 × t , 0.02 × t ). Then, the cross-validation method is ap-

plied to select the optimal value of N . 

The classification accuracy of GNRBA is compared with the

Koza’s model ( Koza & Rice, 1991 ), BPNN model ( Hagan, Demuth,

Beale, & De Jesús, 1996 ) and GONN model ( Bhardwaj & Ti-

wari, 2015 ) using WBCD for different training – testing partition,

as depicted in Table 6 . The architecture of Koza’s model and GONN

model is set to 50 genetic programming runs. They contain one

input layer, one hidden layer and one output layer as per the ar-

chitecture of BPNN. The Koza’s and GONN models used only 4 in-

puts in the input layer. However, the BPNN model used all the 9

features with a bias input in the input layer and 8 neurons in the
idden layer. The activation function used in all the models (Koza’s,

PNN and GONN) is the standard sigmodal function ( Bhardwaj &

iwari, 2015 ). The value of N in the proposed GNRBA is set to 74

or 50–50 partition ratio, 92 for 60 – 40 partition ratio, 2 for 70–30

artition ratio and 2 for 10 – fold cross validation. The values of N

re obtained from Fig. 2 . 

From Table 6 , it is observed that the proposed GNRBA outper-

orms all the three models (Koza’s, BPNN and GONN) in terms of

A. The maximum, mean and standard value of CA for 10 – fold

ross validation is 100%, 99.23% and 0.6708, respectively. The CA

or 70–30 partition ratio is 100%, which is much higher as com-

ared to Koza’s and BPNN models. This improvement in CA is

ainly due to two reasons: (1) the selection of a subset instead of

sing all the training samples provides an opportunity to eliminate

nsuitable training samples which could result in misclassification

nd (2) optimized weights are used to find class contribution abil-

ty on the test sample for correct classification, as discussed in

ection 3 . However, the mean value of 10 – fold cross validation

or GNRBA is marginally lower as compared to GONN model. The

eason behind this may be the improper selection of the subset

n 10 – fold cross validation. The results show that the proposed

NRBA can be a very supportive tool for experts decision. 

The comparison of sensitivity and specificity for BPNN, Koza’s,

ONN and GNRBA is presented in Table 7 using WBCD for different

raining – testing partition. High values of sensitivity and speci-

city represents the correct classification ability of a model. For all

he methods, the maximum values of sensitivity and specificity are

ot reported in the literature. From Table 7 , it is observed that the

NRBA outperforms all other methods in terms of sensitivity and

pecificity. However, sensitivity for 50–50 partition and specificity

or 10 – fold cross validation of the GNRBA is comparable to GONN
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Table 7 

Comparison of sensitivity and specificity on WBCD. 

Training-testing partition ratio 

50–50 60–40 70–30 10-fold cross validation 

BPNN Sensitivity Mean 93.9 96.30 96.56 94.46 

Std dev 0.213 0.282 0.378 1.144 

Specificity Mean 82.05 84.77 87.21 77.21 

Std dev 0.426 0.532 1.380 2.110 

Koza’s model Sensitivity Mean 93.79 96.31 96.26 96.5 

Std dev 1.094 0.858 1.079 1.141 

Specificity Mean 82.98 85.84 87.67 88.06 

Std dev 0.416 1.605 1.349 0.655 

GONN Sensitivity Mean 98.85 99.17 99.51 98.77 

Std dev 0.228 0.508 0.372 1.167 

Specificity Mean 95.77 98.45 99.21 100 

Std dev 0.842 0.532 0.700 0 

GNRBA Sensitivity Mean – – – 99.44 

Std dev – – – 1.7392 

Max 98.50 99.44 100 100 

Specificity Mean – – – 99.98 

Std dev – – – 0.2211 

Max 99.17 98.95 100 100 

Table 8 

Performance measures of GNRBA on WDBC. 

Training-testing partition ratio CA Sensitivity Specificity 

50–50 97.54% 98.62 94.30 

60–40 98.25% 97.70 100 

70–30 98.86% 98.50 100 

10–fold cross validation Mean 98.46% 97.89 99.78 

Std dev 0.9437 0.8080 0.6640 

Max 100% 100 100 
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u  
odel. The reason may be the inclusion of some unsuitable train-

ng samples in the subset. 

The performance measures of the GNRBA on WDBC is shown

n Table 8 . The value of N is set to 160 for 50–50 partition, 54 for

0–40 partition, 43 for 70–30 partition and 43 for 10 – fold cross

alidation, for calculation of different performance measures. 

Previously reported hybrid methods like ant colony optimiza-

ion plus SVM (ACO-SVM) ( Prasad, Biswas, & Jain, 2010 ), genetic

ptimization plus SVM (GA-SVM) ( Prasad et al., 2010 ), PSO-SVM

 Prasad et al., 2010 ) and k-means plus SVM (K-SVM) ( Zheng et al.,

014 ) gives classification accuracies of 95.96%, 97.19%, 97.37% and

7.38% respectively using WDBC. It is observed that the GNRBA is

uperior in comparison to all other methods for all training – test-

ng partition ratios as well as for 10 – fold cross validation method

n terms of CA only. To the best of our knowledge, the other per-

ormance measures like sensitivity and specificity using WDBC are

ot reported in the literature. The values presented in Table 8 us-

ng the proposed method may be used as a reference for compari-

on. 

Classification accuracy alone does not provide detailed infor-

ation about the performance of a classifier. Consider a situation

here the number of malignant cases is much higher than the

umber of benign cases. Even if all the benign cases are misclassi-

ed, the accuracy of the classifier is more. A performance measure

ike confusion matrix provides a detailed information about the

lassifier. A confusion matrix for a binary classifier contains two

ows and two columns. Each element of the matrix denotes four

ossible outcomes, i.e. true positive (TP), true negative (TN), false

ositive (FP) and false negative (FN). In this matrix, elements along

he main diagonal indicates the correct classification. Whereas, el-

ments along the off-diagonal indicates an error in classification.

he comparison of classification accuracies in terms of confusion

atrix for BPNN, Koza’s, GONN and GNRBA is presented in Table 9 ,

or all training – testing partition ratios using WBCD. In the table,

 represents the output of benign cases and M represents the out-
ut of malignant cases. From Table 9 , it is observed that the sum

f TP (true positive) and TN (true negative) increases with the in-

rease in the number of training samples. It is also observed that

P and TN for 70 – 30 partition and for 10 – fold cross validation

s 100%, which shows the superiority of the proposed GNRBA. 

The confusion matrix for GNRBA obtained using WDBC is pre-

ented in Table 10 . In the literature, confusion matrix evaluation

sing WDBC is not reported. Thus, the confusion matrix values pre-

ented in Table 10 may be used as reference values for comparison.

rom Table 10 , it is observed that the sum of TP (true positive) and

N (true negative) increases with the increase in the number of

raining samples. It is also observed that TP and TN for 10 – fold

ross validation is 100%, which shows the accuracy of the proposed

NRBA. 

A comparison of AUC of different methods like BPNN, Koza’s,

ONN and the proposed GNRBA is presented in Table 11 , using

BCD. The AUC values are obtained from the ROC curves using

he trapezoidal rule. From Table 11 , it is observed that AUC val-

es of the proposed GNRBA are higher as compared to the existing

odels. However, AUC value of the GNRBA is very close to that of

ONN model in case of 10 – fold cross validation. 

A comparison of AUC values of methods like PCA-KNN, PCA-

VM, knowledge-based method ( Nilashi et al., 2017 ) and the pro-

osed GNRBA is presented in Table 12 , using WDBC. The table rep-

esents the average AUC values using 10 – fold cross validation.

he AUC values of the above mentioned methods using different

artition ratios is not reported in the literature. The data for GN-

BA on 50 – 50, 60 – 40 and 70 – 30 training – testing partition

resented in Table 12 may serve as a reference for future work in

his area. From the table, it is observed that the results of GNRBA

or 10 – fold cross validation outperform all other methods. The

esults represented in Table 12 prove that GNRBA has better pre-

iction accuracy in breast cancer classification. 

To show the statistical significance, GNRBA is evaluated

sing the Friedman statistical test ( Demšar, 2006; Garcia &
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Table 9 

Comparison of confusion matrix for WBCD. 

Name of the classifier Desired result Result of 50–50 partition Result of 60–40 partition Result of 70–30 partition Result of 10-fold cross validation 

B M B M B M B M 

BPNN Benign samples 209 13 172 6 129 4 43 1 

Malignant samples 21 99 14 81 8 64 4 20 

Koza’s Benign samples 210 12 173 5 130 3 43 1 

Malignant samples 20 100 12 83 8 64 3 21 

GONN Benign samples 219 3 178 0 133 0 44 0 

Malignant samples 6 114 1 94 0 72 0 24 

GNRBA Benign samples 218 1 177 1 133 0 46 0 

Malignant samples 4 119 1 94 0 72 0 22 

Table 10 

Confusion matrix for WDBC. 

Name of the classifier Desired result Result of 50–50 partition Result of 60–40 partition Result of 70–30 partition Result of 10-fold cross validation 

B M B M B M B M 

GNRBA Benign samples 215 4 170 0 131 0 41 0 

Malignant samples 3 63 4 55 2 39 0 16 

Table 11 

Comparison of AUC on WBCD. 

Name of the method AUC for different training – testing partition 

50–50 60–40 70–30 10-fold cross validation 

BPNN 0 .883 0 .909 0 .929 0 .873 

Koza model 0 .889 0 .922 0 .932 0 .932 

GONN 0 .978 0 .989 0 .998 1 .0 

GNRBA 0 .9982 0 .9995 1 .0 0 .9977 

Table 12 

Comparison AUC on WDBC. 

Name of the method Training-testing ratio AUC 

PCA-KNN 10-fold cross validation 0 .8230 

PCA-SVM 10-fold cross validation 0 .8670 

Knowledge-based method 10-fold cross validation 0 .9320 

GNRBA 50–50 0 .9895 

60–40 0 .9980 

70–30 0 .9981 

10-fold cross validation 0 .9993 

Table 13 

p – value comparison of the selected samples using Friedman 

test on WBCD. 

Training-testing partition ratio GNRBA 

p -value Significance 

50–50 0 .6174 Not significant 

60–40 0 .5909 Not significant 

70–30 0 .1336 Not significant 

10-fold cross validation 0 .2013 Not significant 

Table 14 

p – value comparison of the selected features using Friedman 

test on WDBC. 

Training-testing partition ratio GNRBA 

p -value Significance 

50–50 0 .6052 Not significant 

60–40 0 .8463 Not significant 

70–30 0 .1270 Not significant 

10-fold cross validation 0 .5290 Not significant 

 

 

 

 

 

Table 15 

p -value comparison of GNRBA with other methods using Friedman test on WBCD. 

Training-testing partition ratio p – value 

BPNN Koza’s model GONN 

GNRBA 50–50 0 .001 0 .001 0 .0273 

60–40 0 .001 0 .001 0 .0273 

70–30 0 .001 0 .001 0 .0273 

10-fold cross validation 0 .001 0 .001 0 .0273 
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Herrera, 2008 ). It is a non-parametric test used to show the sta-

tistical significance among multiple classifiers. Under the null hy-

pothesis, two algorithms are significantly different for p < 0.05. We

have used it to show the statistical significance of sample selection

before classification as presented in Table 13 and Table 14 , respec-
ively. From Table 13 and Table 14 , it is observed that there is no

tatistical significance in the sample selection before classification.

t is concluded that the Euclidean distance measure effectively se-

ects the training samples resulting in correct classification. 

To show the statistical significance among classification meth-

ds, the Friedman test is also performed on WBCD only. Table 15 ,

resents the p – values on all training – testing partition with a

ignificance level of 0.05 between the GNRBA and the other meth-

ds. A higher statistical difference is observed by comparing the

NRBA with BPNN and the Koza’s model. Although it performs

lightly better as compared to GONN, the GNRBA in general out-

erforms all other methods, as confirmed in Table 15 . 

To justify the robustness of the GNRBA, a systematic evaluation

s investigated against noisy data. As far as noise in classification is

oncerned, it is of two types: attribute noise and class noise. From

he study it is found that, the two datasets (WBCD and WDBC) do

ot have any class imbalance ( Nettleton, Orriols-Puig, & Fornells,

010 ). In this paper, we have considered only attribute noise to

how the performance of the GNRBA. 

Table 16 presents the CA obtained by the GNRBA with the noisy

ata on both the datasets. Specifically, for each dataset, the exper-

ment is carried out using training data with (1) 10% added at-

ribute noise (TR10) and (2) 50% added attribute noise (TR50). It

s also repeated using test data with (1) 10% added attribute noise

nd (2) 50% added attribute noise, as suggested in ( Nettleton et al.,

010; Zhu & Wu, 2004 ). In addition, we have calculated the mean

A to measure the overall performance of GNRBA to a particular

raining – testing partition ratio against noise. 

Table 17 presents the comparison of the proposed GNRBA with

ther techniques reported in the literature for the breast cancer

lassification problem using WBCD. In this comparison different

ethods based on feature selection, fuzzy logic, neural network,

ybrid methods based on evolutionary techniques etc. are inves-

igated. In most of the methods, the authors have not mentioned

etails about the result, such as classification accuracy achieved by



L. Dora et al. / Expert Systems With Applications 85 (2017) 134–145 143 

Table 16 

CA (%) of GNRBA in noisy data on WBCD and WDBC. 

Training-testing partition ratio Noise in train Noise in test Noise in train and test Mean CA 

TR10 TR50 TR0 # TR0 TR10 TR50 

TS0 ∗ TS0 TS10 TS50 TS10 TS50 

WBCD 50–50 98 .57 95 .68 98 .03 91 .43 98 .66 96 .99 96 .56 

60–40 99 .71 95 .78 98 .74 91 .92 98 .99 97 .13 97 .05 

70–30 99 .27 96 .37 99 .11 94 .97 100 97 .93 97 .94 

10–fold cross validation 98 .55 95 .87 99 .75 88 .08 99 .58 97 .33 96 .53 

WDBC 50–50 95 .26 81 .39 66 .49 65 .77 87 .82 69 .84 77 .76 

60–40 95 .57 88 .3 70 .81 67 .79 90 .31 83 .46 82 .71 

70–30 97 .35 90 .4 72 .36 72 .13 91 .81 84 .2 84 .71 

10 – fold cross validation 96 .27 83 .22 71 .79 70 .15 95 .24 85 .17 83 .64 

# indicates 0% noise in training data 
∗ indicates 0% noise in test data 

Table 17 

Comparison of classification accuracy with breast cancer classification methods on WBCD. 

Name of the method CA (%) Reference 

C4.5 94 .74 Quinlan (1996) 

RAIC 95 .00 Hamilton et al. (1996) 

Neuro-fuzzy 95 .06 Nauck and Kruse (1999) 

Fuzzy-GA 97 .36 Pena-Reyes and Sipper (1999) 

LSA machine 98 .80 Albrecht, Lappas, Vinterbo, Wong, and Ohno-Machado (2002) 

Supervised fuzzy clustering 95 .57 Abonyi and Szeifert (2003) 

Fuzzy-AIRS 98 .51 Polat and Güne ̧s (2007a) 

SVM 99 .54 Übeyli (2007) 

LS-SVM 98 .53 Polat and Güne ̧s (2007b) 

CFW 99 .50 Peng et al. (2010) 

Real coded GA 96 .5 Örkcü and Bal (2011) 

AMMLP 99 .26 Marcano-Cedeño et al. (2011) 

Decision tree algorithm 92 .97 Lavanya and Rani (2011) 

RS_SVM 

a 96 .55 Chen et al. (2011) 

RS_SVM 

c 96 .72 Chen et al. (2011) 

ICA 97 .75 Malmir et al. (2013) 

RF-ANN 98 .05 Koyuncu and Ceylan (2013) 

PSO (4 – 2) 94 .74 Xue et al. (2014) 

GONN 

a 97 .73 Bhardwaj and Tiwari (2015) 

GONN 

b 99 .11 Bhardwaj and Tiwari (2015) 

GONN 

c 99 .21 Bhardwaj and Tiwari (2015) 

GONN 

d 99 .26 Bhardwaj and Tiwari (2015) 

GNRBA a 98 .54 

GNRBA b 99 .27 

GNRBA c 100 

GNRBA d 99 .23 

a Result for 50–50 training-testing partition. 
b Result for 60–40 training-testing partition. 
c Result for 70–30 training-testing partition. 
d Result for 10-fold cross validation. 
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hem is the maximum or mean value and the type of training-

esting ratio used to partition their data. It is observed from the

able 17 that the GNRBA is better as compared to other methods.

ur improvised results are due to the consideration of a subset

f significant training samples. In addition, the optimal values of

eighting coefficients are used to calculate the class contribution

bility of each class to represent test sample. 

In many classification methods, the computational time must

e considered a key performance index to decide their real-time

pplication. We have calculated the response time of different

ethods, as shown in Table 18 . To the best of our knowledge, in

he literature response time is one of the measures used in this

ontext ( Zheng et al., 2014 ). From Table 18 , it is observed that the

roposed GNRBA performs breast cancer classification with mini-

um response time. To measure the computational complexity of

he GNRBA, an asymptotic measure like Big O notation is used.

he computational complexity of the proposed GNRBA is bounded

y O ( K ), where K is the number of training samples selected us-

ng the Euclidean distance. From the study it is found that, the

omputational complexity of ANN completely depends on its archi-

ecture. For a polynomial neural network, the computational com-
 9  
lexity is O ( nlog ( n )), where n is the number of operations. Neural

etwork based classification methods such as BPNN, Koza’s model

nd GONN, the computational complexity can be O ( n 2 ), ( Orponen,

994; Williams, & Zipser, 1995 ). From the above discussion, we can

onclude that the proposed GNRBA outperforms all other meth-

ds in terms of minimum computational time as well as minimum

omputational complexity. 

. Conclusion 

In this paper, a novel expert system (GNRBA) is introduced

or breast cancer classification. The key to our success is the use

f Gauss-Newton learning to find the optimal weighting coeffi-

ients of the significant training samples. The benefit of our re-

earch work is that the computational complexity and response

ime are reduced as compared to the conventional sparse repre-

entation methods. In addition, experiments on different datasets

WBCD and WDBC) demonstrate that GNRBA outperforms the ex-

sting models. It is observed that the proposed method achieved

he highest classification accuracies of 98.54% for 50–50 partition,

9.27% for 60–40 partition and 100% for 70–30 partition for a sub-



144 L. Dora et al. / Expert Systems With Applications 85 (2017) 134–145 

Table 18 

Response time of different methods. 

Method Dataset Training-testing ratio Response time (seconds) 

BPNN WBCD 50–50 3 .7922 

60–40 4 .6146 

70–30 0 .3492 

10-fold cross validation 1 .9668 

Koza’s model WBCD 50–50 3 .6449 

60–40 4 .4353 

70–30 0 .3356 

10-fold cross validation 1 .8904 

GONN WBCD 50–50 3 .4859 

60–40 4 .2419 

70–30 0 .3210 

10-fold cross validation 1 .8080 

GNRBA WBCD 50–50 (K = 74) 2 .9003 

60–40 (K = 92) 3 .5293 

70–30 (K = 2) 0 .2670 

10-fold cross validation (K = 2) 1 .5042 

WDBC 50–50 (K = 160) 5 .1786 

60–40 (K = 54) 1 .7889 

70–30 (K = 43) 1 .0952 

10-fold cross validation (K = 43) 3 .4367 
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set (WBCD) that contains 74, 92 and 02 training samples, respec-

tively. Results also show the superiority of the proposed method

in terms of sensitivity, specificity, confusion matrix, statistical test

and AUC. Further, to show the significance difference in the se-

lected subset, the Friedman statistical test is carried out before

classification. It is evident that no significance difference between

the selected subset for correct classification. The robustness of the

proposed method to noisy data has been verified. Additionally, an

experiment is also conducted using WDBC. From the results, it is

seen that the proposed algorithm achieved a highest classification

accuracy of 97.54%, 98.25%. 98.86% and 98.46% for 50–50 partition,

60–40 partition, 70–30 partition and 10 – fold cross validation,

respectively. We believe that the promising results (with WDBC)

demonstrated by the proposed method will certainly serve as a

reference data to carry out further research in this direction. Till

date, in the breast cancer classification problem, tumor samples are

considered for two classes only i.e. benign or malignant. In the fu-

ture, a pre-malignant class may be introduced for early detection

of breast cancer for effective treatment. 
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