
Cooperative game theoretic approach using fuzzy Q-learning for
detecting and preventing intrusions in wireless sensor networks

Shahaboddin Shamshirband a,b,n, Ahmed Patel c,d, Nor Badrul Anuar b,
Miss Laiha Mat Kiah b, Ajith Abrahame,f

a Department of Computer Science, Chalous Branch, Islamic Azad University (IAU), 46615-397 Chalous, Iran
b Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
c School of Computer Science, Centre of Software Technology and Management (SOFTAM), Faculty of Information Science and Technology (FTSM), Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
d School of Computing and Information Systems, Faculty of Science, Engineering and Computing, Kingston University, Kingston upon Thames KT1 2EE, United Kingdom
e Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, USA
f IT4Innovations,VSB – Technical University of Ostrava, Czech Republic

a r t i c l e i n f o

Article history:
Received 17 June 2013
Received in revised form
18 November 2013
Accepted 3 February 2014
Available online 3 March 2014

Keywords:
Game theory
Cooperative game IDPS
Fuzzy Q-learning
Intrusion detection and prevention systems
Security
WSN

a b s t r a c t

Owing to the distributed nature of denial-of-service attacks, it is tremendously challenging to detect such
malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs).
In the current paper, a game theoretic method is introduced, namely cooperative Game-based Fuzzy
Q-learning (G-FQL). G-FQL adopts a combination of both the game theoretic approach and the fuzzy
Q-learning algorithm in WSNs. It is a three-player strategy game consisting of sink nodes, a base station,
and an attacker. The game performs at any time a victim node in the network receives a flooding packet
as a DDoS attack beyond a specific alarm event threshold in WSN. The proposed model implements
cooperative defense counter-attack scenarios for the sink node and the base station to operate as rational
decision-maker players through a game theory strategy. In order to evaluate the performance of the
proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated using NS-2
simulator. The model is subsequently compared against other existing soft computing methods, such as
fuzzy logic controller, Q-learning, and fuzzy Q-learning, in terms of detection accuracy, counter-defense,
network lifetime and energy consumption, to demonstrate its efficiency and viability. The proposed
model's attack detection and defense accuracy yield a greater improvement than existing above-
mentioned machine learning methods. In contrast to the Markovian game theoretic, the proposed model
operates better in terms of successful defense rate.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSNs) provide an ideal schema for
gathering data as opposed to sensor nodes and data transmission
through wireless networks. These types of networks range in
applications from the military (Bekmezci and Alagöz, 2009) and
health care monitoring (Darwish and Hassanien, 2011) to disaster
response (Shamshirband et al., 2010). The existing application designs
for wireless sensors afford greater flexibility in establishing commu-
nications and increasing system automation, but are deficient in
security and privacy (Naserian and Tepe, 2009; Sun et al., 2013;
Xu, 2010). The core weakness of these sensor nodes lies in the
limited-resource devices, i.e. power and processing units (Aslam et al.,

2011). For this reason, vulnerability to various security threats is
notably high. Meanwhile, adversaries may possess passive and active
access to secret information, such as keys stored in a compromised
node by eavesdropping (Schaffer et al., 2012) or Denial of Services
(DoS) attacks. Thus thewireless medium becomes overloaded and the
probability of packet collisions within the interfering signal's range
increases, causing, in both cases, additional sensor node energy
consumption (Tan et al., 2013).

In mitigation security attacks, the Soft Computing (SC)
approach incorporates Intelligent Intrusion Detection Systems
with Preventions (IIDPSs) to detect and impede abnormal traffic
patterns that diverge from the modeled, expected, normal traffic
behavior (Abraham et al., 2007; Anuar et al., 2013; Arun Raj Kumar
and Selvakumar, 2013; Baig et al., 2013). A simple inspection
packet mechanism was proposed by Tsunoda et al. (2008) to avoid
stateful inspection against Distributed Reflective Denial of Service
(DRDoS) attacks. Munoz et al. (2013) utilized fuzzy Q-learning for
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congestion detection to drop packets that differ from normal
features. Misra et al. (2011) utilized a learning automaton to prevent
Denial-of-Service attacks. While IDS-based SC approaches, such as
misuse, anomaly and hybrid methods, display relatively reasonable
performance regarding detection accuracy and minimal resource
consumption, they fail to detect “unknown” attacks (Shamshirband
et al., 2013). Hence, applying cooperative-based soft computing
McGregory, 2013 security techniques that protect the wireless sensor
network infrastructure by maximizing detection accuracy remains a
challenge ((Shamshirband et al., 2013). As such, an attempt is made
through this research to address the problem of security by applying
the cooperative game-based fuzzy Q-learning mechanism.

The philosophy behind the cooperative game system is hereby
employed to integrate anomaly detection into WSNs (Shamshirband
et al., 2013; Patel et al., 2013; Huang et al., 2013; Shen et al., 2012).
The game notion takes into account the results of the strategy
selected by the players involved. In our scheme, however, the
players (i.e., sink node, base station and attackers) are exchanged
with actual wireless sensor nodes to detect attacks and defend
against attackers by means of the cooperative game mechanism. In
identifying the diversity of adversaries potentially encountered by a
node, a Fuzzy Q-learning (FQL) algorithm is applied to reinforce
players’ self-learning abilities and provide detector players with an
incentive function to protect the most vulnerable sensor nodes that
represent possible security threats.

The remainder of the paper is structured as follows. In Section 2
related studies are presented. Section 3 describes the proposed
model and its methodology. The model integrates a cooperative
game theory with fuzzy Q-learning and aims to detect Distributed
Denial-of-Service (DDoS) in WSN. The game model design is
provided in Section 4 by introducing the player strategies, payoff
functions, along with the reward and utility function. Section 5
highlights the fuzzy Q-learning algorithm, while Section 6 pre-
sents the simulation setup and a performance analysis discussion,
particularly the detection and defense accuracy, network lifetime
as well as energy consumption. Finally, Section 7 concludes the
manuscript with suggestions for future research work.

2. Related studies

Data transmission within a WSN necessitates the fulfillment of
five requirements associated with security and energy consump-
tion, namely data privacy, authentication, integrity, a distributed
denial-of-service (DDoS) attack in terms of flooding attack, and
energy exhaustion (Huang et al., 2013). A multitude of DDoS
attacks has been designed, which can be categorized as synchro-
nized packets in transmission control protocol (TCP SYN) flooding,
User Datagram Protocol (UDP) flooding, and Internet Control
Message Protocol (ICMP) flooding. A flooding attack employs
overwhelming volumes of packets to deplete the victim network's
resources including the processing capability among network
terminals. It may be assumed that the victim system's memory
stack becomes saturated and no new demands can be processed
(Zhou et al., 2010). In a WSN, flooding is more damaging on
account of unstable wireless links, unbalanced usage of network
resources, and weaker network devices, in which sensors always
have processing and energy capability constraints. Sensor nodes
near access points (i.e., sink nodes or cluster head routers) are
normally more heavily loaded (Feiyi et al., 2007).

Among the numerous proposed network routing protocols over
the past years, hierarchical routing protocols significantly contribute
to a system's scalability, lifetime, and energy efficiency (Akkaya and
Younis, 2005; Anisi et al., 2012). In hierarchical networks, nodes are
allocated to different roles, such as CHs and cluster members. The
upper level nodes, or the cluster heads (CHs), manage and collect data

from the grouped, lower level nodes (cluster members). Each CH
gathers data from the cluster members within its own cluster,
aggregates this information, and then transmits it to the sink. All
hierarchical routing protocols endeavor to select the finest CH and
cluster the nodes into suitable groups in order to conserve energy
(Lung and Zhou, 2010).

Although hierarchical protocols have innate weaknesses such
as requiring time synchronization, potentially producing non-
optimal routing, and utilizing higher overhead for cluster manage-
ment, they reveal attractive advantages regarding WSN constraint
management. Compared with flat protocols, hierarchical protocols
offer a more feasible solution to handling large-scale networks
with their enhancements to share limited wireless channel band-
width, balance node energy consumption and reduce communica-
tion expense more optimally (Lung and Zhou, 2010; Liu, 2012). For
instance, BEE-C (da Silva Rego et al., 2012) is a hierarchical routing
algorithm bio-inspired by the behavior of bees for Wireless Sensor
Networks (WSN), which aims to conserve the energy of sensor
nodes. The BEE-C is based on the LEACH (Low Energy Adaptive
Clustering Hierarchy) and LEACH-C (LEACH Centered) protocols,
which are both prominent WSN protocols identified in literature.
BEE-C is applied to sensor networks with continuous data dis-
semination. The results indicate a number of BEE-C advantages
over LEACH and LEACH-C. In the search for an efficient approach to
generate clusters, the well-understood hierarchical clustering
algorithm is adopted in this paper by proposing a distributed
hierarchical clustering algorithm that is discussed in Section 3.1.

Several countermeasures (Li et al., 2009), such as source-end
defense points (Mirkovic and Reiher, 2005), core-end defense
techniques (Chen and Hwang, 2006), victim-end defense (Wang
et al., 2007) and adaptive probabilistic filter scheduling (Seo et al.,
2013) have been developed to mitigate damage caused by flooding
attacks in a routing protocol. Implementing firewalls, rate limita-
tion and access control lists (ACLs) on routers may avert ongoing
flooding attacks. End-to-end authentication should be well
designed to ensure that each user is certified prior to access to
any network resource or the wireless channel (Das, 2009). Tradi-
tional security strategies, like firewall and cryptography,
are alternatives to preventing external intruders and satisfying
data confidentiality, authentication, and integrity. Conventional
strategies are essentially impractical in completely protecting
network resources (i.e., energy resources) from increasingly
sophisticated internal attacks (Qiu et al., 2013).

A different security approach incorporates Intrusion Detection
and Prevention Systems (IDPSs) to detect and impede internal
intrusions (Shamshirband et al., 2013). The Traditional Artificial
Intelligence (TAI) (i.e., fuzzy set, neural network, genetic algorithm
and artificial immune system) adapts to the IDS to capture the
network's traffic activity through sensors and analyze it. For
instance, the fuzzy data modeling-based wireless sensor network
runs its dynamic rule settings to process all malicious events
observed by the sensor and implements intrusion detection tech-
niques (Kumarage et al., 2013). The Computational Intelligence (CI)
classifiers (i.e., neuro-fuzzy, learning automata against DoS attack
(Misra et al., 2009), game theory and reinforcement learning)
regulate the multiagent to generate an iterative process of obser-
ving attack patterns, adjusting to the mathematical model, and
predicting future attacks (Alpadin, 2010). More recently, the multi
agent-based computational intelligence (MCI) IDS has been
employed in wireless sensor networks to alleviate a DDoS attack
through a cooperative agent scheme (Shamshirband et al., 2013).

The game theory is an applied mathematics branch that deals
with the way rational entities or agents make decisions in the
application of WSNs (Huang et al., 2013), cognitive radio networks
(Elias et al., 2011), and ad hoc networks (Naserian and Tepe, 2009).
It affords an array of mathematics tools for modeling and
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analyzing the interactions among rational groups, whereby ration-
alism is founded on the profit or reward perceived by the entities
(Shoham and Leyton-Brown, 2009). Anomaly based WSN in the
game-theoretic approach is a tremendously difficult task on
account of the distributed nature of numerous players in WSNs.
A large number of players additionally results in difficulty achiev-
ing equilibrium in a competitive game. To deal with a type of
attack in WSN, Naserian and Tepe (2009) included an assortment
of games, such as a non-cooperative, two-player, and non-zero-
sum to their stratagem. In this game arrangement, better decisions
are made according to the principles offered by payoff prevailing
conditions. Shen et al. (2011) took into account the signaling game
to create an IDPS game exhibiting the interaction between an
attacker and cluster head in a WSN. The Bayesian Nash Equili-
brium (BNE) scheme in conjunction with the mixed-strategies for
outstanding detection policies served as the basis for their model.
Thus, an ideal fundamental shield tactic to protect WSNs was
achieved, while the probability of detecting attacks was simulta-
neously considerably enhanced.

A multi agent system utilizes the reputation security mechan-
ism to perform dynamic role assignment based on the following
three parameters: reputation, bootstrap time and energy. The
approach evicts highly non-cooperative and malicious nodes from
the network (Misra and Vaish, 2011). An adaptive learning routing
protocol employs a learning automata algorithm for efficient
malicious node detection (Rolla and Curado, 2013). The multilayer
reinforcement learning framework assisted by the Hidden Markov
Model (HMM) was proposed to solve real-time detection in a
complex state space (Andersen et al., 2009). The results indicated
that the network's cost function could be optimized if the agents
collaborated repeatedly. In our proposed scheme, the cooperative
game is implemented into IDPS to generate the benefits of a fuzzy
Q-learning algorithm with a value function to mitigate the flood-
ing attack issue in a WSN with respect to detection and defense
accuracy. Resource loss, accuracy of attack detection via sensors,
and service inaccessibility at critical times are among the chal-
lenges posed, and through this research, an effort is made to
confront the security setbacks by applying the cooperative game-
based fuzzy system and reinforcement learning mechanism.

3. Proposed model

3.1. WSN model

In the present research study, Fig. 1 illustrates the distributed
network with hierarchical routing, which consists of clusters (C),
their coordinators, or Cluster Heads (CHs), as well as the member
sensor nodes (S). In the current scheme, the Cluster Head (CH) is
assumed to be a Sink Node (SN) in each cluster. The SN monitors
the behavior of sensor nodes by collecting data from the member
sensor nodes and transmitting the critical status – the attack
information of the sensor nodes, to a Base Station (BS). Each
cluster is mapped into distributed system formation while the set
of sensor nodes is mapped into each cluster grouping. Although
only one BS is shown in Fig. 1, practically there could be several
implemented in a real operational WSN.

The route from a sensor node to a BS is a deemed distributed-
hierarchical path that creates a hierarchical systemwith numerous
routes, which is the main feature of cluster-based WSNs. Sensor
nodes function independently to avoid the collapse of all sensor
nodes in case one of them fails. The sensor node redundancy
approach increases the overall reliability in distributed hierarch-
ical systems. Fig. 1 illustrates how sensor nodes send collected data
from a sink node to a BS via other adjacent sink nodes, and the BS
receives data only if all SNs within the routing formation are
actively functioning. Hence, a set of clusters on a route is counted
as a set of independent distributed-connected elements. Attacks in
this scenario can target the WSN in multiple ways, with DDoS
attacks potentially originating either from the Internet or neigh-
boring wireless sensor sources.

3.2. Methodologies and techniques used

The game-based detection and defense mechanism operate to
detect DDoS attacks, where the sink node and base station adapt
to select the best strategy of detecting an immediate attack and
respond to it. Regardless of whether the attacks are carried out on
a regular or irregular basis, the IDPS can adjust its learning
parameters through fuzzy Q-learning to identify future attacks.

C1

Wireless Network

Internet

WSN

BS

 : Cluster

: Base Station(BS)
: Malicious nodes

: Sensor node (S)

: Adjacent link

 : Sink node (SN)

C3

C2

Cn

Legend:

WSN

C

Fig. 1. A distributed hierarchical system perspective of a WSN with Internet and other wireless network connections.
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The architecture of the proposed game-based FQL is dual, that is, it
has two phases (Fig. 2).

Phase 1: In the primary stage of the game scenario, player 1 (the
sink node) utilizes the fuzzy Q-Learning algorithm to identify the
level of disruption done by the attacking player to the victim node,
causing anomalies such as low access or damage. For attacker player
detection, the sink player adopts three strategies, namely catch,
missed, and low catch, as elaborated in Section 4.1.1 (player
strategies applied to the sink node). Finally, the sink node transmits
an alarm event that contains malicious node information to the base
station (player 3) by an adjacent link connected to the base station
(Fig. 1). The malicious information is preprocessed by the sink node
to travel from phase 1 to 2 based on the alarm event beyond the
default value threshold, to prepare a countermeasure strategy
against the attacker through a defense mechanism.

Phase 2: In the second phase of the game scenario, player 2
(base station) employs the fuzzy Q-learning algorithm to confirm
the malicious node's behavior. It checks the memory of player 1 or
looks it up in a table and compares it with its memory in order to
defend against the attacker. The detection player (sink node) and
defense player (base station) coordinate their defense with each
other to shield the wireless sensor nodes against the attacker
player (attack/intrusion).

To highlight the proposed game-based FQL, the sink node and
the base station are allocated a corresponding reward/incentive
functional value, which is retained by the Fuzzy Q-learning IDPS.
As such, a node's evolving fuzzy state may be recorded and
quantified through the fuzzy reward utility function as discussed
in Section 4.1.2 (the player payoff function). When a node
encounters an attack or receives an anonymous message, the sink
node sends the related severity alarm event evidence and mes-
sages to the BS, who then analyzes the critical data to adjust the
FQL parameters. Based on the sink node information, the base
station decides which nodes are under attack or at risk and elects
whether to safeguard them or not. The BS has previously set a
severity alarm event threshold rate, v. Once the severity alarm

value acquired by a node exceeds v, the FQL IDPS deems the node
under attack or at risk and strengthens its defenses to secure the
cluster area in which the node is detected at the associated base
station.

3.3. Possible attack categories

In this research study, the Open System Interconnect (OSI) model
is classified into five layers (Akyildiz et al., 2002): physical layer,
link/MAC layer, network layer, transport layer, and application
layer. The attacks for each layer are analyzed by focusing on the
flooding attack and its potential defenses. In the proposed scheme,
a specific kind of DDoS attack is created with respect to a flooding
attack that affects cluster heads. The generated attack sends
flooding UDP packets to diminish the cluster head's energy.
Table 1 indicates the impact of such attacks on the WSN layers
as well as the defense mechanism.

In this work, only a DDoS attack in the application layer is
considered. It is characterized by the presence of an attacker, and
is known as a UDP flooding attack. In the proposed model, a UDP
flooding attack occurs based on a random function to compromise
the CH in each cluster. This kind of DDoS attack is aimed at
exhausting CH energy by sending flooding packets in a fraction of
time (Ghosal and Halder, 2013).

4. The architecture of cooperative game-based FQL IDPS

The proposed game-based defense strategy is primarily a
combination of the cooperative game theory and fuzzy
Q-learning algorithm. The game-based detection and defense
mechanism operate to detect DDoS attacks, where the sink node
and base station adapt to select the best strategy of detecting an
immediate attack and respond to it. Regardless of whether the
attacks are carried out on a regular or irregular basis, the IDPS
can adjust its learning parameters through fuzzy Q-learning to
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Fig. 2. Model of a cooperative game-based IDPS and an attacker.
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identify future attacks. A comprehensive description of the theo-
retical and practical operation of the game theory and Q-learning
modes, mainly concerning Fuzzy Q-learning, is provided later.
Cooperative game based architecture in a WSN is shown in Fig. 3
and the block diagram of Fuzzy Q-leaning optimization system is
proposed in Fig. 4.

In the primary stage of the game scenario, player 1 (the sink
node) utilizes the FQL algorithm to evaluate the contents of the
attacker player's level of access (i.e. low access, or damage). With
regard to detection, the sink node player assumes three strategies,
namely catch, missed or low catch. Upon completing the first stage,
the sink node transmits an alarm to the base station (player 3) when

Table 1
Classification of denial-of-service attacks and defense at each protocol layer.

Protocol layer Attack Defense mechanism

Application layer Overwhelming (McGregory, 2013) Sensor tuning
Data aggregation

Path-based DoS (Li and Batten, 2009) Authentication and anti-replay protection
Deluge (reprogramming) attack Authentication and anti-replay protection

Authentication streams
Transport layer SYN (synchronize) flood (Bicakci and Tavli, 2009) SYN cookies

Desynchronization attack (Xing et al., 2010) Packet authentication
Network layer Spoofing, replaying, or altering routing control traffic or clustering message

(Qazi et al., 2013)
“Authentication and anti-replay protection secure cluster
formation”

Hello floods (Khalil et al., 2010) “Pairwise authentication”
“Geographic routing”

Homing, black-hole attack (Khalil et al., 2012) Header encryption
Dummy packets

Link/MAC (medium access
control)

Jamming (Law et al., 2005) Authentication and anti-replay protection
Denial of sleep (Law et al., 2009) Authentication and anti-replay protection

Detect and sleep
Broadcast attack protection

Physical layer Jamming (Li and Wang, 2012) Detect and sleep
Route around jammed regions

Node tampering or destruction (Xing et al., 2010) Hide or camouflage nodes
Tamper-proof packaging

Fig. 3. Game-based defense system architecture.
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the attacker assaults the sensor node. In the second phase of the
game scenario, player 3 (the base station) employs the FQL algorithm
to evaluate the attack records in order to defend against the attacker.
The detection player (the sink node) and defense player (the base
station) take part in a game via a 3D game interface to shield the
wireless sensor nodes against the attacker player (the attack).

4.1. Game design

In the proposed game theory method, it is assumed that the
sink node can identify abnormalities in view of IDS1. Accordingly,
in computer-generated WSNs, the sink player or cluster head
diffuses the alarm to the base station (IDS2) upon perceiving an
anomaly. When the IDS1 receives an anomaly message, it
acquaints itself with this sort of attack using the FQL detection
algorithm and archives the information in its attack record
database. The IDS2 attempts to respond to these attack records.
The fundamental concepts of the proposed game theory, player
strategies and player payoff function are introduced next.

4.1.1. The player strategies
The interactions between the G-FQL and the attackers are split

into two main categories, as seen in Tables 2 and 3 respectively. The
first category represents the game between the attacker and sink
node players, while the second type denotes the game between the
attacker and the base station player. The game play strategy between
a sink node and an attacker with respect to IDS1 comprises:

(1) Best choice for sink: The sink node chooses to identify the
attacker, and the invader opts to attack;

(2) False negative: The sink node chooses not to identify the
attacker, and the attacker strikes;

(3) Medium choice: The sink node chooses to identify the attacker
with low catch, and the attacker attacks;

(4) False positive: The sink node elects to detect the attacker, and
the attacker chooses not to attack;

(5) Least damage: The sink node chooses not to identify the
attacker, and the attacker chooses not to attack;

(6) False positive: The sink node chooses to identify the attacker
with low catch, and the attacker chooses not to attack.

The game strategy between a base station and an attacker
concerning IDS2 is defined as follows:

(1) Best choice for base station: BS elects to defend and the attacker
decides to attack;

(2) False positive: BS elects to defend, and the attacker chooses not
to attack;

(3) False negative: BS elects not to defend, and the attacker
attacks;

(4) Least damage: BS elects not to defend, and the attacker chooses
not to attack.

4.1.2. The player payoff function
In this research, a payoff value is defined as a player reward

function if it protects the WSN. In other words, when the IDPS fails
to defend the WSN in case an invader attacks, the payoff of the
player would be different. The three player payoffs are expressed
as A, B, and C, where aij, bij, and cij denote the sink node, the attack
and the base station payoff, respectively. Table 4 displays the
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Fig. 4. Block diagram of the FQL optimization system.

Table 2
Game play between a sink node (IDS1) and an attacker.

Game play between sink node and attacker Sink

Catch Missed Low catch

Attacker
Attack (a11,b11)¼Best choice for sink (a12,b12)¼False Negative (a13,b13)¼Medium choice for sink node
No attack (a21,b21)¼False positive (a22,b22)¼Least damage (a23,b23)¼False positive
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payoff matrix, the utility function as well as a description of the
utility function.

4.1.2.1. Attacker payoff function. The attacker's payoff matrix
A¼ aij

� �
2n3 is defined as follows:

Aij ¼
a11 a12 a13
a21 a22 a23

" #
inj

ð1Þ

where a11 ¼ IR�Costprocessing represents ðNumber of malicious
attacks=Total malicious attacks sentÞ � ð processing time f or
attackÞ; which is when an attacker and the sink node choose the same
sensor nodes to attack and detect, respectively (AS1, SS1). The attacker's
original utility value of UðtÞ will be deducted from the cost of attacks.
a12 ¼ IR�Costprocessing represents an instance when the attacker
attacks and the sink node do not detect it correctly. However,
a13 ¼ IR�Costprocessing means that an attacker attacks and the sink
node detects a compromised node with a low rate of detection.
a21 ¼ Costprocessing , which signifies that an attacker does not attack
at all, but the sink node falsely detects the attacker. By subtracting
IR¼ ðNumber of malicious attacks=Total malicious attacks sentÞ fr-
om the original utility function, a22 ¼ Costprocessing stands for when the
attacker and sink node choose two different strategies, neither of
which causes an attack nor detects an attack correctly, respectively. In
this case the cost of attacking one node from the original utility is
ignored. When a23 ¼ Costprocessing , it signifies that the attacker does not
attack and the sink node detects the attack with low probability/
performance.

4.1.2.2. Sink node payoff function. By denoting the sink node's
payoff with matrix B¼ bij

� �
2n3 we get:

where

� Pd ¼ Correct attack detection
Total detection and not detection

� �
� Costprocess detect is the cost of attack detection during sink

processing

4.1.2.3. Base station payoff function. By describing the base
station's payoff functions with matrix C ¼ cij

� �
2n2, it is defined as

Cij ¼
C11 C12

C21 C22

" #
2n2

ð3Þ

where C11 ¼ Pk�Costdef end denotes ðCost of killing attacksÞ�
ðthe cost of def ending against attackÞ, which is when a base
station and attacker choose the same sensor nodes to attack and
defend, respectively.

4.1.3. Reward function analysis
Based on the three-player game, two constant reward values

are defined: R1 as the gain of the IDS1 when the sink node
identifies the WSN and reward value R2, or positive reward, as the
gain of the IDS2 when the base station protects the WSN. If the
sink node does not identify the WSN during the attack, the reward
of the IDS1 would be –R1 (a negative reward). Likewise, if the base
station fails to defend the WSN during an attack, the payoff of the

Table 3
Game play between a base station (IDS2) and an attacker.

Game play between base station and attacker Base station

Defend Do not defend

Attacker
Attack (a11,c11)¼Best choice for sink (a12,c12)¼False Negative
No attack (a21,c21)¼False Positive (a22,c22)¼Least Damage

Table 4
The payoff matrix and utility functions.

Payoff function Payoff matrix Utility function Description of Utility function

Attacker's payoff function A¼ aij
� �

2n3
aij ¼ IR�Costprocessing IR¼ Number of malicious attacks

Total malicious attacks sent

Costprocessing ¼ processing time f or attack
Sink node's payoff function B¼ bij

� �
2n3

bij ¼ Pd�Costprocess detect Pd¼ Correct attack detection
Total detection and no detection

� �
Costprocess detect ¼ Cost of attack detection during sink’s processing

Base station's payoff function C ¼ cij
� �

2n2
Cij ¼ Pk�Costdef end Pk ¼ Cost of killing attacks

Costdef end ¼ power cost during def ense against attack

Table 5
Notations associated with the reward functions of a sink node and base station.

T T¼{0, 1, …, k �1} denotes the set of time in a Markov process
S The fuzzy state space of a sensor node, where the initial state is S0, and the next state of si is siþ1 for I A T
D1, D2 The set of detection strategies
�R1,–R2 The payoff incurred at a false negative incident

Bij ¼
b11 ¼ Pd�Costprocess detect b12 ¼ Costprocess detect b13 ¼ Pd�Costprocess detect

b21 ¼ Pd�Costprocess detect b22 ¼ Costprocess detect b23 ¼ Pd�Costprocess detect

" #
inj

ð2Þ
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IDS2 would be –R2. An explanation of the correlated reward/
incentive functions of a sensor node and base station is provided
in Table 5. To detect a potential future DDoS attack on a sensor
node, Fuzzy Q-learning is applied to enhance the self-learning
ability of the IDS1 and IDS2 processes. The Fuzzy Q-learning
supplies the IDPS with a learning mechanism, but the self-
learning ability of the Q-learning IDS can evolve during the
learning process, something that takes learning time, especially
at the beginning. Through such self-iterative learning, IDSs are
capable of protecting sensor nodes from recognizable potential
attacks in ongoing active WSNs.

Fuzzy Q-learning is a discrete-time fuzzy-based Markovian
procedure. When the process is at time t and fuzzy state FSt, the
Decision Maker may choose to perform a fuzzy action. The process
responds with a corresponding fuzzy reward for the decision
maker at time (tþ1) and moves to fuzzy state Fstþ1. The
interaction details and information are as follows. Based on the
Fuzzy Q-learning concept, a function fx(1): FS1-FD1 � FA1 is
defined to demonstrate the detection and attack strategies for
node x at a specific interval in IDS1. For instance, fx(state 1)¼
(d1, a1) depicts (d1, a1), which is a combination of the detection
and attack strategies when the node sink transits from state st to
stþ1, and the reward established by x is defined as R1(fx(st)) as
given by Eq. 4:

In the first case of Eq.(4), no detection and no attack are defined.
Accordingly, the reward is fixed at 0. The second case defines
when the sink node detects an attack with high accuracy, and
its reward would be R1. In the last case, ðif Pd ¼ low and
Costprocessing ¼ highÞ or ðif IR¼ low and Costprocessing ¼ lowÞ,
where the sink node uses strategy Pd with low processing cost and
high detection accuracy to identify attack strategy IR with low
attack and low processing cost, the reward is –R1. The first term
(Pd) represents the gain of employing the sink node's strategy to
detect attack strategy ai, and ðCostprocessing ) represents the cost of
using strategy. The second term, ðIRÞ, represents the gain of
utilizing the attack strategy with the processing cost for the
attacker.

In the IDS2 scenario, the reward function incorporates the
shield policy and attack strategy when the BS transits from state st
to stþ1, and the reward received by the base station is defined as
R2(fx(st)) as given in Eq. 5:

In Eq. (5), the first case defines no defense and no attack. Therefore,
the reward is set to 0. In case two, when the base station defends
against an attack with high defense strategy, its reward would be R2.
The last case indicates that the base station uses strategy Pk with high
processing cost and low cost of defending against an attack strategy,
therefore the reward is –R2. The first term (Pk) represents the base
station's gain of using strategy to eradicate the attack strategy ai, and

the ðCostprocessing Þ signifies the cost of using strategy. The second
term ðIRÞ denotes the gain of applying the attack strategy with the
processing cost for the attacker.

It is assumed that the state of node x is s0 at t¼0. If the defense and
detect strategies d1, d2 are taken against an attack strategy a, the state
of node x evolves from s0 to s1, and node x (with respect to the sink
node and base station) receives a reward R (fx(s0)) and so on (Eq.(6)).
In Q-learning, the state of node x transits from s0 to s1 and eventually
to sp where 15p5k�1, where k signifies the efficiency of IDS1
using the di strategy in detecting and defending against an aj attack
strategy. Thus, the accumulated reward received by x is

Rp
x ¼ ∑

p

t ¼ 0
γp Rðf xðspÞÞ ð6Þ

where γA [0, 1) is the discount rate parameter. An attack strategy,
and the objective of IDS2, is to choose a suitable defense policy
against an assault to accumulate rewards. It is noteworthy that Rp

x
will be calculated as two sub-rewards, such as R1 for the base station
and R2 for the sink node. An instance of the reward function given to
the cluster head (sink node) and attacker situation is the total
amount of positive reward signals received when no attack has
occurred and no alarm is raised (True Negative), and the number of
correct invasion cases detected by the system (True Positive). The

game theory phases are as follows:

� Phase 1: The sink node monitors message attacks through the
game-based FQL operation as the first step defined by IDS1 (see
Table 2) and then conveys the message to the base station for
the second step function defined by IDS2 (see Table 3).

� Phase 2: Upon receiving an abnormal signal from the sink node,
IDS2 uses its detection fitness test in conjunction with the
knowledge database to assess attack patterns and severity. This
evaluation permits IDS2 to regulate the overall defense strategy
in order to mitigate the DDoS attack. The IDS2 function uses the
fuzzy game theory principle to select an appropriate defense
tactic to shield the message-consuming sensor node. The IDS2
also informs the affected sink node that it needs to protect itself
against the offending attack pattern.

� Phase 3: The sink node verifies the current state of IDS play
with the sensor node. If the sink node still detects an irregu-

larity, it is likely that the IDS2 operation opted for the wrong
defense strategy, and in turn, the sink node advises the IDS2 to
revise its detection strategy. If the attack pattern alert count at
the sensor node decreases in number, the sink node system-
atically endeavors to confirm the current state of IDS play with
the sensor node until the attack condition is resolved and
returns to the correct state of defense strategy.

R1ðf xðStÞÞ ¼
0 ðif Pd ¼ low and Costprocessing ¼ lowÞ or ðif IR¼ low and Costprocessing ¼ lowÞ
R1 ðif Pd ¼ high and Costprocessing ¼ lowÞ or ðif IR¼ high and Costprocessing ¼ lowÞ
�R1 ð if Pd ¼ low and Costprocessing ¼ highÞ or ðif IR¼ low and Costprocessing ¼ lowÞ

8><
>: ð4Þ

R2ðf xðStÞÞ ¼
0 ð if Pk ¼ low and Costdef end ¼ lowÞ or ðif IR¼ low and Costprocessing ¼ lowÞ
R2 ðif Pk ¼ high and Costdef end ¼ lowÞ or ðif IR¼ high and Costprocessing ¼ lowÞ
�R2 ðif Pk ¼ low and Costdef end ¼ highÞ or ðif IR¼ high and Costprocessing ¼ lowÞ

8><
>: ð5Þ
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� Phase 4: The sink node notifies IDS2 that the attack at the
sensor node has been successfully counteracted and the attack
has ceased.

� Phase 5: The IDS2 thus concludes defending the sensor node.

4.2. Utility function

To appraise the efficacy of the associations determined by the
G-FQL and to determine the applicability of the rule at every point
in time, Eq. (7) was utilized in this work, as suggested by Huang,
et al. (2013). In Table 6 the parameters of the utility function are
described:

U ¼ ρnSP�βnFN�θnFP ð7Þ
The game principle approach entails detection accuracy with low
time complexity, which only afterward begins to formulate a
shield policy. The major drawback of the game theory is that if
attacks are recurring over a short period, a considerable amount of
time is consumed in the detection phase, something that weakens
the defense. It can be said that the detection precision may be low
while the false alert rate is high. This problem is a worst-case
scenario but can be addressed using the Cooperative-FQL pro-
posed by Shamshirband et al. (2013). Its principal contribution is
identifying the probability of future attacks aimed at a wireless
sensor node. For frequent attacks occurring over a short time,
multiagent-based FQL was adopted to deal with the excessive time
spent on detection. The aim of the proposed FQL is to obtain high
detection accuracy with a low false alarm rate.

5. Fuzzy Q-learning algorithm

To overcome the required complex detection and defense time,
as well as detection precision issues in our game theory method,
the FQL algorithm proposed by Shamshirband et al. (2013) is
applied in this paper to detect probable future points of attack in
advance. To optimize Q-learning algorithm performance from the
action selection method and reward function perspectives, fuzzy
min-max methods were employed. In the proposed scheme,
the fuzzy min-max action selection and reward function with
conventional Q-learning are evaluated. High detection accuracy

performance was demonstrated. For this reason, FQL was
employed to reinforce a system's learning capability.

The FLC inputs are provided by two scenarios through the switch-
ing process. In the first scenario, which is the game between a sink
node and attacker, Pd ¼ ðCorrect attack detection=Total detection
and no detectionÞ, the cost of attack detection during sink processing
ðCostprocess detectÞ as per sink node utility function and IR¼
ðNumber of malicious attacks=Total malicious attacks sentÞ, as well
as Costprocessing ¼ processing time f or attack with respect to the
attacker utility function, correspond to the fuzzy state of network
S1 (t) from the first scenario S1ðtÞ ¼ ½Pd;Cost_process; IR�. In the
second scenario that is the game between the base station and an
attacker, Pk¼ cost of killing attack, Cost defend¼Power cost during
def ence against attack adapts as a base station utility function and
IR¼ ðNumber of malicious attacks=Total malicious attacks sentÞ
and Costprocessing ¼ processing time f or attack, with regard to the
attacker utility function, correspond to the fuzzy state of network
S2(t) from the first scenario: S2ðtÞ ¼ ½Pk;Cost_def end; IR�:

The FLC output, given by the increment in states, represents the
action of the sink node and the base station A(t). The reward
signal, R (t), is built from FLC and is measured in both modes of
adjacency in order to test if the sensors experience attacks in
detection mode and the base station correctly defends against
attacks. The linguistic variables Pd, Cost_ Process, and IR act as
input for the first scenario, while the linguistic variables Pk,
Cost_defend, and IR serve as input for the second scenario.

The Detect Confidence (DC1) behaves as output for the first
scenario and the Defend Confidence (DC2) acts as output for the
second scenario. They are both applied in the experiments
(Table 7).

Two fuzzy sets are identified in all inputs and outputs, whose
linguistic terms are ‘Low’ (L) and ‘High’ (H). The fuzzy reward is
elaborated in Section 4.1.3. Hence, the objective is to determine the
total reward value over time. If the defense and detect strategy di
is used against the attack strategy aj at time p and the state of
node x transits from St to Spþ1, the Q-learning function for IDS1 is
Q: S�D�A-R as given in Eq. 8:

Q ðSp; di; ajÞ’Q ðSp; di; ajÞþ α½Rðf xspÞþγRpþ1
x �Q ðSp; di; ajÞ� ð8Þ

where α A (0, 1] is the learning rate factor. In this scheme, the
Q-function is applied in dual situations, such as IDS1 and IDS2.

Table 6
Utility function parameters.

Parameters Explanation

U Is a utility
ρ Symbolizes the weight of effective prediction, q¼0.75
SP Characterizes the true confidence rate of attack patterns
β Signifies the weight of failed estimates (attack but no defense), b¼1
FN Represents false negative of attack patterns – there are attacks but no defense
θ Denotes the weight of failed predictions (defense but no attack), h¼1
FP Represents false positive of attack patterns – there is defense but no attack

Table 7
Linguistic variables for fuzzy set input and output.

Type of scenario Variable Attribute Membership function

Attacker and sink node Input Pd Low Med High
Cost process Low Med High
IR Low Med High

Output Detection confidence (DC1) Low Med High
Attacker and base station Input Pk Low Med High

Cost defense Low Med High
IR Low Med High

Output Defense confidence (DC2) Low Med High
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In each state, a cluster head (sink node) gets rewarded by the
reward function using the Q-learning method, and the base station
also obtains the reward. G-FQL attains the final reward value of
each player. A learning rate of zero means the system does not
learn anything new, but a value of 1 would prompt the system to
adjust its accuracy strategy as it self-learns from new attacks and
update the information in its knowledge base. If the reward value
is below the threshold, v, FQL IDS1 deems node x secure;
otherwise it considers the node insecure and takes suitable
detection action against the attack. Simultaneous to this evalua-
tion, FQL IDS2 takes appropriate defensive action against any
potential attacks.

6. Simulation and analysis

6.1. Simulation setup

To appraise the performance and check the connection
between G-FQL and the routing protocol, NS-2 is simulated. In
this work only the Distributed Denial-of-Service (DDoS) attack is
considered. DDoS is characterized by the presence of an attacker
and is called a flooding attack, and it causes noise in wireless
communication by sending flooding packets as well as exhausts
energy (Ghosal and Halder, 2013). The noise disrupts communica-
tion between nodes in the network, preventing them from enter-
ing ‘sleep mode’ due to the medium getting flooded with
messages.

The Low Energy Adaptive Clustering Hierarchy (LEACH) proto-
col was utilized in the simulation, as it most closely reflects WSN
in practice and it is also applicable to dealing with energy
consumption concerns in WSNs. The simulations were run for
1000 s with LEACH as the routing protocol, the initial access point
energy was 100 J, the effective transmission range of the wireless
radio for the access point was 100 m, the sink node transmission
range was 100 m, the common node transmission range was 50 m
and the transport protocol is given in Fig. 5. In addition, the
cooperative game-based IDPS with fuzzy Q-learning, was
employed to hasten the simulation.

Table 8 presents the WSN configuration along with the set of
parameters applied in NS-2. However, in practical WSN security
operation, minimizing energy usage to conserve energy and
maximize detection accuracy as much as possible is vital when
designing and running G-FQL within efficient IDPS. The results
obtained from the proposed algorithm are compared with those
from Fuzzy Logic Controller, Q-learning, and Fuzzy Q-learning

(Shamshirband et al., 2013) as well as the Markovian Game
(Huang et al., 2013).

6.2. Generating and analyzing the flood attack strategy

The purpose of this section is to analyze the quantitative
behavior of attacks in the UDP protocol layer. In the present
experiments, normal UDP traffic was initially considered, after
which the attack intensity under flood attacks with UDP traffic
was explored. Subsequently, the total energy consumed before and
after attack was examined. The accuracy of detection and defense
as a result of executing the G-FQL algorithm was finally assessed.
To generate an attack, a random function was employed, which
selected subject nodes from each cluster to attack. The selected
nodes adjusted their functions to send flooding packets to the
cluster head. Algorithm 1 displays the attack strategy.

Algorithm 1. Attack strategy.

1. Start
2. Min(r)¼0%% Initial round simulation (Max(r)¼n)
3. While (ro4n)
4. Decide r round's cluster head randomly
5. Cluster head advertises schedule time to all its common
nodes

6. Generate attack node randomly
7. Attack node receives schedule time message from its cluster
head

8. Attack node starts to compromise victims
8.1. Attack node sends flooding packets to its cluster head in
this round

8.2. Victim (cluster head) receives data more quickly than
normal state, so its energy will decrease rapidly

9. End.

In the experiment, an attack with UDP attack intensity was
implemented. Fig. 6 indicates flooding attack intensity per packet
length. Greater attack intensity percentage obviously occurred
between 200 and 300 s, at which time packet length also reached
elevated values. In Fig. 7 it appears that UDP attack intensity
affected the WSN energy, besides the fact that energy was
consumed in proportion to attack intensity. For example, for attack
intensity between 100 and 150 s, the most energy was consumed.

In the present research work, three sets of experiments were
conducted to examine the effects of attack detection accuracy and
defense rate against attacks based on the Fuzzy Logic Controller,
Q-learning algorithm, Fuzzy Q-learning and Game theory-based
Fuzzy Q-learning algorithms. The cost function was calculated
according to Eq. (7).

A t tack

C 1

Sink node

Attack
C2

Fig. 5. Simulated WSN environment.

Table 8
Wireless sensor network parameters in NS-2.

Wireless sensor network
parameters

Values

Access point 1
Common nodes 200
Sink node in each cluster 1
Routing protocol LEACH
Scenario size 100*100
Simulation time 1000 s
Transport protocol UDP
Access point initial energy 100 J
Access point transmission range 100 m
Sink node initial energy 10 J
Sink node transmission range 70 m
Common node initial energy 10 J
Common node transmission range 50 m
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6.3. Analysis of the game-based FQL IDPS in terms of detection
accuracy

The proposed game-based Fuzzy Q-learning (G-FQL) algorithm
with the cost function U ¼ ρnSP�βnFN�θnFP was compared with
existing soft computing methods (Fuzzy Logic Controller, Q-learning,
and Fuzzy Q-learning) with respect to the attack detection precision of
modeled Denial-of-Service attacks. A comparison between the average
utility function and G-FQL with cost maximization indicates that the
latter yielded an improvement of 3.29% with 1.86 standard deviation
as opposed to the FQL algorithm with 0.83 (Table 9).

It is evident that G-FQL with a cooperative mechanism attained
the utmost detection accuracy gain. It can also be inferred from
Fig. 8 that detection accuracy per percentage of attack is higher
with the G-FQL algorithm than the other methods.

In Fig. 8, the X-axis shows the percentage of malicious nodes in
an attack, and the Y-axis indicates the accuracy rate. At higher
attack frequencies, the proposed method (Game-based FQL)
displays greater accuracy scores.

6.4. Analysis of game-based FQL IDPS in terms of defense rate

The proposed Game-FQL method was weighed against that of
Huang et al. (2013), who used the game theory and Markovian IDS
with an attack-pattern-mining algorithm. According to Huang
et al.'s (2013) empirical results, the defense rate effectiveness of
non-cooperative-based Markovian IDS with an attack-pattern
mining algorithm for 60% of malicious nodes in a network and
two sink nodes ranged between 72% and 97% (Fig. 9). With the
proposed game-based FQL IDPS, the successful defense rate was
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Fig. 7. Victim node's energy level over time.

Table 9
Simulation results of the detection algorithm for DDoS attacks.

Percentage of
attack (%)

FLC Q-learning FQL Game-based FQL

SP
(%)

FP
(%)

FN
(%)

Utility
function

SP
(%)

FP
(%)

FN
(%)

Utility
function

SP
(%)

FP
(%)

FN
(%)

Utility
function

SP
(%)

FP
(%)

FN
(%)

Utility
function

1 49.50 1.90 2.40 56.38 76.00 1.40 1.20 54.40 80.10 1.20 1.10 57.78 83.20 1.20 1.10 60.10
5 49.80 1.98 2.80 56.07 76.70 1.60 1.40 54.53 81.20 1.40 1.30 58.20 83.40 1.30 1.20 60.05
10 50.01 2.00 3.20 55.71 76.90 1.90 1.70 54.08 82.50 1.90 1.70 58.28 84.30 1.50 1.60 60.13
15 51.20 2.04 3.60 56.56 77.80 2.10 2.00 54.25 83.70 2.10 2.00 58.68 85.60 1.70 1.80 60.70
20 50.90 2.40 3.90 55.38 78.00 2.40 2.20 53.90 83.90 2.40 2.20 58.33 87.90 1.90 2.00 62.03
25 51.90 2.80 4.10 55.93 78.90 3.10 2.70 53.38 84.20 2.60 2.30 58.25 88.30 2.10 2.30 61.83
30 52.70 2.90 4.20 56.68 80.20 3.40 3.00 53.75 85.80 2.80 2.60 58.95 89.70 2.40 2.50 62.38
35 49.40 3.00 4.70 51.70 82.80 3.90 3.20 55.00 86.40 2.90 2.70 59.30 90.50 2.60 2.70 62.58
40 49.50 3.01 5.00 51.37 82.90 4.20 3.80 54.18 87.70 3.20 3.00 59.58 91.70 3.10 3.00 62.68
45 50.02 3.20 5.30 51.38 83.70 4.90 4.10 53.78 88.50 3.40 3.20 59.78 92.40 3.20 3.40 62.70
50 51.04 3.50 5.60 51.90 83.90 5.20 4.80 52.93 89.60 3.90 3.50 59.80 94.20 3.30 3.70 63.65
55 50.30 3.70 5.80 50.48 84.90 5.60 5.10 52.98 90.40 4.10 4.00 59.70 96.50 3.50 3.80 65.08
60 49.30 3.70 5.90 49.08 85.00 5.80 5.70 52.25 92.40 4.50 4.30 60.50 98.20 3.70 3.90 66.05
Average 51.20 2.78 4.35 53.74 80.59 3.50 3.15 53.80 85.88 2.80 2.60 59.01 89.68 2.42 2.54 62.30
Std. dev. 1.03 0.66 1.15 2.76 3.37 1.50 1.47 0.75 3.71 1.01 0.98 0.83 4.86 0.87 0.98 1.86
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Fig. 6. Effects of UDP attack intensity on packet size.
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between 79% and 98%, as per Fig. 9 as well. It can be concluded
that integrating the game theory with the Fuzzy Q-learning
algorithm outperforms individual defense schemes.

Fig. 9 points out that the successful defense rate values for Huang
et al.'s model (2013) and the proposed methods decreased from 100%
to 87% when the anomaly percentage increased. However, the
proposed method gained the advantage of a successful defense rate
due to the higher percentage of malicious nodes detected compared to
Liao's lower success rate. It can thus be deduced that by integrating the
game theory with the Fuzzy Q-training method, performance sur-
passes that of any other individual defense approach.

6.5. Analysis of game-based FQL IDPS in terms of number of live
nodes

This experiment was conducted to evaluate the performance of
the Game-FQL algorithm in terms of number of live nodes during
the simulation runtime. In the current scheme, the number of
sensor nodes was 200. Fig. 10 displays the number of live nodes for
different algorithms throughout simulation runtime. The simula-
tion outcomes indicate the number of live nodes at the end of the
simulation time (1000 s), according to which, the number of live
sensor nodes in the proposed Game-FQL method is significantly
greater than existing algorithms. Game-FQL maintains 50 live
nodes against an attack in comparison to 42, 32, and 21 live nodes
for FQL, QL, and FLC, respectively.

The procedure of adjusting rules according to FLC-based DDoS
attacks is more time-consuming, and the attacker defeats a high

number of nodes during FLC detection (Baig and Khan, 2010).
Q-learning-based DDoS attack detection is capable of handling
minor-class DDoS attacks, but the multi-objective procedure or
major features of a DDoS attack consume maximum resources,
especially in a real-time environment (Liu, 2008). Fuzzy Q-
learning-based DDoS attack detection utilized the min-max fuzzy
method to enhance the classification scheme. The min-max fuzzy
classifiers perform well with a reduced dataset, but inaccurately
when the high volume of traffic increases further and the fuzzy IDPS
may crash. In addition, prior knowledge of data distribution is
required for the FQL algorithm. In the Fuzzy Q-learning algorithm,
observation is limited by one single classifier (Shamshirband et al.,
2013). Therefore, this algorithm fails due to high volumes of real-
time traffic. In the currently proposed method, the cooperative
policy evaluates the proficiency of an agent to optimize the cost
function based on weight assignment mechanisms for real-time
DDoS attack detection. The countermeasure mechanisms result as
modules to be applied in Game-FQL architecture and system
implementation to accelerate the detection and defense learning
process in a fraction of the usual time. Thus, the Game-FQL preserves
a greater number of sensor nodes during simulation.

6.6. Analysis of game-based FQL IDPS in terms of energy
consumption over time

In this experiment, the energy consumed by the Game-FQL
algorithm during DDoS attacks on sensor nodes in comparison to
FLC, QL, and FQL is studied. Fig. 11 provides the comparison
between the mentioned algorithms in terms of total energy
consumed by sensor nodes.

In existing detection, the players (sink node and base station)
partake in activities such as local sensing and data reporting, which
consume additional energy. The overhead of energy consumption
may be considerable if the number of cooperating players or the
amount of sensing results in the report is very large. Thus, energy
efficiency needs to be considered in cooperative sensing schemes. To
address this issue, the cooperative game-based FQL method
enhances energy efficiency via optimization.

6.7. Analysis of the energy consumed by different deployed nodes in
the game-based FQL IDPS

The impact of number of deployed sensor nodes on energy
consumption is shown in Fig. 12. It is observed that with an
increasing percentage of deployed nodes, the proposed Game-FQL
is able to consume the total amount of energy in comparison with
FQL, QL, and FLC.
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Finally, Fig. 12 depicts the total energy consumed with varying
numbers of sensor nodes deployed in the network. The experi-
ment was run for 40, 80, 120, 160, and 200 nodes. As expected,
when more nodes are present in the network, the energy con-
sumption rate is lower than other comparable methods. This is
attributed to the fact that the proposed Game-based FQL agents
prefer to maximize their own utility function by means of
cooperating learning algorithm to avoid the energy consumption
by sensors from each cluster. However, it would be interesting for
the cooperative Game-FQL solution to be implemented, for
instance, to “BEE-C: A bio-inspired energy efficient cluster-based
algorithm for data continuous dissemination in Wireless Sensor
Networks” (da Silva Rego et al., 2012), to verify the energy
consumption for intrusion detection and prevention.

7. Conclusion

In this paper, the interaction between attackers, sink nodes and
the base station was studied, after which a novel Game-based FQL,
cooperative game theoretic defense mechanism was proposed.
This system combines the cooperative-based game theory with
fuzzy Q-learning algorithmic elements. As such, the cooperation
between the detection sink node player and response base station
players is reinforced to defend against an incoming DDoS attack
that may cause congestion and downtime in WSN wireless
communication as a result of flooding packets. The Game-FQL

model is a triple-player game strategy construed as two-player,
providing double defense against a single attacker. It adds con-
fidence and establishes a reputation as extremely apt in tracking
an attacker and defending the system. This strategy-based coop-
erative game adapts to continuous self-learning of past attacks and
the behavior in the fuzzy Q-learning decision making process to
overcome the attacker. By defining incentives for cooperation and
disincentives for fraudulent behavior, it has been determined that
repeated interaction sustains cooperation, builds confidence and
enhances reputation, something additionally offered by Game-
FQL. Game theory-based Fuzzy Q-learning (Game-FQL), as a
mechanism in IDPS, is an invaluable tool for increasingly securing
next-generation complex heterogeneous computing and network-
ing environments against sophisticated attacks and attackers,
beyond what is encountered today. A future initiative is to extend
the proposed Game-FQL mechanism by incorporating data from
various attack types and sources to further enhance its decision
making capabilities in order to thwart existing or new attacks. Also
as part of future research work on complementing Game-FQL,
studying a network evolutionary algorithm, such as the imperialist
competitive algorithm, is considered of utmost importance.
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