
Engineering Evolutionary Intelligent Systems:
Methodologies, Architectures and Reviews

Ajith Abraham and Crina Grosan

Summary. Designing intelligent paradigms using evolutionary algorithms is getting
popular due to their capabilities in handling several real world problems involv-
ing complexity, noisy environment, imprecision, uncertainty and vagueness. In this
Chapter, we illustrate the various possibilities for designing intelligent systems us-
ing evolutionary algorithms and also present some of the generic evolutionary design
architectures that has evolved during the last couple of decades. We also provide a
review of some of the recent interesting evolutionary intelligent system frameworks
reported in the literature.

1 Introduction

Evolutionary Algorithms (EA) have recently received increased interest, par-
ticularly with regard to the manner in which they may be applied for practical
problem solving. Usually grouped under the term evolutionary computation
or evolutionary algorithms, we find the domains of Genetic Algorithms [34],
Evolution Strategies [68], [69], Evolutionary Programming [20], Learning Clas-
sifier Systems [36], Genetic Programming [45], Differential Evolution [67] and
Estimation of Distribution Algorithms [56]. They all share a common con-
ceptual base of simulating the evolution of individual structures and they
differ in the way the problem is represented, processes of selection and the us-
age/implementation of reproduction operators. The processes depend on the
perceived performance of the individual structures as defined by the problem.

Compared to other global optimization techniques, evolutionary algo-
rithms are easy to implement and very often they provide adequate solutions.
A population of candidate solutions (for the optimization task to be solved)
is initialized. New solutions are created by applying reproduction operators
(mutation and/or crossover). The fitness (how good the solutions are) of the
resulting solutions are evaluated and suitable selection strategy is then applied
to determine, which solutions are to be maintained into the next generation.
The procedure is then iterated.

A. Abraham and C. Grosan: Engineering Evolutionary Intelligent Systems: Methodologies,

Architectures and Reviews, Studies in Computational Intelligence (SCI) 82, 1–22 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

2 A. Abraham and C. Grosan

The rest of the chapter is organized as follows. In Section 2, the various
architectures for engineering evolutionary intelligent systems are presented.
In Section 3, we present evolutionary artificial neural networks and its recent
applications followed by evolutionary fuzzy systems and applications in Sec-
tion 4. Evolutionary clustering is presented in Section 5 followed by recent
applications of evolutionary design of complex paradigms in Section 6. Mul-
tiobjective evolutionary design intelligent systems are presented in Section 7
and some conclusions are provided towards the end.

2 Architectures of Evolutionary Intelligent Systems

Hybridization of evolutionary algorithms with other intelligent paradigms is a
promising research field and various architectures for Evolutionary Intelligent
Systems (EIS) could be formulated as depicted in Figures 1–6. By problem, we
refer to any data mining/optimization/function approximation type problem
and Intelligent Paradigm (IP) refers to any computational intelligence tech-
niques like neural network, machine learning schemes, fuzzy inference systems,
clustering algorithms etc.

Evolutionary algorithm Intelligent paradigm

Problem / Data

Solution
(Output)

Fig. 1. EIS architecture 1

Evolutionary algorithm Intelligent paradigm

Problem / Data

Solution
(Output)

Fig. 2. EIS architecture 2

Engineering Evolutionary Intelligent Systems 3

Evolutionary algorithm

Intelligent paradigm

Problem / Data

Solution
(Output)

Fig. 3. EIS architecture 3

Intelligent paradigm

Evolutionary algorithm

Problem / Data

Solution
(Output)

Error
feedback

Fig. 4. EIS architecture 4

Evolutionary algorithm

Intelligent paradigm

Problem / Data

Solution
(Output)

Fig. 5. EIS architecture 5

4 A. Abraham and C. Grosan

Evolutionary algorithm

Intelligent paradigm

Problem / Data

Solution
(Output)

Error
feedback

Fig. 6. EIS architecture 6

Figure 1 illustrates a transformational architecture where an evolutionary
algorithm is used to optimize an intelligent paradigm and at the same time
the intelligent paradigm is used to fine tune the parameters and performance
of the evolutionary algorithm. An example is an evolutionary - fuzzy system
where an evolutionary algorithm is used to fine tune the parameters of a fuzzy
inference system (for a function approximation problem) and the fuzzy system
is used to control the parameters of the evolutionary algorithm [32].

A concurrent hybrid architecture is depicted in Figure 2, where an EA
is used as a pre-processor and the intelligent paradigm is used to fine tune
the solutions formulated by the EA. The final solutions to the problem is
provided by IP. Both EA and IP are continuously required for the satisfactory
performance of the system. EA may be used as a post processor as illustrated
in [1], [4] and [28].

Architecture 3 (Figure 3) depicts a cooperative hybrid system where the
evolutionary algorithm is used to fine tune the parameters of IP only during
the initialization of the system. Once the system is initialized the EA is not
required for the satisfactory functioning of the system.

Architecture 4 uses an error feed back from the output (performance mea-
sure) and based on the error measure (critic information) the EA is used to
fine tune the performance of the IP. Final solutions are provided by the the
IP as illustrated in Figure 4.

An ensemble model is depicted in Figure 5 where EA received inputs
directly from the IP and independent solutions are provided by the EA and
IP. A slightly different architecture is depicted in Figure 6, where an error feed
back is generated by the EA and depending on this input IP performance is
fine tuned and final solutions are provided by the IP.

In the following Section, some of the well established hybrid frameworks
for optimizing the performance of evolutionary algorithm using intelligent
paradigms are presented.

Engineering Evolutionary Intelligent Systems 5

3 Evolutionary Artificial Neural Networks

Artificial neural networks are capable of performing a wide variety of tasks, yet
in practice sometimes they deliver only marginal performance. Inappropriate
topology selection and learning algorithm are frequently blamed. There is little
reason to expect that one can find a uniformly best algorithm for selecting the
weights in a feedforward artificial neural network. This is in accordance with
the no free lunch theorem, which explains that for any algorithm, any elevated
performance over one class of problems is exactly paid for in performance over
another class [75].

At present, neural network design relies heavily on human experts who
have sufficient knowledge about the different aspects of the network and the
problem domain. As the complexity of the problem domain increases, man-
ual design becomes more difficult and unmanageable. Evolutionary design of
artificial neural networks has been widely explored. Evolutionary algorithms
are used to adapt the connection weights, network architecture and learning
rules according to the problem environment. A distinct feature of evolution-
ary neural networks is their adaptability to a dynamic environment. In other
words, such neural networks can adapt to an environment as well as changes
in the environment. The two forms of adaptation: evolution and learning in
evolutionary artificial neural networks make their adaptation to a dynamic
environment much more effective and efficient than the conventional learning
approach.

In Evolutionary Artificial Neural Network (EANN), evolution can be in-
troduced at various levels. At the lowest level, evolution can be introduced
into weight training, where ANN weights are evolved. At the next higher
level, evolution can be introduced into neural network architecture adapta-
tion, where the architecture (number of hidden layers, no of hidden neurons
and node transfer functions) is evolved. At the highest level, evolution can be
introduced into the learning mechanism [77]. A general framework of EANNs
which includes the above three levels of evolution is given in Figure 7 [2].

From the point of view of engineering, the decision on the level of evolution
depends on what kind of prior knowledge is available. If there is more prior
knowledge about EANN’s architectures that about their learning rules or

 Evolutionary Search of learning rules

Evolutionary search of architectures and node transfer
functions

Evolutionary search of connection weights

Slow

Fast

Fig. 7. A General framework for evolutionary artificial neural network

6 A. Abraham and C. Grosan

a particular class of architectures is pursued, it is better to implement the
evolution of architectures at the highest level because such knowledge can be
used to reduce the search space and the lower level evolution of learning rules
can be more biased towards this kind of architectures. On the other hand, the
evolution of learning rules should be at the highest level if there is more prior
knowledge about them available or there is a special interest in certain type
of learning rules.

3.1 Evolutionary Search of Connection Weights

The neural network training process is formulated as a global search of connec-
tion weights towards an optimal set defined by the evolutionary algorithm.
Optimal connection weights can be formulated as a global search problem
wherein the architecture of the neural network is pre-defined and fixed during
the evolution. Connection weights may be represented as binary strings or real
numbers. The whole network is encoded by concatenation of all the connection
weights of the network in the chromosome. A heuristic concerning the order
of the concatenation is to put connection weights to the same node together.
Proper genetic operators are to be chosen depending upon the representation
used. While gradient based techniques are very much dependant on the initial
setting of weights, evolutionary search method can be considered generally
much less sensitive to initial conditions. When compared to any gradient de-
scent or second order optimization technique that can only find local optimum
in a neighborhood of the initial solution, evolutionary algorithms always try
to search for a global optimal solution. Evolutionary search for connection
weights is depicted in Algorithm 3.1.

Algorithm 3.1 Evolutionary search of connection weights
1. Generate an initial population of N weight chromosomes. Evaluate the fitness of
each EANN depending on the problem.

2. Depending on the fitness and using suitable selection methods reproduce a
number of children for each individual in the current generation.

3. Apply genetic operators to each child individual generated above and obtain the
next generation.

4. Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 2.

5. End

Engineering Evolutionary Intelligent Systems 7

3.2 Evolutionary Search of Architectures

Evolutionary architecture adaptation can be achieved by constructive and de-
structive algorithms. Constructive algorithms, which add complexity to the
network starting from a very simple architecture until the entire network is
able to learn the task [23], [52]. Destructive algorithms start with large archi-
tectures and remove nodes and interconnections until the ANN is no longer
able to perform its task [58], [66]. Then the last removal is undone. For an op-
timal network, the required node transfer function (Gaussian, sigmoidal, etc.)
can be formulated as a global search problem, which is evolved simultaneously
with the search for architectures [49].

To minimize the size of the genotype string and improve scalability, when
priori knowledge of the architecture is known it will be efficient to use some in-
direct coding (high level) schemes. For example, if two neighboring layers are
fully connected then the architecture can be coded by simply using the number
of layers and nodes. The blueprint representation is a popular indirect coding
scheme where it assumes architecture consists of various segments or areas.
Each segment or area will define a set of neurons, their spatial arrangement
and their efferent connectivity. Several high level coding schemes like graph
generation system [44], Symbiotic Adaptive Neuro-Evolution (SANE) [54],
marker based genetic coding [24], L-systems [10], cellular encoding [26], frac-
tal representation [53], cellular automata [29] etc. are some of the rugged
techniques.

Global search of transfer function and the connectivity of the ANN us-
ing evolutionary algorithms is formulated in Algorithm 3.2. The evolution of
architectures has to be implemented such that the evolution of weight chro-
mosomes are evolved at a faster rate i.e. for every architecture chromosome,
there will be several weight chromosomes evolving at a faster time scale.

Algorithm 3.2 Evolutionary search of architectures
1. Generate an initial population of N architecture chromosomes. Evaluate the
fitness of each EANN depending on the problem.

2. Depending on the fitness and using suitable selection methods reproduce a
number of children for each individual in the current generation.

3. Apply genetic operators to each child individual generated above and obtain the
next generation.

4. Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 2.

5. End

8 A. Abraham and C. Grosan

3.3 Evolutionary Search of Learning Rules

For the neural network to be fully optimal the learning rules are to be adapted
dynamically according to its architecture and the given problem. Deciding the
learning rate and momentum can be considered as the first attempt of learning
rules [48]. The basic learning rule can be generalized by the function

∆w(t) =
n∑

k=1

n∑
i1,i2,...,ik=1

⎛⎝θi1,i2,...,ik

k∏
j=1

xij(t − 1)

⎞⎠ (1)

where t is the time, ∆w is the weight change, x1, x2,. xn are local variables
and the θ’s are the real values coefficients which is to be determined by
the global search algorithm. In the above equation, different values of θ’s
determine different learning rules. The above equation is arrived based on the
assumption that the same rule is applicable at every node of the network and
the weight updating is only dependent on the input/output activations and
the connection weights on a particular node.

The evolution of learning rules has to be implemented such that the evo-
lution of architecture chromosomes are evolved at a faster rate i.e. for every
learning rule chromosome, there will be several architecture chromosomes
evolving at a faster time scale. Genotypes (θ’s) can be encoded as real-valued
coefficients and the global search for learning rules using the evolutionary
algorithm is formulated in Algorithm 3.3.

In the literature, several research works could be traced about how to for-
mulate different optimal learning rules [8], [21]. The adaptive adjustment of
back-propagation algorithm parameters, such as the learning rate and mo-
mentum, through evolution could be considered as the first attempt of the
evolution of learning rules [30]. Sexton et al. [65] used simulated annealing al-
gorithm for optimization of learning. For optimization of the neural network

Algorithm 3.3 Evolutionary search of learning algorithms or rules
1. Generate an initial population of N learning rules. Evaluate the fitness of each
EANN depending on the problem.

2. Depending on the fitness and using suitable selection methods reproduce a
number of children for each individual in the current generation.

3. Apply genetic operators to each child individual generated above and obtain the
next generation.

4. Check whether the network has achieved the required error rate or the specified
number of generations has been reached. Go to Step 2.

5. End

Engineering Evolutionary Intelligent Systems 9

learning, in many cases a pre-defined architecture was used and in a few cases
architectures were evolved together. Abraham [2] proposed the meta-learning
evolutionary evolutionary neural network with a tight interaction of the differ-
ent evolutionary search mechanisms using the generic framework illustrated
in Figure 7.

3.4 Recent Applications of Evolutionary Neural Networks
in Practice

Cai et al. [11] used a hybrid of Particle Swarm Optimization (PSO) [41], [18]
and EA to train Recurrent Neural Networks (RNNs) for the prediction of
missing values in time series data. Experimental results illustrate that RNNs,
trained by the hybrid algorithm, are able to predict the missing values in
the time series with minimum error, in comparison with those trained with
standard EA and PSO algorithms.

Castillo et al. [12] explored several methods that combine evolution-
ary algorithms and local search to optimize multilayer perceptrons. Authors
explored a method that optimizes the architecture and initial weights of multi-
layer perceptrons, a search algorithm for training algorithm parameters, and
finally, a co-evolutionary algorithm, that handles the architecture, the net-
work’s initial weights and the training algorithm parameters. Experimental
results show that the co-evolutionary method obtains similar or better re-
sults than the other approaches, requiring far less training epochs and thus,
reducing running time.

Hui [37] proposed a new method for predicting the reliability for repairable
systems using evolutionary neural networks. Genetic algorithms are used to
globally optimize the number of neurons in the hidden layer and learning
parameters of the neural network architecture.

Marwala [51] proposed a Bayesian neural network trained using Markov
Chain Monte Carlo (MCMC) and genetic programming in binary space within
Metropolis framework. The proposed algorithm could learn using samples
obtained from previous steps merged using concepts of natural evolution which
include mutation, crossover and reproduction. The reproduction function is
the Metropolis framework and binary mutation as well as simple crossover,
are also used.

Kim and Cho [42] proposed an incremental evolution method for neu-
ral networks based on cellular automata and a method of combining several
evolved modules by a rule-based approach. The incremental evolution method
evolves the neural network by starting with simple environment and gradu-
ally making it more complex. The multi-modules integration method can make
complex behaviors by combining several modules evolved or programmed to
do simple behaviors.

Kim [43] explored a genetic algorithm approach to instance selection in
artificial neural networks when the amount of data is very large. GA optimizes

10 A. Abraham and C. Grosan

simultaneously the connection weights and the optimal selection of relevant
instances.

Capi and Doya [13] implemented an extended multi-population genetic al-
gorithm (EMPGA), where subpopulations apply different evolutionary strate-
gies for designing neural controllers in the real hardware of Cyber Rodent
robot. The EMPGA subpopulations compete and cooperate among each
other.

Bhattacharya et al. [7] used a meta-learning evolutionary artificial neural
network in selecting the best Flexible Manufacturing Systems (FMS) from a
group of candidate FMSs. EA is used to evolve the architecture and weights
of the proposed neural network method. Further, a Back-Propagation (BP)
algorithm is used as the local search algorithm. All the randomly generated
architectures of the initial population are trained by BP algorithm for a fixed
number of epochs. The learning rate and momentum of the BP algorithm have
been adapted suiting the generated data of the MCDM problem.

4 Evolutionary Fuzzy Systems

A conventional fuzzy controller makes use of a model of the expert who is in
a position to specify the most important properties of the process. Fuzzy con-
troller consists of a fuzzification interface, which receives the current values of
the input variables and eventually transforms to linguistic terms or fuzzy sets.
The knowledge base contains information about the domains of the variables,
and the fuzzy sets associated with the linguistic terms. Also a rule base in the
form of linguistic control rules is stored in the knowledge base. The decision
logic determines the information about the control variables with the help of
the measured input values and knowledge base. The task of defuzzification
interface is to create a crisp control value out of the information about the
control variable of the decision logic by using a suitable transformation.

The usual approach in fuzzy control is to define a number of concurrent
if-then fuzzy rules. Most fuzzy systems employ the inference method proposed
by Mamdani [50] in which the rule consequence is defined by fuzzy sets and
has the following structure:

if x is A1 and y is B 1 then f = C (2)

Takagi, Sugeno and Kang (TSK) [72] proposed an inference scheme in
which the conclusion of a fuzzy rule is constituted by a weighted linear com-
bination of the crisp inputs rather than a fuzzy set and has the following
structure:

if x is A1 and y is B 1, then f = p1x + q 1y + r (3)

In the literature, several research works related to evolutionary design of
fuzzy system could be located [59], [62]. Majority of the works are concerned
with the automatic design or optimization of fuzzy logic controllers either by

Engineering Evolutionary Intelligent Systems 11

adapting the fuzzy membership functions or by learning the fuzzy if-then rules
[55], [33]. Figure 8 shows the architecture of the adaptive fuzzy control system
wherein the fuzzy membership functions and the rule bases are optimized
using a hybrid global search procedure. An optimal design of an adaptive fuzzy
control system could be achieved by the adaptive evolution of membership
functions and the learning rules that progress on different time scales. Figure 9
illustrates the general interaction mechanism with the global search of fuzzy
rules evolving at the highest level on the slowest time scale. For each fuzzy
rule base, global search of membership functions proceeds at a faster time
scale in an environment decided by the problem.

Process
+

-

Performance
measure

Evolutionary search

(Adaptation of fuzzy sets
and rule base)

Fuzzy controller

Fuzzy sets

if-then rules

Knowledge base

Fig. 8. Adaptive fuzzy control system architecture

Evolutionary search of fuzzy rules

Evolutionary search of membership functions

Slow

Fast

Fig. 9. Interaction of various search mechanisms in the design of optimal adaptive
fuzzy control system

12 A. Abraham and C. Grosan

4.1 Evolutionary Search of Fuzzy Membership Functions

The tuning of the scaling parameters and fuzzy membership functions (piece-
wise linear and/or differentiable functions) is an important task in the design
of fuzzy systems and is popularly known as genetic tuning. Evolutionary al-
gorithms could be used to search the optimal shape, number of membership
functions per linguistic variable and the parameters [31]. The genome encodes
parameters of trapezoidal, triangle, logistic, Laplace, hyperbolic-tangent or
Gaussian membership functions etc. Most of the existing methods assume
the existence of a predefined collection of fuzzy membership functions giving
meaning to the linguistic labels contained in the rules (database). Evolution-
ary algorithms are applied to obtain a suitable rule base, using chromosomes
that code single rules or complete rule bases. If prior knowledge of the mem-
bership functions is available, a simplified chromosome representation could
be formulated accordingly.

The first decision a designer has to make is how to represent a solution
in a chromosome structure. First approach is to have the chromosome en-
code the complete rule base. Each chromosome differs only in the fuzzy rule
membership functions as defined in the database. In the second approach, each
chromosome encodes a different database definition based on the fuzzy domain
partitions. The global search for membership functions using evolutionary
algorithm is formulated in Algorithm 4.1.

4.2 Evolutionary Search of Fuzzy Rule Base

The number of rules grows rapidly with an increasing number of variables
and fuzzy sets. Literature scan reveals that several coding methods were used

Algorithm 4.1 Evolution of learning of fuzzy membership functions and its
parameters
1. Generate an initial population of N chromosomes using one of the approaches
mentioned in Section 4.1. Evaluate the fitness of each fuzzy rule base depending on
the problem.

2. Depending on the fitness and using suitable selection methods reproduce a
number of children for each individual in the current generation.

3. Apply genetic operators to each child individual generated above and obtain the
next generation.

4. Check whether the fuzzy system has achieved the required error rate or the
specified number of generations has been reached. Go to Step 2.

5. End

Engineering Evolutionary Intelligent Systems 13

according to the nature of the problem. The rule base of the fuzzy system
may be represented using relational matrix, decision table and set of rules.

In the Pittsburg approach, [71] each chromosome encodes a whole rule set.
Crossover serves to provide a new combination of rules and mutation provides
new rules. The disadvantage is the increased complexity of search space and
additional computational burden especially for online learning. The size of the
genotype depends on the number of input/output variables and fuzzy sets.

In the Michigan approach, [35] each genotype represents a single fuzzy rule
and the entire population represents a solution. The fuzzy knowledge base is
adapted as a result of antagonistic roles of competition and cooperation of
fuzzy rules. A classifier rule triggers whenever its condition part matches the
current input, in which case the proposed action is sent to the process to be
controlled. The fuzzy behavior is created by an activation sequence of mutually
collaborating fuzzy rules. In the Michigan approach, techniques for judging
the performance of single rules are necessary.

The Iterative Rule Learning (IRL) approach [27] is similar to the Michi-
gan approach where the chromosomes encode individual rules. In IRL, only
the best individual is considered as the solution, discarding the remaining
chromosomes in the population. The evolutionary algorithm generates new
classifier rules based on the rule strengths acquired during the entire process.

Defuzzification operators and its parameters may be also formulated as an
evolutionary search [46], [40], [5].

4.3 Recent Applications of Evolutionary Fuzzy Systems in Practice

Tsang et al. [73] proposed a fuzzy rule-based system for intrusion detection,
which is evolved from an agent-based evolutionary framework and multi-
objective optimization. The proposed system can also act as a genetic feature
selection wrapper to search for an optimal feature subset for dimensionality
reduction.

Edwards et al. [19] modeled the complex export pattern behavior of multi-
national corporation subsidiaries in Malaysia using a Takagi-Sugeno fuzzy
inference system. The proposed fuzzy inference system is optimized by us-
ing neural network learning and evolutionary computation. Empirical results
clearly show that the proposed approach could model the export behavior
reasonably well compared to a direct neural network approach.

Chen et al. [15] proposed an automatic way of evolving hierarchical Tak-
agi - Sugeno Fuzzy Systems (TS-FS). The hierarchical structure is evolved
using Probabilistic Incremental Program Evolution (PIPE) with specific in-
structions. The fine tuning of the if - then rules parameters encoded in the
structure is accomplished using Evolutionary Programming (EP). The pro-
posed method interleaves both PIPE and EP optimizations. Starting with
random structures and rules parameters, it first tries to improve the hierar-
chical structure and then as soon as an improved structure is found, it further
fine tunes the rules parameters. It then goes back to improve the structure

14 A. Abraham and C. Grosan

and the rules’ parameters. This loop continues until a satisfactory hierarchical
TS-FS model is found or a time limit is reached.

Pawara and Ganguli [61] developed a Genetic Fuzzy System (GFS) for on-
line structural health monitoring of composite helicopter rotor blades. Authors
formulated a global and local GFSs. The global GFS is for matrix cracking
and debonding/delamination detection along the whole blade and the local
GFS is for matrix cracking and debonding/delamination detection in various
parts of the blade.

Chua et al. [16] proposed a GA-based fuzzy controller design for tunnel
ventilation systems. Fuzzy Logic Control (FLC) method has been utilized
due to the complex and nonlinear behavior of the system and the FLC was
optimized using the GA.

Franke et al. [22] presented a genetic - fuzzy system for automatically
generating online scheduling strategies for a complex objective defined by a
machine provider. The scheduling algorithm is based on a rule system, which
classifies all possible scheduling states and assigns a corresponding scheduling
strategy. Authors compared two different approaches. In the first approach,
an iterative method is applied, that assigns a standard scheduling strategy
to all situation classes. In the second approach, a symbiotic evolution varies
the parameter of Gaussian membership functions to establish the different
situation classes and also assigns the appropriate scheduling strategies.

5 Evolutionary Clustering

Clustering means the act of partitioning an unlabeled dataset into groups
of similar objects. Each group, called a ‘cluster’, consists of objects that
are similar between themselves and dissimilar to objects of other groups. A
comprehensive review of the state-of-the-art clustering methods can be found
in [76], [64].

Data clustering is broadly based on two approaches: hierarchical and par-
titional. In hierarchical clustering, the output is a tree showing a sequence
of clustering with each cluster being a partition of the data set. Hierarchical
algorithms can be agglomerative (bottom-up) or divisive (top-down). Agglom-
erative algorithms begin with each element as a separate cluster and merge
them in successively larger clusters. Partitional clustering algorithms, on the
other hand, attempt to decompose the data set directly into a set of disjoint
clusters by optimizing certain criteria. The criterion function may emphasize
the local structure of the data, as by assigning clusters to peaks in the prob-
ability density function, or the global structure. Typically, the global criteria
involve minimizing some measure of dissimilarity in the samples within each
cluster, while maximizing the dissimilarity of different clusters. The advan-
tages of the hierarchical algorithms are the disadvantages of the partitional
algorithms and vice versa.

Engineering Evolutionary Intelligent Systems 15

Clustering can also be performed in two different modes: crisp and fuzzy.
In crisp clustering, the clusters are disjoint and non-overlapping in nature.
Any pattern may belong to one and only one class in this case. In case of
fuzzy clustering, a pattern may belong to all the classes with a certain fuzzy
membership grade.

One of the widely used clustering methods is the fuzzy c-means (FCM)
algorithm developed by Bezdek [9]. FCM partitions a collection of n vectors
xi, i = 1, 2 . . . , n into c fuzzy groups and finds a cluster center in each group
such that a cost function of dissimilarity measure is minimized. To accom-
modate the introduction of fuzzy partitioning, the membership matrix U is
allowed to have elements with values between 0 and 1. The FCM objective
function takes the form:

J(U, c1, . . . cc) =
c∑

i=1

Ji =
c∑

i=1

n∑
j=1

um
ijd

2
ij (4)

where uij , is a numerical value between [0,1]; ci is the cluster center of fuzzy
group i; dij = ‖ci − xj‖ is the Euclidian distance between ithcluster center and
jth data point; and m is called the exponential weight which influences the
degree of fuzziness of the membership (partition) matrix. Usually a number
of cluster centers are randomly initialized and the FCM algorithm provides
an iterative approach to approximate the minimum of the objective function
starting from a given position and leads to any of its local minima [3]. No guar-
antee ensures that FCM converges to an optimum solution (can be trapped
by local extrema in the process of optimizing the clustering criterion). The
performance is very sensitive to initialization of the cluster centers.

Research efforts have made it possible to view data clustering as an opti-
mization problem. This view offers us a chance to apply EA for evolving the
optimal number of clusters and their cluster centers. The algorithm is initial-
ized by constraining the initial values to be within the space defined by the
vectors to be clustered. An important advantage of the EA is its ability to
cope with local optima by maintaining, recombining and comparing several
candidate solutions simultaneously.

Abraham [3] proposed the concurrent architecture of a fuzzy clustering
algorithm (to discover data clusters) and a fuzzy inference system for Web
usage mining. A hybrid evolutionary FCM approach is proposed in this paper
to optimally segregate similar user interests. The clustered data is then used
to analyze the trends using a Takagi-Sugeno fuzzy inference system learned
using a combination of evolutionary algorithm and neural network learning.

6 Recent Applications of Evolutionary Design
of Complex Paradigms

Park et al. [60] used EA to optimize Hybrid Self-Organizing Fuzzy Polyno-
mial Neural Networks (HSOFPNN)m, which are based on genetically opti-
mized multi-layer perceptrons. The architecture of the resulting HSOFPNN

16 A. Abraham and C. Grosan

combines fuzzy polynomial neurons (FPNs) [57] that are located at the first
layer of the network with polynomial neurons (PNs) forming the remaining
layers of the network. The GA-based design procedure being applied at each
layer of HSOFPNN leads to the selection of preferred nodes of the network
(FPNs or PNs) whose local characteristics (such as the number of input vari-
ables, the order of the polynomial, a collection of the specific subset of input
variables, the number of membership functions for each input variable, and
the type of membership function) can be easily adjusted.

Juang and Chung [39] proposed a recurrent TakagiSugenoKang (TSK)
fuzzy network design using the hybridization of a multi-group genetic algo-
rithm and particle swarm optimization (R-MGAPSO). Both the number of
fuzzy rules and the parameters in a TRFN are designed simultaneously by
R-MGAPSO. In R-MGAPSO, the techniques of variable-length individuals
and the local version of particle swarm optimization are incorporated into a
genetic algorithm, where individuals with the same length constitute the same
group, and there are multigroups in a population.

Aouiti et al. [6] proposed an evolutionary method for the design of beta ba-
sis function neural networks (BBFNN) and beta fuzzy systems (BFS). Authors
used a hierarchical genetic learning model of the BBFNN and the BFS.

Chen at al. [14] introduced a new time-series forecasting model based on
the flexible neural tree (FNT). The FNT model is generated initially as a flexi-
ble multi-layer feed-forward neural network and evolved using an evolutionary
procedure. FNT model could also select the appropriate input variables or
time-lags for constructing a time-series model.

7 Multiobjective Evolutionary Design of Intelligent
Paradigms

Even though some real world problems can be reduced to a matter of single
objective very often it is hard to define all the aspects in terms of a single ob-
jective. In single objective optimization, the search space is often well defined.
As soon as there are several possibly contradicting objectives to be optimized
simultaneously, there is no longer a single optimal solution but rather a whole
set of possible solutions of equivalent quality. When we try to optimize several
objectives at the same time the search space also becomes partially ordered. To
obtain the optimal solution, there will be a set of optimal trade-offs between
the conflicting objectives. A multiobjective optimization problem is defined
by a function f which maps a set of constraint variables to a set of objective
values.

Delgado and Pegalajar [17], developed a multi-objective evolutionary algo-
rithm, which is able to determine the optimal size of recurrent neural networks
for any particular application. Authors analyzed in the case of grammatical
inference: in particular, how to establish the optimal size of a recurrent neural
network in order to learn positive and negative examples in a certain language,

Engineering Evolutionary Intelligent Systems 17

and how to determine the corresponding automaton using a self-organizing
map once the training has been completed.

Serra and Bottura [70] proposed a gain scheduling adaptive control scheme
based on fuzzy systems, neural networks and multiobjective genetic algorithms
for nonlinear plants. A FLC is developed, which is a discrete time version of a
conventional one. Its data base as well as the controller gains are optimally de-
signed by using a genetic algorithm for simultaneously satisfying the overshoot
and settling time minimizations and output response smoothing.

Kelesoglu [47] developed a method for solving fuzzy multiobjective op-
timization of space truss using GA. The displacement, tensile stress, fuzzy
sets, membership functions and minimum size constraints are considered in
formulation of the design problem.

Lin [48] proposed a multiobjective and multistage fuzzy competence set
model using a hybrid genetic algorithm. Author illustrated that the proposed
method can provide a sound fuzzy competence set model by considering the
multiobjective and the multistage situations simultaneously.

Ishibuchi and Nojimaa [38] examined the interpretability-accuracy trade-
off in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based
machine learning (GBML) algorithm which is a hybrid version of Michigan
and Pittsburgh approaches. Each fuzzy rule is represented by its antecedent
fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier,
which is a set of fuzzy rules, is represented as a concatenated integer string
of variable length. The GBML algorithm simultaneously maximizes the accu-
racy of rule sets and minimizes their complexity. The accuracy is measured
by the number of correctly classified training patterns while the complexity is
measured by the number of fuzzy rules and/or the total number of antecedent
conditions of fuzzy rules.

Garcia-Pedrajas et al. [25] developed a cooperative coevolutive model
for the evolution of neural network topology and weights, called MOBNET.
MOBNET evolves subcomponents that must be combined in order to form a
network, instead of whole networks. The subcomponents in a cooperative co-
evolutive model must fulfill different criteria to be useful, these criteria usually
conflict with each other. The problem of evaluating the fitness on an individ-
ual based on many criteria that must be optimized together is approached as
a multi-criteria optimization problems.

Wang et al. [74] proposed a multiobjective hierarchical genetic algorithm
(MOHGA) to extract interpretable rule-based knowledge from data. In order
to remove the redundancy of the rule base proactively, authors applied an
interpretability-driven simplification method. Fuzzy clustering is used to gen-
erate an initial rule-based model and then MOHGA and the recursive least
square method are used to obtain the optimized fuzzy models.

Pettersson et al. [63] used an evolutionary multiobjective technique in the
training process of a feed forward neural network, using noisy data from an
industrial iron blast furnace. The number of nodes in the hidden layer, the
architecture of the lower part of the network, as well as the weights used in

18 A. Abraham and C. Grosan

them were kept as variables, and a Pareto front was effectively constructed
by minimizing the training error along with the network size.

8 Conclusions

This Chapter presented the various architectures for designing intelligent
paradigms using evolutionary algorithms. The main focus was on designing
evolutionary neural networks and evolutionary fuzzy systems. We also illus-
trated some of the recent generic evolutionary design architectures reported
in the literature including fuzzy neural networks and multiobjective design
strategies.

References

1. Abraham A, Grosan C, Han SY, Gelbukh A (2005) Evolutionary multiobjective
optimization approach for evolving ensemble of intelligent paradigms for stock
market modeling. In: Alexander Gelbukh et al. (eds.) 4th Mexican international
conference on artificial intelligence, Mexico, Lecture notes in computer science,
Springer, Berlin Heidelberg New York, pp 673–681

2. Abraham, A (2004) Meta-learning evolutionary artificial neural networks.
Neurocomput J 56c:1–38

3. Abraham A (2003) i-Miner: A Web Usage Mining Framework Using Hierarchi-
cal Intelligent Systems, The IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE’03, IEEE Press, ISBN 0780378113, pp 1129–1134

4. Abraham A, Ramos V (2003), Web Usage Mining Using Artificial Ant Colony
Clustering and Genetic Programming, 2003 IEEE Congress on Evolutionary
Computation (CEC2003), Australia, IEEE Press, ISBN 0780378040, pp 1384–
1391, 2003

5. Abraham A (2003), EvoNF: A Framework for Optimization of Fuzzy Infer-
ence Systems Using Neural Network Learning and Evolutionary Computation,
The 17th IEEE International Symposium on Intelligent Control, ISIC’02, IEEE
Press, ISBN 0780376218, pp 327–332

6. Aouiti C, Alimi AM, Karray F, Maalej A (2005) The design of beta basis func-
tion neural network and beta fuzzy systems by a hierarchical genetic algorithm.
Fuzzy Sets Syst 154(2):251–274

7. Bhattacharya A, Abraham A, Vasant P, Grosan C (2007) Meta-learning evo-
lutionary artificial neural network for selecting flexible manufacturing systems
under disparate level-of-satisfaction of decision maker. Int J Innovative Comput
Inf Control 3(1):131–140

8. Baxter J (1992) The evolution of learning algorithms for artificial neural
networks, Complex systems, IOS, Amsterdam, pp 313–326

9. Bezdek, JC (1981) Pattern recognition with fuzzy objective function algorithms.
Plenum, New York

10. Boers EJW, Borst MV, Sprinkhuizen-Kuyper IG (1995) Artificial neural nets
and genetic algorithms. In: Pearson DW et al. (eds.) Proceedings of the
international conference in Ales, France, Springer, Berlin Heidelberg New York,
pp 333–336

Engineering Evolutionary Intelligent Systems 19

11. Cai X, Zhang N, Venayagamoorthy GK, Wunsch II DC (2007) Time series pre-
diction with recurrent neural networks trained by a hybrid PSOEA algorithm.
Neurocomputing 70(13–15):2342–2353

12. Castillo PA, Merelo JJ, Arenas MG, Romero G (2007) Comparing evolutionary
hybrid systems for design and optimization of multilayer perceptron structure
along training parameters. Inf Sci 177(14):2884–2905

13. Capi G, Doya K (2005), Evolution of recurrent neural controllers using an
extended parallel genetic algorithm. Rob Auton Syst 52(2–3):148–159

14. Chen Y, Yang B, Dong J, Abraham A (2005) Time-series forecasting using
flexible neural tree model. Inf Sci 174(3–4):219–235

15. Chen Y, Yang B, Abraham A, Peng L (2007) Automatic design of hierarchical
takagi-sugeno fuzzy systems using evolutionary algorithms. IEEE Trans Fuzzy
Syst 15(3):385–397

16. Chu B, Kim D, Hong D, Park J, Chung JT, Chung JH, Kim TH (2008) GA-based
fuzzy controller design for tunnel ventilation systems, Journal of Automation in
Construction, 17(2):130–136

17. Delgado M, Pegalajar MC (2005) A multiobjective genetic algorithm for obtain-
ing the optimal size of a recurrent neural network for grammatical inference.
Pattern Recognit 38(9):1444–1456

18. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory.
In: Proceedings of 6th Internationl Symposium on Micro Machine and Human
Science, Nagoya, Japan, IEEE Service Center, Piscataaway, NJ, pp 39–43

19. Edwards R, Abraham A, Petrovic-Lazarevic S (2005) Computational intelli-
gence to model the export behaviour of multinational corporation subsidiaries
in Malaysia. Int J Am Soc Inf Sci Technol (JASIST) 56(11):1177–1186

20. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution. Wiley, USA

21. Fontanari JF, Meir R (1991) Evolving a learning algorithm for the binary
perceptron, Network, vol. 2, pp 353–359

22. Franke C, Hoffmann F, Lepping J, Schwiegelshohn U (2008) Development of
scheduling strategies with Genetic Fuzzy systems, Applied Soft Computing
Journal, 8(1):706–721

23. Frean M (1990), The upstart algorithm: a method for constructing and training
feed forward neural networks. Neural Comput 2:198–209

24. Fullmer B, Miikkulainen R (1992) Using marker-based genetic encoding of neu-
ral networks to evolve finite-state behaviour. In: Varela FJ, Bourgine P (eds.)
Proceedings of the first European conference on artificial life, France, pp 255–262

25. Garca-Pedrajas N, Hervs-Martnez C, Muoz-Prez J (2002) Multi-objective co-
operative coevolution of artificial neural networks (multi-objective cooperative
networks). Neural Netw 15(10):1259–1278

26. Grau F (1992)Genetic synthesis of boolean neural networks with a cell rewrit-
ing developmental process. In: Whitely D, Schaffer JD (eds.) Proceedings of
the international workshop on combinations of genetic algorithms and neural
Networks, IEEE Computer Society Press, CA, pp 55–74

27. Gonzalez A, Herrera F (1997) Multi-stage genetic fuzzy systems based on the
iterative rule learning approach. Mathware Soft Comput 4(3)

28. Grosan C, Abraham A, Nicoara M (2005) Search optimization using hybrid
particle sub-swarms and evolutionary algorithms. Int J Simul Syst, Sci Technol
UK 6(10–11):60–79

20 A. Abraham and C. Grosan

29. Gutierrez G, Isasi P, Molina JM, Sanchis A, Galvan IM (2001) Evolutionary cel-
lular configurations for designing feedforward neural network architectures, con-
nectionist models of neurons. In: Jose Mira et al. (eds.) Learning processes, and
artificial intelligence, Springer, Berlin Heidelberg New York, LNCS 2084, pp
514–521

30. Harp SA, Samad T, Guha A (1989) Towards the genetic synthesis of neural
networks. In: Schaffer JD (ed.) Proceedings of the third international conference
on genetic algorithms and their applications, Morgan Kaufmann, CA, pp 360–
369

31. Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy logic controllers by
genetic algorithms. Int J Approximate Reasoning 12:299–315

32. Herrera F, Lozano M, Verdegay JL (1995) Tackling fuzzy genetic algorithms.
In: Winter G, Periaux J, Galan M, Cuesta P (eds.) Genetic algorithms in
engineering and computer science, Wiley, USA, pp 167–189

33. Hoffmann F (1999) The Role of Fuzzy Logic in Evolutionary Robotics. In:
Saffiotti A, Driankov D (ed.) Fuzzy logic techniques for autonomous vehicle
navigation, Springer, Berlin Heidelberg New York

34. Holland JH (1975) Adaptation in Natural and Artificial Systems, The University
of Michigan Press, Ann Arbor, MI

35. Holland JH, Reitman JS (1978), Cognitive systems based on adaptive al-
gorithms. In: Waterman DA, Hayes-Roth F (eds.) Pattern-directed inference
systems. Academic, San Diego, CA

36. Holland, JH (1980) Adaptive algorithms for discovering and using general
patterns in growing knowledge bases. Int J Policy Anal Inf Sys 4(3):245–268

37. Hui LY (2007) Evolutionary neural network modeling for forecasting the field
failure data of repairable systems. Expert Syst Appl 33(4):1090–1096

38. Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of
fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J
Approximate Reason 44(1):4–31

39. Juang CF, Chung IF (2007) Recurrent fuzzy network design using hybrid
evolutionary learning algorithms, Neurocomputing 70(16–18):3001–3010

40. Jin Y, von Seelen W (1999) Evaluating flexible fuzzy controllers via evolution
strategies. Fuzzy Sets Syst 108(3):243–252

41. Kennedy J, Eberhart RC (1995). Particle swarm optimization. In: Proceedings of
IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–
1948

42. Kim KJ, Cho SB (2006) Evolved neural networks based on cellular automata
for sensory-motor controller. Neurocomputing 69(16–18):2193–2207

43. Kim KJ (2006) Artificial neural networks with evolutionary instance selection
for financial forecasting. Expert Syst Appl 30(3):519–526

44. Kitano H (1990) Designing neural networks using genetic algorithms with graph
generation system. Complex Syst 4(4):461–476

45. Koza JR (1992) Genetic programming: on the programming of computers by
means of natural selection, MIT, Cambridge, MA

46. Kosinski W (2007) Evolutionary algorithm determining defuzzyfication opera-
tors. Eng Appl Artif Intell 20(5):619–627

47. Kelesoglu O (2007) Fuzzy multiobjective optimization of truss-structures using
genetic algorithm. Adv Eng Softw 38(10):717–721

Engineering Evolutionary Intelligent Systems 21

48. Lin CM (2006) Multiobjective fuzzy competence set expansion problem by
multistage decision-based hybrid genetic algorithms. Appl Math Comput
181(2):1402–1416

49. Liu Y, Yao X (1996) Evolutionary design of artificial neural networks with dif-
ferent node transfer functions. In: Proceedings of the Third IEEE International
Conference on Evolutionary Computation, Nagoya, Japan, pp 670–675

50. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a
fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

51. Marwala T (2007) Bayesian training of neural networks using genetic program-
ming. Pattern Recognit Lett 28(12):1452–1458

52. Mascioli F, Martinelli G (1995) A constructive algorithm for binary neural
networks: the oil spot algorithm. IEEE Trans Neural Netw 6(3):794–797

53. Merril JWL, Port RF (1991) Fractally configured neural networks. Neural Netw
4(1):53–60

54. Moriarty DE, Miikkulainen R (1997) Forming neural networks through efficient
and adaptive coevolution. Evol Comput 5:373–399

55. Mohammadian M, Stonier RJ (1994) Generating fuzzy rules by genetic algo-
rithms. In: Proceedings of 3rd IEEE International Workshop on Robot and
Human Communication, Nagoya, pp 362–367

56. Muhlenbein H, Paab G (1996) From recombination of genes to the estimation of
distributions I. Binary parameters. In: Lecture notes in computer science 1411:
parallel problem solving from nature-PPSN IV, pp 178–187

57. Oh SK, Pedrycz W, Roh SB (2006), Genetically optimized fuzzy polynomial
neural networks with fuzzy set-based polynomial neurons. Inf Sci 176(23):3490–
3519

58. Omlin CW, Giles CL (1993) Pruning recurrent neural networks for improved
generalization performance. Techincal report No 93-6, CS Department, Rensse-
laer Institute, Troy, NY

59. Cordon O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic fuzzy systems:
evolutionary tuning and learning of fuzzy knowledge bases, World Scientific,
Singapore, ISBN 981-02-4016-3, p 462

60. Park HS, Pedrycz W, Oh SK (2007) Evolutionary design of hybrid self-
organizing fuzzy polynomial neural networks with the aid of information
granulation. Expert Syst Appl 33(4):830–846

61. Pawar PM, Ganguli R (2007) Genetic fuzzy system for online structural health
monitoring of composite helicopter rotor blades. Mech Syst Signal Process
21(5):2212–2236

62. Pedrycz W (ed.) (1997), Fuzzy evolutionary computation, Kluwer Academic
Publishers, Boston, ISBN 0-7923-9942-0, p 336

63. Pettersson F, Chakraborti N, Saxen H (2007) A genetic algorithms based multi-
objective neural net applied to noisy blast furnace data. Appl Soft Comput
7(1):387–397

64. Rokach L, Maimon O (2005) Clustering methods, data mining and knowledge
discovery handbook, Springer, Berlin Heidelberg New York, pp 321–352

65. Sexton R, Dorsey R, Johnson J (1999) Optimization of neural networks: a com-
parative analysis of the genetic algorithm and simulated annealing. Eur J Oper
Res 114:589–601

66. Stepniewski SW, Keane AJ (1997) Pruning back-propagation neural networks
using modern stochastic optimization techniques. Neural Comput Appl 5:76–98

22 A. Abraham and C. Grosan

67. Storn R, Price K (1997) Differential evolution – a simple and efficient adap-
tive scheme for global optimization over continuous spaces. J Global Optim
11(4):341–359

68. Rechenberg I, (1973) Evolutions strategie: optimierung technischer Systeme
nach Prinzipien der biologischen Evolution, Fromman-Holzboog, Stuttgart

69. Schwefel HP (1977) Numerische Optimierung von Computermodellen mittels
der Evolutionsstrategie, Birkhaeuser, Basel

70. Serra GLO, Bottura CP (2006) Multiobjective evolution based fuzzy PI con-
troller design for nonlinear systems. Eng Appl Artif Intell 19(2):157–167

71. Smith SF (1980) A learning system based on genetic adaptive algorithms. PhD
thesis, University of Pittsburgh

72. Takagi T, Sugeno M (1983) Derivation of fuzzy logic control rules from human
operators control actions. In: Proceedings of the IFAC symposium on fuzzy
information representation and decision analysis, pp 55–60

73. Tsang CH, Kwong S, Wang A (2007) Genetic-fuzzy rule mining approach
and evaluation of feature selection techniques for anomaly intrusion detection.
Pattern Recognit 40(9):2373–2391

74. Wang H, Kwong S, Jin Y, Wei W, Man K (2005) A multi-objective hierarchical
genetic algorithm for interpretable rule-based knowledge extraction. Fuzzy Sets
Syst 149(1):149–186

75. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization.
IEEE Trans Evol Comput 1(1):67–82

76. Xu R, Wunsch D, (2005) Survey of clustering algorithms. IEEE Trans Neural
Netw 16(3):645–678

77. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):423–1447

