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Abstract

The social foraging behavior of Escherichia coli bacteria has been used to solve optimization problems. This paper pro-
poses a hybrid approach involving genetic algorithms (GA) and bacterial foraging (BF) algorithms for function optimiza-
tion problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is
studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the lifetime of the bacteria.
The proposed algorithm is then used to tune a PID controller of an automatic voltage regulator (AVR). Simulation results
clearly illustrate that the proposed approach is very efficient and could easily be extended for other global optimization
problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade, approaches based on genetic algorithms (GA) have received increased attention from the
academic and industrial communities for dealing with optimization problems that have been shown to be
intractable using conventional problem solving techniques [10,13,14,20,25,31,32,34]. A typical task of a GA
is to find the best values of a predefined set of free parameters associated with either a process model or a con-
trol vector. System identification is one of the active areas of GA research [3,4,33,40,41]. Recent surveys of
genetic algorithms, relating to improvements in the search process with respect to control system engineering
problems, can be found in [33,41,42]. GA has also been used extensively to optimize nonlinear systems. A large
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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volume of research is focused on the design of fuzzy controllers using evolutionary algorithm approaches. GA
is often used to develop the if–then linguistic knowledge base of the controlled process, and to fine tune the
fuzzy membership function parameters [1].

Usually, a possible solution to a specific problem is encoded as an individual (or a chromosome), which
consists of a group of genes. Each individual represents a point in the search space and a possible solution
to the problem can be formulated. A population consists of a finite number of individuals and each individual
is decided by a fitness evaluation. Using this fitness value and suitable genetic operators, a new population is
generated iteratively, with each iteration referred to as a generation. The GA uses basic genetic operators such
as crossover and mutation to produce the genetic composition of a population. The crossover operator pro-
duces two offspring (new candidate solutions) by recombining the information from two parents. As the muta-
tion operation is a random alteration of some gene values in an individual, the allele of each gene is a
candidate for mutation, and its applicability is determined by the mutation probability. In the literature, much
research has gone into the enhancement of conventional genetic algorithms [2,5,21].

In the past, some researchers have focused on using hybrid genetic algorithm approaches for optimization
problems. Buczak and Uhrig [7] proposed a novel hierarchical fuzzy-genetic information fusion technique.
The combined reasoning takes place by means of fuzzy aggregation functions, capable of combining
information by compensatory connectives that better mimic the human reasoning process than union and
intersection, employed in traditional set theories. The parameters of the connectives are found by genetic
algorithms.

Gómez-Skarmeta et al. [19] evaluated the use of different methods from the fuzzy modeling field for clas-
sification tasks and the potential of their integration in producing better classification results. The methods
considered, approximate in nature, study the integration of techniques with an initial rule generation step
and a following rule tuning approach using different evolutionary algorithms.

In order to discover classification rules, Carvalho and Freitas [8] proposed a hybrid decision tree/genetic
algorithm method. The central idea of this hybrid method involves the concept of small disjunctions in data
mining. The authors developed two genetic algorithms specifically designed for discovering rules in examples
belonging to small disjunctions, whereas a conventional decision tree algorithm is used to produce rules cov-
ering examples belonging to large disjunctions. Lee and Lee [30] proposed a hybrid search algorithm combin-
ing the advantages of genetic algorithms and ant colony optimization (ACO) that can explore the search space
and exploit the best solutions.

Constraint handling is one of the major concerns when applying genetic algorithms to solve constrained
optimization problems. Chootinan and Chen [9] proposed gradient information, derived from the constraint
set, to systematically repair infeasible solutions. The proposed repair procedure is embedded in a simple GA as
a special operator. Haouari and Siala [22] presented a lower bound and a genetic algorithm for the prize col-
lecting Steiner tree problem. The lower bound is based on a Lagrangian decomposition of a minimum span-
ning tree formulation of the problem.

Natural selection tends to eliminate animals with poor foraging strategies through methods for locating,
handling, and ingesting food and favors the propagation of genes of those animals that have successful
foraging strategies, since they are more likely to obtain reproductive success [36,37,12,35]. After many gen-
erations, poor foraging strategies are either eliminated or re-structured into good ones. Since a foraging
organism/animal takes actions to maximize the energy utilized per unit time spent foraging, considering
all the constraints presented by its own physiology, such as sensing and cognitive capabilities and environ-
mental parameters (e.g., density of prey, risks from predators. physical characteristics of the search area), nat-
ural evolution could lead to optimization. It is essentially this idea that could be applied to complex
optimization problems. The optimization problem search space could be modeled as a social foraging envi-
ronment where groups of parameters communicate cooperatively for finding solutions to difficult engineering
problems [27].

The rest of the paper is organized as follows. Section 2 provides a brief literature overview of the bacterial
foraging algorithm followed by the proposed hybrid approach based on BF (Bacterial Foraging) and GA
(genetic algorithms). The proposed algorithm is validated using four test functions and for PID controller tun-
ing [18,29,17] in Section 3. Some conclusions are also provided towards the end.
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2. Hybrid system consisting of genetic algorithm and bacteria foraging

2.1. Genetic algorithms

In nature, evolution is mostly determined by natural selection, where individuals that are better are more
likely to survive and propagate their genetic material. The encoding of genetic information (genome) is done in
a way that admits asexual reproduction which results in offspring’s that are genetically identical to the parent.
Sexual reproduction allows some exchange and re-ordering of chromosomes, producing offspring that contain
a combination of information from each parent. This is the recombination operation, which is often referred
to as crossover because of the way strands of chromosomes crossover during the exchange. Diversity in the
population is achieved by mutation. A typical genetic algorithm procedure takes the following steps: A pop-
ulation of candidate solutions (for the optimization task to be solved) is initialized. New solutions are created
by applying genetic operators (mutation and/or crossover). The fitness (how good the solutions are) of the
resulting solutions are evaluated and suitable selection strategy is then applied to determine which solutions
will be maintained into the next generation. The procedure is then iterated.

Genetic algorithms are ubiquitous nowadays, having been successfully applied to numerous problems from
different domains, including optimization, automatic programming, machine learning, operations research,
bioinformatics, and social systems.

2.2. Bacterial foraging algorithm

Recently, search and optimal foraging of bacteria have been used for solving optimization problems [16].
To perform social foraging, an animal needs communication capabilities and over a period of time it gains
advantages that can exploit the sensing capabilities of the group. This helps the group to predate on a larger
prey, or alternatively, individuals could obtain better protection from predators while in a group.

2.2.1. Overview of chemotactic behavior of Escherichia coli

In our research, we considered the foraging behavior of E. coli, which is a common type of bacteria [36,37].
Its behavior and movement comes from a set of six rigid spinning (100–200 r.p.s) flagella, each driven as
a biological motor. An E. coli bacterium alternates through running and tumbling. Running speed is
10–20 lm/s, but they cannot swim straight. The chemotactic actions of the bacteria are modeled as follows:

• In a neutral medium, if the bacterium alternatively tumbles and runs, its action could be similar to search.
• If swimming up a nutrient gradient (or out of noxious substances) or if the bacterium swims longer (climb

up nutrient gradient or down noxious gradient), its behavior seeks increasingly favorable environments.
• If swimming down a nutrient gradient (or up noxious substance gradient), then search action is like avoid-

ing unfavorable environments.

Therefore, it follows that the bacterium can climb up nutrient hills and at the same time avoids noxious
substances. The sensors it needs for optimal resolution are receptor proteins which are very sensitive and pos-
sess high gain. That is, a small change in the concentration of nutrients can cause a significant change in
behavior. This is probably the best-understood sensory and decision-making system in biology [16].

Mutations in E. coli affect the reproductive efficiency at different temperatures, and occur at a rate of about
10�7 per gene per generation. E. coli occasionally engages in a conjugation that affects the characteristics of the
population. There are many types of taxis that are used in bacteria such as, aerotaxis (attracted to oxygen),
phototaxis (light), thermotaxis (temperature), magnetotaxis (magnetic lines of flux) and some bacteria can
change their shape and number of flagella (based on the medium) to reconfigure in order to ensure efficient
foraging in a variety of media. Bacteria could form intricate stable spatio-temporal patterns in certain semi-
solid nutrient substances and they can survive through a medium if placed together initially at its center.
Moreover, under certain conditions, they will secrete cell-to-cell attractant signals so that they will group
and protect each other.



D.H. Kim et al. / Information Sciences 177 (2007) 3918–3937 3921
2.2.2. The optimization function for the hybrid genetic algorithm–bacterial foraging (GA–BF) algorithm

The main goal of the Hybrid GA–BF based algorithm is to find the minimum of a function P ð/Þ;/ 2 Rn,
which is not in the gradient $P(/). Here, / is the position of a bacterium, and P(/) is an attractant–repellant
profile. That is, where nutrients and noxious substances are located, P < 0, P = 0 and P > 0 represents the
presence of nutrients. A neutral medium, and the presence of noxious substances, respectively can be defined
by
Hðj; k; lÞ ¼ f/xðj; k; lÞjx ¼ 1; 2; . . . ;Ng: ð1Þ

Eq. (1) represents the position of each member in the population of N bacteria at the jth chemotactic step, kth
reproduction step, and lth elimination–dispersal event. Let P ðx; j; k; lÞ denote the cost at the location of the ith
bacterium at position
/xði; j; kÞ 2 Rn and /x ¼ ðiþ 1; j; kÞ ¼ /xði; j; kÞ þ CðxÞuðiÞ; ð2Þ

so that C(i) > 0 is the step size taken in the random direction specified by the tumble. If at /x(i + 1, j,k) the cost
P ði; jþ 1; k; lÞ is better (lower) than at /xði; j; kÞ, then another chemotactic step of size C(x) in this same direc-
tion will be taken and repeated up to a maximum number of Ns steps. Ns is the length of the lifetime of the
bacteria measured by the number of chemotactic steps. Function P i

cð/Þ, i = 1,2 , . . . ,S, to model the cell-to-cell
signaling via an attractant and a repellant is represented by [23,39,36,37]
P cð/Þ ¼
XN
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; ð3Þ
where / = [/1, . . . ,/p]T is a point on the search space, Lattract is the depth of the attractant released by the cell
and dattract is a measure of the width of the attractant signal. Krepellant = Lattract is the height of the repellant
effect magnitude, and dattract is a measure of the width of the repellant. The expression Pc(/) means that its
value does not depend on the nutrient concentration at position /. That is, a bacterium with high nutrient
concentration secretes stronger attractant than one with low nutrient concentration. The model uses the func-
tion Par(/) to represent the environment-dependent cell-to-cell signaling as
P arð/Þ ¼ expðT � P ð/ÞÞP cð/Þ; ð3aÞ

where T is a tunable parameter. By considering the minimization of P ði; j; k; lÞ þ P arð/iðj; k; lÞÞ, the cells try to
find nutrients, avoid noxious substances, and at the same time try to move toward other cells, but not too close
to them. The function Par(/

i(j,k, l)) implies that, with T being constant, the smaller the value of P(/), the lar-
ger Par(/) and thus the stronger the attraction, which is intuitively reasonable. For tuning the parameter T, it
is normally found that, when T is very large, Par(/) is much larger than J(/), and thus the profile of the search
space is dominated by the chemical attractant secreted by E. coli. On the other hand, if T is very small, then
Par(/) is much smaller than P(/), and it is the effect of the nutrients that dominates. In Par(/), the scaling
factor of Pc(/) is given as in exponential form.

The algorithm to search optimal values of parameters is described as follows:

[Step 1] Initialize parameters n;N ;NC;Ns;N re;N ed; P ed, CðiÞði ¼ 1; 2; . . . ;NÞ;/i.

where,
n: Dimension of the search space,
N: The number of bacteria in the population,
NC: Chemotactic steps,
Nre: The number of reproduction steps,
Ned: The number of elimination–dispersal events,
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Ped: Elimination–dispersal with probability,
C(i): The size of the step taken in the random direction specified by the tumble.

[Step 2] Elimination–dispersal loop: l = l+1.
[Step 3] Reproduction loop: k = k+1.
[Step 4] Chemotaxis loop: j = j+1.

[substep a] For i = 1,2, . . . ,N, take a chemotactic step for bacterium i as follows.
[substep b] Compute fitness function, ITSE ði; j; k; lÞ.
[substep c] Let ITSElast = ITSE(i, j,k, l) to save this value since we may find a better cost via a

run.
[substep d] Tumble: generate a random vector D(i) 2 Rn with each element Dm(i), m = 1,2, . . . ,p, a

random number on [�1,1].
[substep e] Move: Let
/xðiþ 1; j; kÞ ¼ /xði; j; kÞ þ CðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT ðiÞDðiÞ

p :
This results in a step of size C(i) in the direction of the tumble for bacterium i.
[substep f] Compute ITSE(i, j + 1,k, l).
[substep g] Swim.

(i) Let m = 0 (counter for swim length).

(ii) While m < Ns (if have not climbed down too long).

• Let m = m + 1.
• If ITSEði; jþ 1; k; lÞ <ITSElast(if doing better), let ITSElast = ITSE ði; jþ 1; k; lÞ and let
/xðiþ 1; j; kÞ ¼ /xðiþ 1; j; kÞ þ CðiÞ DðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT ðiÞDðiÞ

p

and use this /xðiþ 1; j; kÞ to compute the new ITSEði; jþ 1; k; lÞ as we did in [substep f].

• Else, let m = Ns. This is the end of the while statement.

[substep h] Go to next bacterium (i, 1) if i 5 N (i.e., go to [substep b] to process the next bacterium).

[Step 5] If j < NC, go to step 3. In this case, continue chemotaxis, since the life of the bacteria is not
over.

[Step 6] Reproduction:
[substep a] For the given k and l, and for each i = 1,2 , . . . ,N, let
ITSEi
health ¼

XN cþ1

j¼1

ITSEði; j; k; lÞ
be the health of the bacterium i (a measure of how many nutrients it got over its lifetime and how successful it
was at avoiding noxious substances). Sort bacteria and chemotactic parameters C(i) in order of ascending cost
ITSEhealth (higher cost means lower health).
[substep b] The Sr bacteria with the highest ITSEhealth values die and the remaining Sr bacteria with
the best values split (this process is performed by the copies that are made are placed at
the same location as their parent).

[Step 7] If k < Nre, go to [step 3]. In this case, we have not reached the number of specified reproduction steps,
so we start the next generation of the chemotactic loop.

[Step 8] Elimination–dispersal: For i = 1,2 , . . . ,N, with probability Ped, eliminate and disperse each bacte-
rium, which results in keeping the number of bacteria in the population constant. To do this, if a bac-
terium is eliminated, simply disperse one to a random location on the optimization domain. If
l < Ned, then go to [step 2]; otherwise end.
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3. Experiment results using test functions

This section illustrates some comparisons between the proposed GA–BF (genetic algorithm–Bacteria For-
aging algorithm) and the conventional SGA (simple genetic algorithm) using some test functions as depicted in
Table 1. Table 1 also illustrates the initial conditions of objective values, parameter values, Chemotactic Steps
(CS), total number of chemotactic reaction of bacteria, step sizes, basic unit for movement of bacteria the
number of critical reaction (N), the number of bacteria (S), generations (G), mutation (Mu), and crossover
(Cr).

3.1. Mutation operation in GA–BF

Dynamic mutation [33] is used in the proposed GA–BF algorithm
Table
Initial

Test fu

F 1ðxÞ ¼
F 2ðxÞ ¼
F 3 ¼

P
F 4 ¼

P

xj ¼
~xj þ Dðk; xðUÞj � ~xjÞ; s ¼ 0;

~xj � Dðk;~xj � xðLÞj Þ; s ¼ 1;

(
ð4Þ
where the random constant s becomes 0 or 1 and D(k,y) is given as
Dðk; yÞ ¼ y � g � 1� k
z

� �A

: ð5Þ
Here, g = 0 or 1 randomly and z is the maximum number of generations as defined by the user.

3.2. Crossover operation in GA–BF

A modified simple crossover [34] is used for the BF–GA algorithm using
~xu
j ¼ k�xv

j þ ð1� kÞ�xu
j ; ð6aÞ

~xv
j ¼ k�xu

j þ ð1� kÞ�xv
j ; ð6bÞ
where �xu
j , �xv

j refers to parent’s generations and ~xu
j , ~xv

j refers to offspring’s generations and j is the chromosome of
jth step and k is the multiplier.

3.3. Performance variation for different step sizes

Step size here refers to the moving distance per step of the bacteria. For performance comparison the fol-
lowing test function (F) is used as depicted in Fig. 1:
F ðxÞ ¼
X3

i¼1

x2
i ; �5:12 6 x1; x2; x3 6 5:11: ð7Þ
Figs. 2a, 2b and Table 2 illustrate the performance of the GA–BF algorithm for 300 generations. As evident
from the results for bigger step size, the convergence is faster. Table 1 illustrates the empirical performance.
1
conditions for test functions and variation of different parameters

nction Range Genetic algorithm parameters Bacteria foraging parameters

xðLÞi xðUÞi G Mu Cr CS Step size Ns SP3
i¼1x2

i �5.12 5.11 20 300 0.9 0.1 1000 1e�007 3 10

100ðx2
1 � x2Þ2 þ ð1� x1Þ2 �2.048 2.047 20 600 0.9 0.1 1000 1e�007 3 10

5
i¼1½xi� �5.12 5.12 20 180 0.9 0.1 1000 1e�007 3 10
30
i¼1ix4

i þ Nð0; 1Þ �1.28 1.27 20 300 0.9 0.1 1000 1e�007 3 10



Fig. 1. Contour of test function F1.

Fig. 2a. Performance value for the three different step sizes for the first 50 generations.

Fig. 2b. Performance value for the three different step sizes for generations 270–300.

Table 2
Parameter values for various step sizes

Step size x1 x2 x3 Optimal objective function Average objective function

1.0e�6 3.87E�13 6.60E�13 2.92E�07 �5.43E�07 �8.98E�08
1.0e�7 2.85E�14 2.34E�13 �5.52E�08 1.50E�07 �5.45E�08
1.0e�8 5.01E�16 1.43E�15 �1.70E�08 �1.44E�08 �2.31E�09
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3.4. Performance for different chemotactic steps of GA–BF

Figs. 2a, 2b and 3 and Table 3 illustrate the relationship between the objective function and the number of
generations for different chemotactic steps. As evident, when the chemotactic step is smaller, the objective
function converges faster.

3.5. Performance for different life time Ns

Figs. 4a and 4b illustrate the characteristics between objective function and the number of generations for
different life time Ns of the bacteria.
Fig. 3. Performance value for different chemotactic step for generations 270–300.

Table 3
Variation of objective function for different chemotactic steps

Chemotactic step size x1 x2 x3 Optimal objective function value Average objective function value

100 �9.32E�08 3.78E�07 �8.57E�09 1.52E�13 1.59E�13
500 2.97E�08 1.92E�08 2.32E�08 1.79E�15 3.26E�15

1000 �1.70E�08 �1.44E�08 �2.31E�09 5.01E�16 1.43E�15

Fig. 4a. Performance value for different lifetime Ns for the first 70 generations.



Fig. 4b. Performance value for different lifetime Ns for generations 270–300.

Fig. 5a. Convergence of GA and GA–BF for stepsize = 1 · 10�5 during the first 70 generations.

Fig. 5b. Tuning of parameters during 70 generations.
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3.6. Performance of GA–BF for test functions

3.6.1. Test function: F1

Figs. 5a and 5c illustrate the performance of GA and GA–BF with step size = 1 · 10�5 for 70 and 300 gen-
erations, respectively. As evident from Figs. 5a and 5c the hybrid GA–BF approach could search the optimal



Table 4
Performance of GA and GA–BF

x1 x2 x3 Optimal objective function Average objective function

GA 7.22E�08 5.07E�08 �9.43E�09 7.87E�15 8.03E�15
GA–BF �1.70E�08 �1.44E�08 �2.31E�09 5.01E�16 1.43E�15

Fig. 5d. Performance of GA and GA–BF for stepsize = 1 · 10�5 during generations 270–300.

Fig. 5c. Convergence of GA and GA–BF for stepsize = 1 · 10�5 during 300 generations.
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solutions earlier (10 generations) compared to a direct GA approach. Fig. 5b reveals that the GA–BF could
converge faster than conventional GA during the final few iterations. Fig. 5d depicts how the parameters are
optimized during the 27–300 generations by the GA and GA–BF for stepsize = 1 · 10�5. Table 4 depicts the
final parameters values obtained using GA and GA–BF algorithms. Fig. 5e represents the characteristic of
optimal variables during the 100 generations.

3.6.2. Test function: F2� �2

F 2ðxÞ ¼ 100 x2

1 � x2 þ 1� x1ð Þ2:
Fig. 6a illustrates the contour of this function at x ¼ ½ 1 1 �T. Fig. 6b represents the performance charac-
teristics of the conventional GA and the GA–BF algorithm.

From Fig. 6b, it is evident that the proposed GA–BF algorithm converges to the optimal solution much
faster than the conventional GA approach. Table 5 illustrates the various empirical results obtained using
GA and GA–BF approaches.



Fig. 5e. Tuning of parameters for stepsize = 1 · 10�5 during 100 generations.

Fig. 6a. Contour of test function (F2).

Fig. 6b. Performance of GA and GA–BF during the first 70 generations.

Table 5
GA and GA–BF performance for function F2

x1 x2 Optimal objective value Average objective value

GA 0.001967 0.001967 1.0443267 1.0907699
BF–GA 5.12E�09 5.17E�09 0.9999285 0.9998567
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3.6.3. Test function: F3

5

F 3 ¼
X
i¼1

½xi�:
This function has minimum = �30 at x ¼ ½�5:12;�5:12;�5:12;�5:12;�5:12�. Fig. 7a illustrates the con-
tour map for this function and Figs. 7b–7d represent the various results obtained for F3 and Table 6 illustrates
the empirical performance.

3.6.4. Test function: F4

Function F 4 ¼
P30

i¼1ix4
i þ Nð0; 1Þ is used to compare the conventional GA and the proposed system GA–

BF. Figs. 8a illustrates the contour map of this function. Figs. 8b, 8c depict the performance of GA and
GA–BF method for different generation sizes. Figs. 8b and 8c illustrate that the proposed method converges
faster than the conventional GA. Fig. 8d

3.6.5. Intelligent tuning of PID controller for automatic voltage regulator (AVR) using GA–BF approach

The transfer function of the PID controller for the AVR system is given by
PIDðsÞ ¼ kp þ
ki

s
þ kds; ð8Þ
Fig. 7a. Contour map of test function F3.

Fig. 7b. Performance of GA and GA–BF during the first 180 generations for test function F3.



Fig. 7c. Performance of GA and GA–BF during the first 70 generations for test function F3.

Fig. 7d. Tuning of parameters during 160 generations for test function F3.

Table 6
Performance of GA and GA–BF for test function F3

Method x1 x2 x3 x4 x5 Optimal objective value Average objective value

GA �5.024811 �5.015523 �5.059941 �5.03529 �5.03527 �30 �29.4
BF–GA �5.111186 �5.097807 �5.089435 �5.06529 �5.06891 �30 �29.95

Fig. 8a. Contour map of test function F4.
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Fig. 8b. Performance of GA and GA–BF during the first 50 generations for test function F4.

Fig. 8c. Performance of GA and GA–BF during generations 250–300 for test function F4.

Fig. 8d. Tuning of parameters during 300 generations for test function F4.
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and the block diagram of the AVR system is shown in Fig. 9. The performance index of control response is
defined by
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Fig. 9. Block diagram of an AVR system with a PID controller.

Table
Range

PID p

kp

ki

kd

Table
Param

Param

Stepsiz
Ns

Pc

Pm
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min F ðkp; ki; kdÞ ¼
e�b�ts=maxðtÞ

ð1� e�bÞj1� tr=maxðtÞj þ e�b �Moþ ess

¼ e�bðts þ a2 � jj1� tr=maxðtÞj �MojÞ
ð1� e�bÞj1� tr=maxðtÞj þ ess ¼ e�bðts=maxðtÞ þ a �MoÞ

a
þ ess ð9Þ

a ¼ 1� e�b
� �

� 1� tr=maxðtÞj j;
kp, ki, kd: Parameter of PID controller,
b: Weighting factor,
Mo: Overshoot,
ts: Settling time (2%),
ess: Steady-state error,
t: Desired settling time.
In (9), if the weighing factor b increases, the rising time of response curve is small, and when b decreases, the
rising time also increases. Performance criterion is defined as Mo = 50.61%, ess = 0.0909, tr = 0.2693(s),
ts = 6.9834(s). Initial values of the PID Controller and the GA–BF algorithm are depicted in Tables 7 and
8, respectively. For comparison purposes, we also used a Particle Swam Optimization (PSO) approach and
a Hybrid GA–PSO approach [28].

The Particle Swarm Optimization (PSO) algorithm is mainly inspired by social behavior patterns of organ-
isms that live and interact within large groups [11,38,6,27,24]. The standard PSO model consists of a swarm of
particles, which are initialized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where the fitness, f, can be calculated
as a measure of certain qualities. Each particle has a position represented by a position-vector~xi (i is the index
7
of PID parameters

arameters Range

Min Max

0 1.5
0 1
0 1

8
eters of BF–GA algorithm

eters Values

e 0.08
4
0.9
0.65
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of the particle), and a velocity represented by a velocity-vector~vi. Each particle remembers its own best posi-
tion so far in a vector~x#

i , and the jth dimensional value of the vector~x#
i is x#

i;j. The best position-vector among
the swarm so far is then stored in a vector~x�, and the jth dimensional value of the vector~x� is x�j . During the
iteration time t, the update of the velocity from the previous velocity to the new velocity is determined and
then the new position is determined by the sum of the previous position and the new velocity. The conven-
tional PSO algorithm was used for controlling the mutation process of the genetic algorithm (GA), as an
attempt to improve the GA learning efficiency. The architecture and flow chart of the proposed method are
Fig. 10. Step response of terminal voltage in an AVR system without controller.

Fig. 11. Terminal voltage step response of an AVR system using GA–BF algorithm.

Fig. 12. Terminal voltage step response of an AVR system with different controllers (b = 0.5, generations = 200).
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given in [26]. Euclidean distance is used for selecting crossover parents (in the hybrid GA–PSO approach) to
avoid local optima and to obtain fast solutions.

Fig. 10 illustrates the response of terminal voltage for a step input in the control system. Figs. 11–14 rep-
resent the results obtained by GA and GA–BF algorithm for different b values for 200 generations as per Eq.
(9). Figs. 15–17 illustrate the search process for optimal parameters for different b values (0.5, 1.0, and 1.5) by
the GA–BF approach. Table 9 depicts the best solutions obtained using BF–GA controller for different b val-
Fig. 13. Terminal voltage step response of an AVR system with different controllers (b = 1.0, generations = 200).

Fig. 14. Terminal voltage step response of an AVR system with different controllers (b = 1.5, generations = 200).

Fig. 15. Search process for optimal parameter values of an AVR system by GA–BF method for b = 0.5.



Fig. 16. Search process for optimal parameter values of an AVR system by GA–BF method for b = 1.0.

Fig. 17. Search process for optimal parameter values of an AVR system by GA–BF method for b = 1.5.

Table 9
Best solutions obtained using BF–GA controller with different b values

b Number of generation kp ki kd Mo (%) ess ts tr Evaluation value

0.5 200 0.68233 0.6138 0.26782 1.94 0.0171 0.3770 0.2522 0.3614
1 200 0.68002 0.52212 0.24401 1.97 0.0067 0.4010 0.2684 0.1487
1.5 200 0.67278 0.47869 0.22987 1.97 0.0014 0.4180 0.2795 0.07562

Table 10
Comparison of the objective value using different methods (b = 1.5, generation = 200)

b Methods kp ki kd Mo (%) ess ts tr Evaluation value

1.5 GA 0.8282 0.7143 0.3010 6.7122 0.0112 0.5950 0.2156 0.0135
PSO 0.6445 0.5043 0.2348 0.8399 0.0084 0.4300 0.2827 0.0073
GA–PSO 0.6794 0.6167 0.2681 1.8540 0.0178 0.8000 0.2526 0.0071
BF–GA 0.6728 0.4787 0.2299 1.97 0.0014 0.4180 0.2795 0.0756

D.H. Kim et al. / Information Sciences 177 (2007) 3918–3937 3935
ues and Table 10 illustrates a performance comparison of the values obtained using different methods (b = 1.5,
200 generations). For all the experiments, we have used a fixed number of generations which was decided by
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trial and error. To make the algorithm more adaptive, the best scheme would be to choose a stopping criterion
once the improvement in the solution does not justify the number of generations required for it [15].

4. Conclusions

Recently many variants of genetic algorithms have been investigated for improving the learning and speed
of convergence. For some problems, the designer often has to be satisfied with local optimal or suboptimal
solutions.

This paper proposed a novel hybrid approach consisting of a GA (genetic algorithm) and BF (Bacterial
Foraging) and the performance is illustrated using various test functions. Also, the proposed GA–BF algo-
rithm is used for tuning a PID controller of AVR system. As evident from the graphical and empirical results,
the suggested hybrid system GA–BF performed very well. Our future research would include the analysis and
performance of the PID controller in the presence of output noise or input disturbances.

The proposed approach has potential to be useful for other practical optimization problems (e.g., engineer-
ing design, online distributed optimization in distributed computing and cooperative control) as social forag-
ing models work very well in such environments.
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