
ORIGINAL ARTICLE

Orthogonal Taguchi-based cat algorithm for solving task
scheduling problem in cloud computing

Danlami Gabi1,3 • Abdul Samad Ismail1 • Anazida Zainal1 • Zalmiyah Zakaria1 •

Ajith Abraham2

Received: 16 September 2016 / Accepted: 19 December 2016 / Published online: 26 December 2016
! The Natural Computing Applications Forum 2016

Abstract In cloud computing datacenter, task execution
delay is a common phenomenal cause by task imbalance

across virtual machines (VMs). In recent times, a number

of artificial intelligence scheduling techniques are applied
to reduced task execution delay. These techniques have

contributed toward the need for an ideal solution. The

objective of this study is to optimize task scheduling based
on proposed orthogonal Taguchi-based cat swarm opti-

mization (OTB-CSO) in order to reduce total task execu-

tion delay. In our proposed algorithm, Taguchi orthogonal
approach was incorporated into tracing mode of CSO to

scheduled tasks on VMs with minimum execution time.

CloudSim tool was used to implement the proposed algo-
rithm where the impact of the algorithm was checked with

5, 10 and 20 VMs besides input tasks and evaluated based

on makespan and degree of imbalance metrics. Experi-
mental results showed that for 20 VMs used, our proposed

OTB-CSO was able to minimize makespan of the total

tasks scheduled across VMs with 42.86, 34.57 and 2.58%
improvement over minimum and maximum job first (Min–

Max), particle swarm optimization with linear descending

inertia weight (PSO-LDIW) and hybrid PSO with simu-
lated annealing (HPSO-SA) and likewise returned degree

of imbalance with 70.03, 62.83 and 35.68% improvement

over existing algorithms. Results obtained showed that
OTB-CSO is effective to optimize task scheduling and

improve overall cloud computing performance through

minimizing task execution delay while ensuring better
system utilization.

Keywords Cloud computing ! Taguchi ! Task scheduling !
Makespan ! Optimization

1 Introduction

Cloud computing is an Internet-based computing, where

different services (infrastructure, platform and software as
a service) are provided to consumers’ using computers and

devices through a medium called the Internet. Software
services are purchased using pay-per-use service [1–3] and

IT infrastructures are rented over a short time period

[2, 4, 5]. Systems in cloud computing are dynamically
provisioned and presented through means of negotiation

between service providers and the cloud consumers’ based

on unified computing resources [6, 7].
The underlying interest of service provider’ is to make

sure scheduled tasks meet their expected deadline, main-

tain better systems utilization and ensure revenue genera-
tion [8–12]. Task execution delay which normally affects

& Danlami Gabi
gabsonley4life@yahoo.ca

Abdul Samad Ismail
abdsamad@utm.my

Anazida Zainal
anazida@gmail.com

Zalmiyah Zakaria
zalmiyah@utm.my

Ajith Abraham
ajith.abraham@ieee.org

1 Department of Computer Science, Faculty of Computing,
Universiti Teknologi Malaysia, 81310 Skudai, Johor,
Malaysia

2 Machine Intelligence Research Labs, Scientific Network for
Innovation and Research Excellence, Auburn, WA 98071,
USA

3 Department of Computer Science, Faculty of Science and
Education, Kebbi State University of Science and
Technology, Aliero, Kebbi State, Nigeria

123

Neural Comput & Applic (2018) 30:1845–1863

https://doi.org/10.1007/s00521-016-2816-4

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2816-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-016-2816-4&domain=pdf
https://doi.org/10.1007/s00521-016-2816-4

quality of service (QoS) provisioning is a key issue con-

fronting cloud computing [3, 13–15]. Although the exis-
tence of an enterprise prompted a competitive market

paradigm on cloud computing environment given priority

to revenue generation, dynamic solutions are then needed
to schedule tasks on virtual machines (VMs) with shortest

expected execution time in order to reduce total task exe-

cution delay.
Previous researchers have proposed task scheduling

techniques and minimized task execution time, revenue
loss and maximized system performance using meta-

heuristics such as particle swarm optimization (PSO),

genetic algorithm (GA), bee colony optimization (BCO),
ant colony optimization (ACO) and global league cham-

pionship [14, 16–26]. These techniques have contributed to

further developments of ideal solutions. With changing
cloud computing environment, VMs are limited to handle

the volume of the task that often arrives datacenters.

Methods applied by existing researchers still need to be
addressed with some new methods. An ideal solution that

can take cognizance of the dynamic changing nature of

tasks for time-effective schedule across VMs becomes
paramount.

In contrast to existing AI task scheduling techniques

mentioned, cat swarm optimization (CSO) has proven
faster than particle swarm optimization in terms of speed

and convergence [27, 28]. Its search capability can further

be improved to address task scheduling problem in cloud
computing although the real version of CSO can increase

complexity if directly apply to address task scheduling

problem. Its global search (seeking mode) and local search
(tracing mode) are carried out independently for each

iteration and likewise its velocity and position update. This

requires a very high computation time [29, 30]. As a result,
a special mechanism is needed to increase its convergence

speed and for selection of best virtual machine mapping

that will return minimum exaction time.
In this study, we incorporated orthogonal Taguchi-based

approach into local search (tracing mode) of CSO to

increase its convergence speed and to schedule a task on
VMs with minimum execution time in order to overcome

task execution delay [2]. As a result, a dynamic task

scheduling algorithm called orthogonal Taguchi-based cat
swarm optimization (OTB-CSO) that minimized makespan

and the degree of imbalance of total task schedule across

virtual machines was proposed.
Contribution for the proposed work is summarized as

follows:

• Development of makespan model for optimum task

scheduling as an objective function;

• Hybridization of Taguchi-based approach with CSO for
optimum task scheduling for cloud environment;

• Development of OTB-CSO algorithm to address the

proposed scheduling model;

• Mathematical illustration of OTB-CSO-based approach
for optimum task scheduling;

• Implementation of the proposed algorithm on Cloud-

Sim tool;
• Performance evaluation of existing works with pro-

posed method based on makespan, the degree of

imbalance and percentage improvement (%).

The rest of this article is structured as follows: Works

related to task scheduling based on Taguchi approach are

explained in Sect. 2. Section 3 discusses Taguchi orthog-
onal approach. Section 4 discusses problem formulation.

Section 5 discusses cat swarm optimization. Section 6

discusses Taguchi optimization and proposed OTB-CSO
algorithm. Experimental setup and performance metrics are

discussed in Sect. 7. Section 8 discusses the results of the

simulation. The conclusion is then presented in Sect. 9.

2 Related Taguchi-based scheduling works

Taguchi used orthogonal array matrix with a number of

factors and their levels to form matrix-based experiments
[31]. This method is a powerful optimization process. The

orthogonal array adopted by Taguchi is useful for reducing

run of an experiment and can be applied to solve complex
problems [31]. As an effective tool for optimization, it

provides an elastic, efficient and systematic way to opti-
mize designs. A signal-to-noise (S/N) ratio is one of the

fundamentals of Taguchi-based design [4]. Several

researchers have to make used of Taguchi-based design in
different fields such as engineering science, social sciences

as well as in industries to solve the optimization problem.

Few among existing researchers are discussed as follows:
In Abd et al. [32], a dynamic scheduling problem for

robotic flexible assembly cells (RFACs) was presented.

The researchers applied Taguchi method to minimize total
tardiness and number of tardy jobs associated with their

scheduling problem. Based on the use of Taguchi method,

the researchers were able to reduce a number of simula-
tions for scheduling RFACs at a minimum. Tsai et al. [11]

proposed an improved differential evolutionary algorithm

(IDEA) using Taguchi-based approach. The researchers
focused on task scheduling and resource allocation for their

optimization process. They discovered the application of

Taguchi method enabled generation of potential offspring
on macro-space, where the effectiveness of their proposed

algorithm was compared with that of the differential evo-

lutionary algorithm (DEA) and non-static genetic algo-
rithm II (NSGA-II) and results outperformed better than

aforementioned algorithms.

1846 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

In Cavory et al. [33], machines associated with manu-

facturing production line are considered for optimum
schedule. The researchers presented a genetic algorithm

inspired by Taguchi optimization approach to increase

system throughput. The result obtained was validated
against real genetic algorithm which shows outstanding

performance. In the part of Asefi et al. [34], a hybrid no-

wait flexible flowshop scheduling algorithm that combined
non-static genetic algorithm (NSGA-II) with variable

neighborhood search (VNS) was presented. The research-
ers improved the convergence speed of genetic algorithm

as they incorporated Taguchi method to minimize the

makespan and mean tardiness of jobs. The result showed
remarkable improvement as compared to existing

algorithm.

Chang et al. [35] also improved the effectiveness of a
genetic algorithm using Taguchi-based approach. The

researchers used this method to minimize completion time

of task on virtual machines through encoding of feasible
solutions in a genetic algorithm. Results showed their

proposed algorithm outperformed that of the real genetic

algorithm (GA) and that of existing solutions. Caprihan
et al. [36] studied the effect associated with scheduling

rules based on the performance of a dynamic scheduling on

flexible manufacturing systems. They applied Taguchi rule
to minimize number of experiments. Likewise, in Tsai

et al. [5], the Taguchi-based genetic algorithm (TBGA) that

solved job shop scheduling problem was presented. They
discovered Taguchi method to generate optimal offspring

in a genetic algorithm which later produced better results.

Researchers such as Tsai et al. [31] designed an
enhanced parallel CSO (EPCSO) to achieve better accu-

racy with less computational time. Based on existing

works, this research makes use of the idea proposed in [5]
for design of our proposed orthogonal Taguchi-based cat

swarm optimization (OTB-CSO) algorithm in order to

minimize makespan of virtual machines with the aim of
reducing task execution delay in a dynamic cloud envi-

ronment. Section 3 explains Taguchi orthogonal approach

in detail.

3 Taguchi orthogonal approach

Researchers in the field of science, engineering and social

sciences proposed methods that addressed given problem in
an efficient manner. Most of these methods (game theory,

artificial intelligence, Taguchi, etc.) are used to address

complex problems. For instance, Taguchi method proposed
by Dr. Genichi Taguchi [37] is, however, applicable over a

wide range of areas, comprising of processes in raw

materials manufacturing, subsystems and consumer mar-
kets. This method used matrix form, based on orthogonal

array representation. As earlier highlighted, the reasoning

ability of Taguchi optimization method is to study a large
number of design variables with few experiments [31, 35].

Taguchi combined design variables and represents an

orthogonal array in a matrix form. The concept adopted by
Dr. Genichi Taguchi is used for addressing both single- and

multi-objective optimization problems [11]. The proposed

orthogonal array matrix experiment by Taguchi showed
two-level orthogonal array (2OA) with ‘‘Z’’ factors, where

‘‘Z’’ is considered as design factors (variables), and each
factor is said to be based on two levels. Taguchi formulated

a general symbol for establishing an OA with two levels of

Z factors using Eq. 1 [11, 35].

Ln 2n"1
! "

; ð1Þ

where n - 1 = symbolizing the columns numbers in two-
level orthogonal array; n = 2 k number of experiments

corresponding to the n rows, and columns, 2 = number of

required level for each factor Z; and k = a positive integer
(k[1).

The design matrix table of Taguchi (e.g., Table 1)

showed columns array values mutually orthogonal.
According to Taguchi, for any column pairs, combinations

of all factors at each level occur at an equal number of

times. In Table 1, there are seven parameters A, B, C, D, E,
F and G, consider at two levels, called an ‘‘L8’’ design, such

that the number ‘‘8’’ indicates eight rows expected to be

tested. According to Taguchi, when six factors are to be
allocated, and either of which possessed two orthogonal

levels ‘‘L8(2
6),’’ the only needed columns for run of the

experiments are six; hence, L8(2
7) orthogonal is then con-

sider sufficient since it contains seven columns. ‘‘L8’’ is an

indication that eight experiments are to be carried out by
studying six variables at 2 levels where the value ‘‘6’’

represents the dimension. Excluding the application of

Taguchi method to run matrix experiment with L8(2
7), there

are possible 128 experiments evaluations, but with Taguchi,

only ‘‘8’’ experiment is expected to achieve optimal results.

Table 1 L8(2
7) orthogonal array [49]

Experiment number Factors

A B C D E F G

Column numbers

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Neural Comput & Applic (2018) 30:1845–1863 1847

123

Author's personal copy

The need to determine which level is optimal for each of

the factors in the orthogonal table [5, 37] is one of the goals
in carrying out a matrix experiments. The signal-to-noise

ratio (S/N) proposed by Taguchi is mean square deviation

that represents its objective function. Taguchi definition

based on signal-to-noise ratio is S/N ¼ "10 log 1
n ð
P

y2Þ as
smaller-the-better characteristics, and S/N ¼ "10 log 1

nP
1
y2

$
as larger the better, where the integer ‘‘n’’ is the

number associated with the experiments on OA Ln(2
n-1)

[11]. Assuming two sets of solutions with seven parameters

exist, where optimal combination of their values is

expected according to Table 1, the orthogonal array ele-
ments normally indicate which parameter value is needed

for next experiments based on specified conditions [31].

For instance, factors in matrix of Table 1 indicate that the
factor ‘‘1’’ should be considered for first set of experiments

while ‘‘2’’ for second experiments.

Assuming Table 1 matrix is to experiment for task
scheduling, horizontal numbers in the orthogonal array

(1,2,3,4,5,6,7) represent tasks instances, while factors ‘‘1’’

and ‘‘2’’ at the orthogonal array table represent the position
of VMs, each with expected time to compute for each

available task instances. Table 2 shows an indication of

n 9 mmatrix for expected time to compute (ETC) for tasks

T ¼ T0; T1; T2; T3; T4;T5; T6
% &

with eight virtual machines

V ¼ V0;V2;V3;V4;V5;V6;V7f g: The aim of this study is to
incorporate Taguchi approach into tracing mode (local

search) of CSO for task mapping on VMs with minimum

ETC in order tominimizemakespan of total tasks scheduled.
The problem formulation associated with the task schedul-

ing optimization adopted in this study is provided in Sect. 4.

4 Problem formulation

Cloud computing is comprised of datacenters, and each

datacenter is associated with virtual machines (VMs)

arranged in parallel order. Suppose there exist a set of
cloudlets (tasks) that emanated from cloud users’ and are

channeled to cloud datacenter, awaiting to be scheduled

by cloud broker (CB) to respective VMs with minimum
execution time. Assume all VMs as heterogeneous (hav-

ing different processing speeds in million instructions per

second) and cloudlet assignment strategy is based on first-
come first-serve (FCFS), where pre-emption is not

allowed. Our goal is to dynamically assign these cloudlets

to VMs by applying best cloudlet assignment strategy
using proposed OTB-CSO method in order to minimize

the maximum completion time (makespan). However,
expected time to compute (ETC) matrix experiment [13]

as illustrated in Table 2 will be used to make schedule

decision, where each cloudlet is will be associated with
required VM and each VM will contain expected a time

of computation (ETC) of each cloudlet. To ensure

schedule decision, the value of ETC matrix for all virtual
machines is generated using uniform distribution in ratio

of million instructions per second (MIPS) to the length of

cloudlet in million instruction (MI) [13]. The model for-
mulation to this problem is, however, presented in

Sect. 4.1.

4.1 Mathematical model of the scheduling goal

The objective function for our proposed scheduling prob-
lem was formulated based on [21] and [38] model as fol-

lows: Let TL(i) = {T1, T2,…, Tn} denote set of the

cloudlets that are independent on each and V(j) = {V1, -
V2, …, Vm} symbolize the position of virtual machines

(VMs). Suppose a cloudlet TL(i) is scheduled on a VM

V(j), execution time exec(i, j) of a cloudlet executed on one
VM V(j) is calculated using Eq. 2.

exec i; jð Þ ¼ TL ið Þ
npe ðj)& VmipsðjÞ

;

8i 2 Task; i ¼ 1f g; j 2 Vm; j ¼ 1f g
ð2Þ

where exec(i, j) is the execution time of running a single
cloudlet on one VM; Vmips(j) is the length of a cloudlet in

million instruction (MI); Vmips(j) is the VM speeds in

million instructions per second (MIPS); and npe(j) is the
number of processing elements. When more than one VMs

are involved to rum set of cloudlets, the total execution

time Texec(i, j) of all cloudlets executed on all VMs is
calculated using Eq. 3.

Texec i; jð Þ ¼
X TL ið Þ

npe jð Þ & Vmips jð Þ

' (
;

8i ¼ 1; 2; . . .; nf g; j ¼ 1; 2; . . .;mf g
ð3Þ

Our aim is to minimize total cloudlets execution time on

all VMs; therefore, the makespan model expected to be

minimized is shown in Eq. 4.

Table 2 Example of ETC matrix

T0 T1 T2 T3 T4 T5 T6

V0 T0/V0 T1/V0 T2/V0 T3/V0 T4/V0 T5/V0 T6/V0

V1 T0/V1 T1/V1 T2/V1 T3/V1 T4/V1 T5/V1 T6/V1

V2 T0/V2 T1/V2 T2/V2 T3/V2 T4/V2 T5/V2 T6/V2

V3 T0/V3 T1/V3 T2/V3 T3/V3 T4/V3 T5/V3 T6/V3

V4 T0/V4 T1/V4 T2/V4 T3/V4 T4/V4 T5/V4 T6/V4

V5 T0/V5 T1/V5 T2/V5 T3/V5 T4/V5 T5/V5 T6/V5

V6 T0/V6 T1/V6 T2/V6 T3/V6 T4/V6 T5/V6 T6/V6

V7 T0/V7 T1/V7 T2/V7 T3/V7 T4/V7 T5/V7 T6/V7

1848 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

makespan ¼ min max
X TL ið Þ

npe jð Þ & Vmips jð Þ

' () *

8i ¼ 1; 2; . . .; nf g; j ¼ 1; 2; . . .;mf g
; ð4Þ

Equation 4 above is the fitness function of our current

scheduling problem that achieved an optimal solution
which minimizes makespan of total cloudlet scheduled on

all VMs.

5 Cat swarm optimization

In solving complex computation problems, researchers

established the collective behavior of animals for the pur-

pose of attaining a common goal have a significant
resemblance in terms of finding an optimal solution. With

interesting observation on these animals, different algo-

rithms were proposed, most especially those belonging to

the family of algorithms that commonly refer to as swarm

intelligence [39, 40]. These algorithms have gained popu-
larity among many researchers in addressing complex

problems. Some of these algorithms include artificial bee

colony (ABC), which is realized by observing the behavior
of bees when foraging for food [41], ant colony opti-

mization (ACO) and realized based on ant behavior as they

leave pheromone trails while working in search of food
[42]. Cat swarm optimization is one among swarm opti-

mization technique added to the family of swarm intelli-
gence [28]. The interesting behavior of cat enabled them to

observe that the cat has resting behavior and also chasing

behavior. These behaviors have been modeled into seeking
mode (correspond to resting mode) and the tracing mode

(which is the seeking stage). One of the attributes associ-

ated with the modeling is the mixed ratio (MR), a con-
trollable factor that distinguished cat in either tracing or

seeking mode. As cat progresses closer to solutions (prey),

best results are updated at the memory and the process
continues till all cats achieve best solution (fitness) [28].

5.1 Seeking and tracing mode of cat

5.1.1 Seeking mode

The seeking mode corresponds to global search process of

CSO. It modeled cat behavior as per resting, looking
around, at the same time deciding next position to move to

[42]. Four attributes are associated with this mode. The

seeking memory pool (SMP) indicates memory size sort by
the cat; seeking range of selected dimension (SRD) is used

for setting the mutation ratio for selecting cat dimensions;

counts of dimension to change (CDC) is used to disclose
how many dimensions according to cat number varied; and

finally, the self-position considering (SPC) represents a

Boolean variable that unveils whether position the cat is
presently standing can be chosen as the candidates’ posi-

tion to move into [28]. Algorithm 1 shows the procedure

for the seeking mode [42].

5.1.2 Tracing mode

The tracing mode is the local search of CSO [42]. It is,
however, represented as follows:

1. Compute and update cat kth velocity using new

velocity in Eq. 5:

VK;d ¼ VK;d þ c1 & r1 & Xbestd"XK;d

! "! "

d ¼ 1; 2; . . .;M
ð5Þ

where c is the constant value of acceleration and r is

the uniformly distribution random number in the range
of [0,1]. For each iteration, Eq. 5 is used to update the

velocity.

2. Add new velocity by computing the current (new)
position of the kth cat using Eq. 6:

Xk;d ¼ Xk;d þ Vk;d ð6Þ

3. Calculate the fitness values of all cats.
4. Update and return best cats with the best fitness.

Algorithm 1: CSO seeking mode
1. Generate Y (where Y = SMP) copies of k-th cat, i.e. where and

where is the overall dimension.
2. Change at random the dimension of cats as per CDC by applying mutation operator to .
3. Determine all changed cats’ fitness values.
4. Discover most suitable cats (non-dominant) based on their fitness values.
5. Replace the position of the k-th cat after picking a candidate at random from Y.

Neural Comput & Applic (2018) 30:1845–1863 1849

123

Author's personal copy

5.2 Proposed CSO tracing mode (local search)

The Taguchi orthogonal array is great potential for guiding
metaheuristic algorithms to obtain good solution when

apply to solve NP-hard problem. Our objective is to min-

imize makespan of total tasks scheduled across virtual
machines (VMs) and to reduce the degree of imbalance of

all VMs in a dynamic cloud computing environment. As a

result, an optimum task scheduling algorithm based on
Taguchi is proposed [14, 25]. In real CSO, its most control

variable is the mixed ratio (MR) and defines in the range of

[0,1]. This value is use to show a number of a cat in either
seeking or tracing mode. For instance, if MR is set to 1%,

amounts of cats that allow into tracing mode will be 10 and

90% of cats that are to move into seeking mode. This
showed a number of cats that moved into seeking mode

(global search mode) will always exceed that of the tracing

mode (local search mode). In this process, mutation oper-
ation of CSO at local search is bound to affect performance

which may end up not achieving near-optimal solution

[11]. On the other hand, the global search (seeking mode)
and local search (tracing mode) of CSO are carried out

independently for each iteration. This causes its velocity

and position update to be likewise done independently with
a very high computation time [30]. These served as a

drawback to this algorithm. In order to overcome this

drawback, local search of CSO is incorporated with
orthogonal array (OA) of Taguchi method to improve

computation time by reducing time consumption of the

algorithm to run a large number of tasks with few experi-
ments [35].

The tracing mode operation of CSO is restructured as

follows:

1. Generate two velocity sets:

Vok;dðtÞ

¼
Vset1K;d tð Þ¼VK;d t"1ð Þþ c1&r1& Xgbestd t"1ð Þ"XK;d t"1ð Þ

! "! "

Vset2K;d tð Þ¼VK;d t"1ð Þþ c1&r1& Xlbestd t"1ð Þ"XK;d t"1ð Þ
! "! "

(

ð7Þ

Such that:

Vok;d tð Þ¼ Vset1k;d tð Þ; if orthogonal array element is ‘‘1’’
Vset2k;d tð Þ; otherwise

)

ð8Þ

where Vok,d represents two candidates’ velocity sets;

d is dimension of the solution space; Xgbestd

represents the global best position of the cat; Xlbestd is

the local best position of the cat; r1 represents uniform
random number in the range of [0,1]; c1 is a constant

value of acceleration; XK,d represents position of the

cat; and t is the number of iteration.

We note that, based on the representation of Taguchi

orthogonal matrix in Table 1, elements ‘‘1’’ and ‘‘2’’ hold
expected time to compute (ETC) of each virtual machine

on task instances to execute at each level of the experiment.

However, for the task size, the orthogonal array size is
often determined based on Ln(2

n-1) matrix. From the

generated two velocities, one is chosen to update the

original velocity Vk,d, and each time there is a run of the
experiment according to Eq. 9:

Vk;d
maxv; if Vk;d þ Vok;d tð Þ

+ ,
[maximum velocity;

Vk;d þ Vok;d; tð Þ otherwise

)

ð9Þ

2. Add new velocity by computing current (new) position

of kth cat using Eq. 10:

Xk;d ¼ Xk;d þ Vk;d ð10Þ

3. Calculate each cat fitness value.

4. Sum the fitness values according to generated veloc-
ities, compare and select the final velocity to formulate

the latest velocity.

6 Taguchi optimization algorithm

The orthogonal array of Taguchi approach is a good

optimization method. In running a matrix experiment for
task scheduling based on ETC matrix, Taguchi method

can help minimize execution time of a task. According to

Dr. Genichi Taguchi [37], instead of running a large
number of an experiment that required a very large

computation time, it divides the experiment into two or

more orthogonals, depending on the size of the tasks and
run according to Algorithm 2. This method was used in

our proposed algorithm to increase the speed of con-

vergence of CSO to run several heterogeneous task
instances on VMs. The detail pseudocode of Taguchi

method for our matrix experiment is shown in Algorithm

2 [5]:

1850 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

Algorithm 2: Taguchi Optimization Algorithm

1. Select two-level orthogonal Taguchi array matrix such that and represent task
2. numbers
3. Generate two sets of velocities and (t) according to Equation (7)
4. Determine dimension of scheduling problem which corresponds to task number N.
5. Calculate the fitness values of the, n experiments in accordance with the orthogonal array .
6. The above algorithm is applied at tracing mode of cat swarm optimization (CSO) for minimization of
7. makespan.

6.1 OTB-CSO based algorithm

In this subsection, we outlined our proposed OTB-CSO
method that solved the task scheduling model presented in

Sect. 4.1. The essence is to find an optimal scheduling

pattern that will guarantee minimum makespan of all tasks
scheduled on VMs. Algorithm 3 shows our proposed OTB-

CSO, and Fig. 1 shows the flowchart of the algorithm.

Determine all required attributes such as: cat size, bandwidth,
processing elements number, VM speed, to compute cat fitness

Compute all cat fitness function according to defined objective
function in Equation 4

Is cat in seeking mode?

Create two velocity sets
according to equation 6

Update cat position

Apply seeking mode process

Calculate new fitness for each cat, and update achieve

Is stopping criteria attained?

Output best task pattern

Stop

No

Yes

NoYes

Compare fitness functions of all cats and keep best cat.

 Initialize cat position, velocity and randomly assign seeking
and tracing mode to cat

Start

Run experiments according
to Taguchi orthogonal array

matrix

OT
B-C

SO
 Tr

aci
ng

mo
de

Fig. 1 Flowchart of the proposed OTB-CSO method

Neural Comput & Applic (2018) 30:1845–1863 1851

123

Author's personal copy

Algorithm 3: OTB-CSO Algorithm

1. Start
2. Initialize associated cats’ parameters; MR, mixed ratio; SMP; SRD; CDC; SPC,
3. Generate an empty non-dominant archive of (n × m) size of uniform random number
4. Initialize position of cats, the velocity of cats and cat flag.
5. Determine all require attributes such as virtual machine number, number of processing elements,
6. processing power to calculate cats’ fitness functions.
7. Compute all cats according to defined objective(Fitness) functions in Equation (4)
8. Compare fitness functions of all cats, keep position with best fitness value.
9. Do
10. increment_iteration_number
11. If (flag
12. Apply seeking mode process as follows:
13. Generate y (where y=SMP) copies of k-th cat i.e. where (1≤q≤Y) and (1≤d≤D) where D is the
14. overall dimension.
15. Change at random dimension of cats as per CDC using + or – mutation operation to Zqd.
16. Determine the fitness of changed cats.
17. Discover and replace cat best position after picking a candidate at random from Y.
18. Else
19. Apply Taguchi optimization as follows:
20. Select two-level orthogonal Taguchi array matrix such that, where N
21. represent task number.
22. Generate two sets of velocities according to Equation (7) and determine the dimension of the
23. scheduling problem that corresponds to task number N.
24. Calculate the fitness values of the n experiments according to orthogonal array
25. Endif
26. Choose current best member as Xlbest and corresponding best position as Xpbest
27. If (Xlbest Xgbest)
28.
29. // current best position becomes the global best position
30. Compute and update the new velocity and current position according to (Equation (9) and (10))
31. If (termination condition reached)
32. Output task sequence with the best task scheduling pattern.
33. Else
34. Go to step 6.
35. Endif
36. Endif
37. End.

6.2 Taguchi experimental illustration for task
scheduling

The two-level orthogonal array in Table 1 with column

numbers (1,2,3,4,5,6,7) are assumed for task instances. The

element at each level of the orthogonal array represents
index value that holds expected execution time of each

task. Assuming expected time to compute (ETC) matrix

representation of L8 array in Table 2 is considered for task
schedule with seven tasks to experiment at eight levels, our

objective is to find the best sequence of task instances that
can reduce makespan and degree of imbalance of total

tasks scheduled on VMs. An ETC matrix shown in Table 2

is similar to orthogonal Taguchi array in Table 1, where
values ‘‘1’’ and ‘‘2’’ indicate element for the first run and

second run of the experiment. By applying Taguchi method

at tracing mode of CSO, task instances are mapped on VMs
based on the orthogonal method. Assuming seven (7) tasks

(T0, T1, T2, T3, T4, T5, T6) are scheduled on VMs, an L8(2
7)

orthogonal is better to consider for the experiment since its

dimension is 7 and can run at level 8. In Table 1, to run the
third row, corresponding elements of the orthogonal are:

1,2,2,1,1,2,2. The elements of the third run according to

Taguchi are used to generate two set of tasks such that, T0,
T3, T4 are considered for the first set of the run and T1, T2,

T5, T6 to for second set of tasks consider for the set of the

second run.
To demonstrate the above scenario on our proposed

algorithm, assume sequence numbers ‘‘1’’ and ‘‘2’’ in
Table 1 are expected execution time of each task, and our

goal is to make sure the tracing mode of CSO utilized

Taguchi-based approach to minimize the fitness function
indicated in Eq. 11 [31].

f ðxÞ ¼
Xm

d¼1

1

xd
ð11Þ

Vd 2 M, d = {1, 2,…, M}, where M is the dimension
which contained number of tasks to be schedule. We

1852 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

assume previous run of the experiment with current posi-
tion and velocity of the cat as indicated in Tables 3 and 4.

Based on orthogonal presentation in Table 1, when the

algorithm is run, current position and velocity of cat are
updated by the best velocity among the two velocities

generated by Taguchi method, and the values obtained are
indicated in Table 5. At each level of the experiment, the

fitness value obtained in Table 5 is based on Eq. 11.

Whenever there is a run of the algorithm, the OTB-CSO
updates it positions and a new fitness is generated. Hence,

obtained fitness values from the updated position of the cat

are 1.46, 1.70, 1.47, 1.54, 1.49, 1.29, 1.48 and 1.24 as
shown in Table 5. To find the total fitness for each gen-

erated velocity sets, the algorithm scans through the first

column ‘‘A’’ in matrix Table 1, which has the value
1,1,1,1,2,2,2,2 (as shown in Fig. 2). As earlier stated, for

the first run of the experiment, it takes an index value of

‘‘1’’ which corresponds to the first velocity set Vset1K,d of
the orthogonal and the index value ‘‘2’’ for second run of

the experiment which represents that of the second velocity

set Vset2K,d. Therefore, OTB-CSO finds total fitness value
for the first ‘‘1’’ set of experiment which corresponds to the

first velocity set in column ‘‘A,’’ by summing the obtained

values 1.46, 1.70, 1.47, 1.54 while that of second velocity
set using the obtained values 1.49, 1.29, 1.48, 1.24 as

indicated in Table 6. The process continues for the

remaining ‘‘B’’ to ‘‘G.’’
Each column (B, C, D, E, F) based on their index values

is mapped according to Fig. 2, and their total fitness is

obtained as shown in Table 6 since our objective is to find
a sequence of the tasks that will minimize the total

makespan. The two accumulated fitness obtained by the

two velocity sets on each column of the orthogonal, each
fitness on each column are compared and the velocity that

generates fitness with a minimum amount of time is

selected for the next run of the experiment. The compar-
ison is taken and selected candidate velocity which is now

Table 3 Position and original velocity

Current cat position Considered factor

A B C D E F G

X 1 1 1 1 1 1 1

Vk,d (t) 2 2 2 2 2 2 2

Table 4 Generated velocity sets for the experiment

Cat velocities Considered factor

A B C D E F G

Vset1k,d (t) 0 1 3 2 4 2 3

Vset2k,d (t) 3 2 4 3 0 1 2

T
ab

le
5

F
it
n
es
s
v
al
u
es

fo
r
L
8
(2

7
)

E
x
p
er
im

en
t
n
u
m
b
er

U
p
d
at
ed

p
o
si
ti
o
n
o
f
ca
t

A
B

C
D

E
F

G
F
it
n
es
s

1
1
?

2
?

0
=

3
1
?

2
?

1
=

4
1
?

2
?

3
=

6
1
?

2
?

2
=

5
1
?

2
?

4
=

7
1
?

2
?

2
=

5
1
?

2
?

3
=

6
1
.4
6

2
1
?

2
?

0
=

3
1
?

2
?

1
=

4
1
?

2
?

3
=

6
1
?

2
?

3
=

6
1
?

2
?

0
=

3
1
?

2
?

1
=

4
1
?

2
?

2
=

5
1
.7
0

3
3

5
7

5
7

4
5

1
.4
7

4
3

5
7

6
3

5
6

1
.5
4

5
6

4
7

5
3

5
5

1
.4
9

6
6

4
7

6
7

4
6

1
.2
9

7
6

5
6

5
3

4
6

1
.4
8

8
6

5
6

6
7

5
5

1
.2
4

Neural Comput & Applic (2018) 30:1845–1863 1853

123

Author's personal copy

the new velocity is shown in Table 6. The values

3,2,4,3,4,2,3 in Table 7 based on the selected velocity sets
are obtained using Table 4.

7 Experimental setup

A variety of environments have been used to evaluate
recent task scheduling algorithms. This environment differs

from one to another in terms of hardware specifications and

software utilities; hence, result obtained when running an
algorithm on two different environments may vary. For the

sake of this article, we experiment with the following

computer specification and utility software shown in
Table 8.

The CloudSim is regarded best simulation tool for

experimenting cloud computing scenario, modeling of real

cloud computing environment and evaluating resource
provisioning algorithm [44]. However, CloudSim package

was extended to implement our proposed algorithm as used

by several other researchers like in [14, 18 and 45]. We
ensured VMs- and tasks (cloudlets)-associated properties

are heterogeneous and are uniformly generated with vary-

ing speed in million instructions per seconds (MIPS) and
length in million instructions (MI). The choice of proper-

ties for both virtual machines, host and tasks used for the

experiment is based on [13, 46] as shown in Table 9. The
selection of value for inertia weight and that of construc-

tion factors (c1, c2) is based on [47] as shown in Table 10.

7.1 Performance metric

Cloud computing task scheduling metrics are used for
evaluating the performance of task scheduling algorithms.

These metrics are categorized based on either computa-

tional based (e.g., execution time, throughput, makespan)
or network based (e.g., computational cost, roundtrip cost)

[13, 16, 48]. This study considered makespan, degree of

imbalance and performance improvement rate (PIR %) to
evaluate the performance of the proposed OTB-CSO.

7.1.1 Makespan time

Makespan is the maximum total execution time of all tasks

executed on all VMs [8, 13]. This article minimized
makespan of total task schedule on VMs as defined in Eq. 4.

7.1.2 Degree of imbalance

The degree of imbalance (DI) is used to define extent at

which task is distributed among VMs. It is also used to
investigate unbalanced load across VMs. A small value for

the degree of imbalance (DI) unveils how tasks on a system
are balanced, either the better the performance. Hence, our

Fig. 2 First column mapping
for accumulated fitness of two
velocity sets

Table 6 Accumulated fitness
values for the two velocities
based on L8(2

7) orthogonal

Velocities Considered factors

A B C D E F G

Total fitness Vset1k,d (t) 6.17 5.94 5.88 5.90 5.46 5.73 5.77

Total fitness Vset2k,d (t) 5.50 5.53 5.79 5.77 6.21 5.94 5.90

Selected candidates Vset2 Vset2 Vset2 Vset2 Vset1 Vset1 Vset1

Table 7 Final velocity for the next experiment

Final
velocities

Considered factors

A B C D E F G

Vk,d 3 2 4 3 4 2 3

Table 8 Computer and utility software specification

OS Windows specifications

Processor Intel" CoreTM i5-5200U CPU @ 3.60 GHz
3.60 GHz

System type Window 10 (64-bit), 964-based processor

Memory 4 GB DDR3L RAM

Hard disk 1000 GB (1 TB) SATA-3G HDD

Software Eclipse-java-luna-SR2-win32-x86-64

Simulation
tool

CloudSim 3.0.3 [43]

1854 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

aim is to ensure load balancing across virtual machine

through a minimizing degree of imbalance is achieved. It is
denoted using Eq. 12 [8, 13, 49].

DI ¼ Tmax " Tmin

Tavg
ð12Þ

where Tmax, Tmin and Tavg are the maximum, minimum and

the average total execution times among all VMs, respec-

tively. This values are obtained when Eq. 2 is implemented
for 8i 2 Task; i ¼ 1; 2; . . .; nf g and j 2 VM; j ¼ 1; 2; . . .;f
mg.

7.1.3 Performance improvement rate (PIR%)

The reduction in makespan for the proposed OTB-CSO
algorithm over existing schemes is determined using

Eq. 13. The improvement rate will help discover efficiency

of the algorithms in reducing makespan and degree of

imbalance when compare to existing algorithms [13, 48].

PIR %ð Þ¼
makespan other schemeð Þ"makespan OTB" CSOð Þð Þ

makespan other schemeð Þ

' (

&100

ð13Þ

8 Results and discussion

8.1 Results

Ten (10) independent runs of the simulation are carried out

on Min–Max [50], PSO-LDIW [14], HPSO-SA [45] and

OTB-CSO algorithm for the same size of input cloudlets
(tasks). In order to determine the impact of VMs on pro-

posed OTB-CSO algorithm besides input tasks, the pro-

posed method was evaluated based on 20, 10 and 5 VM
instances, where best, worst and average makespan are

obtained and tabulated in Tables 11, 12 and 13. Tables 14,

15 and 16 show the value of the degree of imbalance
obtained by the four algorithms using 20, 10 and 5 VM

instances. Likewise, performance improvement rate [PIR

(%)] on makespan and degree of imbalance is presented in
Tables 17 and 18.

The results of the simulation are also compared with

that of real CSO and enhanced parallel cat swarm opti-
mization (EPCSO) from the literature as shown in

Table 19.

8.2 Discussion

For each problem size, ten independent simulation runs are

executed based on input tasks 10–100 on Min–Max, PSO-

LDIW, HPSO-SA and OTB-CSO algorithms. The make-
span, degree of imbalance and percentage improvement

(%) achieved by the four scheduling algorithms are tabu-

lated in Tables 11, 12, 13, 14, 15, 16, 17 and 18. Table 19
also shows results of comparison with real CSO and

EPCSO in terms of execution time. Figures 3, 4 and 5

show a graph of the average makespan achieved by the four
scheduling algorithms, while Figs. 6, 7 and 8 show a graph

of the average degree of imbalance. Table 17 unveils the

percentage improvement achieved by OTB-CSO algorithm
over three other algorithms. The result obtained showed

that for 20 VMs used, OTB-CSO was able to minimize

makespan by achieving 42.86, 34.52 and 2.45% reduction
over Min–Max, PSO-LDIW and HPSO-SA algorithms.

However, for 10 VMs used, it minimized the makespan by

achieving 39.87, 27.23 and 15.03% reduction over Min–
Max, PSO-LDIW and HPSO-SA algorithms. Likewise, for

5 VMs used so far, it was able to minimize the makespan of

Table 9 Experimental setting

No. of runs of the simulation 10

Datacenter

No. of datacenter 2

No. of host in a datacenter 1

Host RAM 2 GB

Storage ITB

Bandwidths 10 GB/s

Accumulated host processing power 1,000,000 MIPS

Cloudlets

Lengths 100–1000 MIs

No. of cloudlets 10–100

VMs

VMs used 20,10,5

VMs monitor Xen

Ram 0.5 GB

Storage 10 GB

Bandwidth 1 GB/s

VMs processing power 1000–10,000 MIPS

Processing element 1–2

VM policy Time-shared

Table 10 Parameter setting for PSO and CSO

Algorithm Parameter Value

PSO Particle size 100

Self-recognition coefficients (c1, c2) 2

Uniform random number (R1) [0,1]

Maximum iteration 1000

Inertia weight (W) 0.9–0.4

Mixed ration 2%

CSO Count dimension to change 5%

Neural Comput & Applic (2018) 30:1845–1863 1855

123

Author's personal copy

the total tasks scheduled on VMs by achieving 62.53, 54.85

and 15.58% reduction over Min–Max, PSO-LDIW and

HPSO-SA algorithms.

One of the main objectives of this article is to minimize

the degree of imbalance. The degree of imbalance help

discovers whether proposed algorithm is able to balance

Table 11 Comparison of makespan obtained with 20 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 14.77 47.07 30.66 14.23 32.90 20.80 6.60 21.52 14.90 7.62 21.49 13.53

20 31.17 59.74 46.68 23.04 37.20 35.01 12.59 48.39 34.26 10.01 38.94 29.15

30 48.07 72.02 65.32 42.18 82.51 51.04 26.54 60.57 39.79 32.76 40.76 37.57

40 79.35 147.54 99.41 51.09 104.95 89.66 49.66 66.86 54.70 45.55 59.76 54.04

50 104.57 264.13 149.74 111.29 212.71 148.73 65.76 111.53 95.16 62.45 101.14 88.96

60 186.75 275.98 224.15 176.53 366.20 222.56 97.79 164.09 132.97 89.51 165.51 129.06

70 249.68 414.22 319.13 146.84 435.72 307.02 138.45 241.01 176.21 109.71 183.81 174.98

80 386.22 686.22 447.44 158.80 477.95 331.60 186.96 322.03 203.18 154.84 252.37 201.69

90 452.25 831.66 495.27 252.16 519.89 367.36 245.29 443.03 264.53 213.74 289.62 252.48

100 530.29 998.66 691.39 384.23 942.97 669.88 367.54 573.86 489.27 302.54 605.31 486.57

Table 12 Comparison of makespan obtained with 10 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 18.39 46.12 35.16 6.88 109.45 30.78 6.99 49.05 25.81 3.96 11.64 10.35

20 49.20 181.39 117.90 40.01 156.25 78.79 22.72 131.01 53.19 16.01 76.40 49.52

30 79.01 228.89 180.37 53.47 178.31 107.10 49.59 114.12 74.61 36.01 134.56 69.91

40 193.75 411.16 292.35 83.30 375.12 196.53 113.00 367.91 186.16 85.49 218.91 138.62

50 246.92 555.20 387.62 91.72 625.64 297.65 119.69 536.23 248.60 111.95 312.21 231.63

60 312.21 685.31 481.96 289.94 750.73 402.87 216.94 600.68 379.09 138.61 416.26 280.82

70 358.13 762.33 632.76 319.00 808.21 593.72 296.40 699.18 401.94 168.25 427.42 336.98

80 485.75 876.51 732.71 407.97 962.66 648.79 368.27 993.26 587.01 202.20 667.46 483.72

90 503.44 925.49 798.53 408.68 1079.99 701.35 477.77 1049.37 623.80 390.22 717.33 578.06

100 628.76 1453.88 955.72 559.06 1193.01 755.86 509.05 1086.56 685.56 490.20 741.29 595.21

Table 13 Comparison of makespan obtained with 5 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 12.77 32.28 25.55 15.85 45.21 32.18 8.25 44.41 28.70 11.47 43.12 23.14

20 36.95 246.82 140.82 30.22 530.49 155.88 30.91 214.22 102.84 42.93 163.65 107.13

30 177.06 395.15 290.05 119.33 537.62 245.55 46.14 562.16 254.96 74.21 173.76 120.55

40 179.99 459.46 497.68 177.35 645.69 464.95 145.31 699.70 332.35 124.25 448.59 268.27

50 347.17 1624.31 1107.56 439.73 1032.70 712.75 279.85 824.51 439.34 245.03 513.86 429.71

60 740.93 1757.52 1471.07 475.02 1624.55 1129.88 392.78 965.82 626.53 263.10 660.36 567.72

70 767.42 3972.42 1881.75 748.75 4817.92 1790.58 485.96 999.63 841.91 443.98 1492.49 798.82

80 828.75 4958.18 2610.02 816.39 5150.34 2260.56 551.09 1383.88 1009.14 634.27 1501.80 895.60

90 955.96 5649.55 3005.79 874.36 5272.27 2593.67 774.83 1525.99 1117.32 758.91 1683.33 1100.22

100 1680.51 7670.15 3761.25 972.00 6063.49 2891.74 848.09 4525.59 1812.64 802.45 1987.81 1231.64

1856 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

tasks across VM and return minimum execution time. The

smaller degree of imbalance, better the performance of the

algorithm. Percentage improvement achieved based on the
degree of imbalance is shown in Table 18. For 20 VMs

used, OTB-CSO was able to balance tasks based on the

degree of imbalance on VMs with an improvement of

70.03, 62.03 and 35.68% over Min–Max, PSO-LDIW and
HPSO-SA. For 10 VMs, improvement of 58.91, 30.78 and

Table 14 Degree of imbalance (DI) with 20 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 2.11 16.01 4.53 0.19 7.01 2.20 0.01 4.16 1.16 0.11 3.0 1.17

20 4.34 28.87 6.67 0.11 16.47 5.18 0.03 5.06 3.52 0.21 2.06 2.70

30 5.67 32.13 12.27 0.26 20.13 7.62 0.10 7.30 4.68 0.31 4.55 3.47

40 7.13 35.73 11.70 0.11 34.73 15.02 0.11 23.88 9.29 0.51 10.62 6.02

50 4.18 68.83 25.84 0.11 42.83 19.94 0.21 32.40 22.93 0.67 13.11 6.96

60 5.11 89.47 48.21 0.11 59.53 33.24 0.51 41.08 13.02 1.01 18.82 13.79

70 7.11 118.73 66.76 0.11 128.73 57.64 0.71 71.79 30.24 2.11 28.79 16.47

80 5.89 213.67 87.37 0.11 183.39 74.49 0.91 96.53 35.07 3.11 43.14 36.04

90 9.10 368.54 95.64 0.10 245.54 87.11 1.11 110.83 41.56 3.39 25.19 19.00

100 9.78 676.18 134.56 0.11 95.59 48.18 2.11 123.61 68.50 4.11 42.96 42.29

Table 15 Degree of imbalance (DI) with 10 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 6.67 27.66 9.37 0.36 11.66 3.37 0.51 9.17 2.42 0.27 10.41 5.63

20 5.28 33.67 14.75 0.11 12.02 4.84 0.35 6.74 4.85 0.11 7.94 3.59

30 4.27 38.48 19.12 0.01 4.48 5.12 0.12 21.26 8.75 0.22 15.15 14.38

40 5.29 45.73 21.57 0.29 37.73 18.14 0.23 23.8 15.60 0.10 48.79 25.53

50 3.01 50.89 26.76 0.01 45.99 23.31 0.24 44.22 22.28 0.22 12.73 16.08

60 6.19 56.38 29.71 0.10 49.38 34.47 0.26 69.09 38.86 0.10 25.93 21.53

70 5.32 357.08 159.59 0.32 57.08 79.59 0.11 129.56 46.39 0.11 15.32 29.62

80 9.67 187.29 73.46 0.11 98.29 54.46 0.11 144.30 43.61 0.39 59.88 37.57

90 4.60 273.39 62.91 0.8 160.39 59.91 0.22 119.59 54.83 0.23 48.97 46.68

100 6.43 789.05 192.56 0.11 293.05 78.78 0.22 167.90 67.52 0.11 52.61 49.94

Table 16 Degree of imbalance (DI) with 5 VMs

Task Min–Max PSO-LDIW HPSO-SA OTB-CSO

Best Worst Average Best Worst Average Best Worst Average Best Worst Average

10 3.67 46.78 29.36 0.11 6.44 3.23 0.25 5.14 4.21 0.32 6.58 6.22

20 13.28 72.67 34.75 0.34 9.88 13.27 0.75 13.39 15.90 0.11 23.44 43.37

30 12.17 283.65 129.43 0.32 44.95 34.46 1.09 20.69 19.82 0.01 38.33 91.81

40 17.32 345.73 134.71 0.56 60.47 111.24 0.15 16.10 22.55 0.35 17.90 38.32

50 15.21 546.89 243.54 0.11 45.82 90.12 0.23 67.41 71.49 0.10 8.83 41.80

60 16.19 587.24 328.72 0.21 73.27 130.37 0.12 117.05 81.19 0.41 87.28 58.94

70 27.90 657.08 487.59 0.21 88.09 369.53 3.42 367.76 218.29 0.11 132.96 98.40

80 11.25 496.29 294.67 0.20 539.61 375.15 0.11 402.83 286.71 0.23 179.14 184.22

90 5.60 673.39 467.56 0.33 739.75 334.37 0.11 588.43 264.05 0.01 106.66 187.47

100 10.43 889.05 492.38 0.23 817.91 431.27 0.34 714.09 329.62 0.20 119.12 120.70

Neural Comput & Applic (2018) 30:1845–1863 1857

123

Author's personal copy

17.88% over Min–Max, PSO-LDIW and HPSO-SA algo-
rithms was achieved. Likewise, for 5 VMs used it balances

task across VMs by achieving 67.03, 53.98 and 33.69%

over Min–Max, PSO-LDIW and HPSO-SA algorithms.
The outlined performance of OTB-CSO over three

existing algorithms was attributed to the incorporation of

Taguchi orthogonal approach at CSO tracing mode. It was
discovered search process within tracing mode of the CSO

traversed the best solution regions; hence, position vector

becomes capable of ensuring better convergence while
eliminating solution that is non-best and ensuring a more

solution that is active is introduced. This eventually pushes

away the searching processes from local optima [13]. The
orthogonal array of Taguchi also helps in guiding the

metaheuristic to obtain good solution. It was discovered for

100 cats spread across solution area, and the tracing mode
phase was able to empower search process without capi-

talizing on only best solution regions that may end up

trapping the search toward a certain region. However, our
proposed OTB-CSO tracing mode has actually utilized an

orthogonal array of Taguchi method to return search results

more suitable by enabling improved searching effi-
ciency[31]. This followed the best mapping of the task

across VMs that reduced makespan and degree of imbal-

ance. Hence, the performance of OTB-CSO is believed to
be attributed to the effectiveness of the tracing mode.

Although results in Tables 11, 12, 13, 14, 15, 16, 17 and 18

show that of 20, 10 and 5 VMs used, it was used to dis-
cover whether there exists any impact on the algorithm

apart from input tasks. Obtained results have significantly

Table 17 OTB-CSO
performance improvement (%)
based on makespan

Min–Max PSO-LDIW HPSO-SA OTB-CSO

With 20 virtual machines

Total average makespan 2569.19 2243.66 1504.97 1468.03

PIR (%) over I-Min–Max 12.67 41.42 42.86

PIR (%) over PSO-LDIW 32.92 34.57

PIR (%) over HPSO-SA 2.45

With 10 virtual machines

Total average makespan 4615.08 3813.44 3265.77 2774.82

PIR (%) over I-Min–Max 17.37 29.24 39.87

PIR (%) over PSO-LDIW 14.36 27.23

PIR (%) over HPSO-SA 15.03

With 5 virtual machines

Total average makespan 14,791.54 12,277.74 6565.73 5542.80

PIR (%) over I-Min–Max 16.99 55.61 62.53

PIR (%) over PSO-LDIW 46.52 54.85

PIR (%) over HPSO-SA 15.58

Table 18 OTB-CSO
performance improvement (%)
based on degree of imbalance
(DI)

Min–Max PSO-LDIW HPSO-SA OTB-CSO

With 20 virtual machines

Total average DI 493.55 398.03 229.97 147.91

PIR (%) over I-Min–Max 19.35 53.40 70.03

PIR (%) over PSO-LDIW 42.22 62.83

PIR (%) over HPSO-SA 35.68

With 10 virtual machines

Total average DI 609.80 361.99 305.11 250.55

PIR (%) over I-Min–Max 40.63 49.97 58.91

PIR (%) over PSO-LDIW 15.71 30.78

PIR (%) over HPSO-SA 17.88

With 5 virtual machines

Total average DI 2642.71 1893.01 1313.82 871.25

PIR (%) over I-Min–Max 28.37 50.29 67.03

PIR (%) over PSO-LDIW 30.60 53.98

PIR (%) over HPSO-SA 33.69

1858 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

shown that VM numbers do not show any impact based on

the performance of our proposed algorithm, rather proposes
algorithm outperformed better in both makespan and

degree of imbalance. This showed proposed OTB-CSO is

well balanced and enhanced with effectiveness in opti-
mizing task scheduling as compared to existing three

algorithms.

9 Conclusion

The performance of cloud computing datacenter toward

providing better computing service that meets task deadline
can be measured based on makespan and degree of

imbalance. Models were proposed by existing researchers,

Table 19 Results of performance comparison of CSO, EPCSO [31]
and OTB-CSO with 20 VMs based on average execution time

Tasks CSO EPCSO OTB-CSO

10 28.66 16.45 13.53

20 37.09 28.53 29.15

30 58.62 42.71 37.57

40 73.34 59.46 54.04

50 135.61 96.43 88.96

60 196.24 134.72 129.06

70 253.89 198.98 174.98

80 345.11 223.45 201.69

90 416.13 259.52 252.48

100 614.34 496.02 486.57

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

A
ve

ra
ge

 m
ak

es
pa

n(
se

c)
 w

ith
 2

0V
M

s

Number of tasks

 MinMax
 PSOLDIW
 HPSOSA
 OTBCSO

Fig. 3 Comparison between
algorithms based on makespan
with 20 VMs

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

700

800

900

1000

A
ve

rg
ar

e
m

ak
es

pa
n(

se
c)

 w
ith

 1
0V

M
s

Number of tasks

 MinMax
 PSOLDIW
 HPSOSA
 OTBCSO

Fig. 4 Comparison between
algorithms based on makespan
with 10 VMs

Neural Comput & Applic (2018) 30:1845–1863 1859

123

Author's personal copy

and scheduling methods were applied to minimize the

models. In this paper, we presented an OTB-CSO algo-

rithm for optimum task scheduling in a dynamic cloud
environment based on Taguchi approach. The purpose is to

minimize makespan and degree of imbalance of the total

task scheduled on VMs based on proposed model. Imple-
mentation of the algorithm was carried out on CloudSim

tool with three groups of heterogeneous virtual machine

(VM) instances (20, 10, 5 VMs). Performance evaluation

was carried out based on makespan, degree of imbalance

and percentage (%) improvements rate. Results obtained by
OTB-CSO showed outstanding performance. The percent-

age improvements (%) recorded OTB-CSO algorithm

outperformed Min–Max, PSO-LDIW and HPSO-SA in
both makespan and degree of imbalance. The OTB-CSO

was later compared with real version of CSO and EPCSO

10 20 30 40 50 60 70 80 90 100

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

A
ve

ra
ge

 m
ak

es
pa

n(
se

c)
 w

ith
 5

V
M

s

Number of tasks

 MinMax
 PSOLDIW
 HPSOSA
 OTBCSO

Fig. 5 Comparison between
algorithms based on makespan
with 5 VMs

10 20 30 40 50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
ve

ra
ge

 d
eg

re
e

of
 im

ba
la

nc
e

w
ith

 2
0V

M
s

Number of tasks

 OTBCSO
 HPSOSA
 PSOLDIW
 MinMax

Fig. 6 Comparison between
algorithms based on degree of
imbalance with 20 VMs

1860 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

algorithm. OTB-CSO employed local search ability of

Taguchi optimization method to improve convergence
speed by achieving solutions that are optimum as it

returned minimum makespan and degree of imbalance was

discovered. A more study of other computation-based and
network-based parameters is required and also the inte-

gration of more advanced concepts such as virtual machine

migration, energy consumption, multi-objective optimiza-
tion and to optimize further the algorithm in order to scale

with larger workloads.

Acknowledgement The first author will like to acknowledge Nige-
rian Tertiary Education Trust Fund (Tetfund) for their financial sup-
port in carrying out this research.

References

1. Bey KB, Benhammadi F, Benaissa R (2015) Balancing heuristic
for independent task scheduling in cloud computing. In: Pro-
ceedings of the 2015 12th International Symposium on Pro-
gramming and Systems (ISPS), IEEE, pp 1–6

10 20 30 40 50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
ve

ra
ge

 d
eg

re
e

of
 im

ba
la

nc
e

w
ith

 1
0V

M
s

Number of tasks

 OTBCSO
 HPSOSA
 PSOLDIW
 MinMax

Fig. 7 Comparison between
algorithms based on degree of
imbalance with 10 VMs

10 20 30 40 50 60 70 80 90 100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

A
ve

ra
ge

 d
eg

re
e

of
 im

ba
la

nc
e

w
ith

 5
 V

M
s

Number of tasks

 MinMax
 PSOLDIW
 HPSOSA
 OTBCSO

Fig. 8 Comparison between
algorithms based on degree of
imbalance with 5 VMs

Neural Comput & Applic (2018) 30:1845–1863 1861

123

Author's personal copy

2. Leena VA, Ajeena BAS, Rajasree MS (2016) Genetic algorithm
based bi-objective task scheduling in hybrid cloud platform. Int J
Comput Theory Eng 8(1):7–13

3. Raza HM, Adenola FA, Nafarieh A, Robertson W (2015) The
slow adoption of cloud computing and IT workforce. Proc
Comput Sci 52(2015):1114–1119

4. Durao F, Carvalho SFJ, Fonseka A, Garcia CV (2014) Systematic
review on cloud computing. J Supercomput 68:1321–1346

5. Tsai J-T, Liu T-K, Ho W-H, Chou J-H (2008) An improved
genetic algorithm for job-shop scheduling problems using
Taguchi-based crossover. Int J Adv Manuf Technol 38:987–994

6. Banerjee S, Adhikari M, Kar S, Biswas U (2015) Development
and analysis of a new cloudlet allocation strategy for QoS
improvement in cloud. Arab J Sci Eng 40(5):1409–1425

7. Domanal GS, Reddy GRM (2014) Optimal load balancing in
cloud computing by efficient utilization of virtual machines. In:
Proceedings of the Sixth International Conference on Commu-
nication Systems and Networking (COMSNETS), IEEE, pp 1–4

8. Dhinesh BLD, Krishna PV (2013) Honey bee behavior inspired
load balancing of tasks in cloud computing environments. J Appl
Soft Comput 13(5):2292–2303

9. Ramezani F, Lu J, Hussain FK (2014) Task-based system load
balancing in cloud computing using particle swarm optimization.
Int J Parallel Prog 42:739–754

10. Shobana G, Geetha M, Suganthe RC (2014) Nature inspired
preemptive task scheduling for load balancing in cloud datacen-
ter. In: Proceedings of the International Conference on Informa-
tion Communication and Embedded Systems (ICICES), IEEE,
pp 1–6

11. Tsai J-T, Fang J-C, Chou J-H (2013) Optimized tasks scheduling
and resource allocation on cloud computing environment using
improved differential evolution algorithm. Comput Oper Res
40(2013):3045–3055

12. Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid SM (2016)
Resource scheduling for infrastructure as a service (IaaS) in cloud
computing: challenges and opportunities. J Netw Comput Appl
68:173–200

13. Abdullahi M, Ngadi MA, Abdulhamid SM (2016) Symbiotic
organism search optimization based task scheduling in cloud
computing environment. Future Gener Comput Syst
56(2016):640–650

14. Jung S-M, Kim N-U, Chung T-M (2013) Applying scheduling
algorithms with QoS in the cloud computing. In: Proceedings of
the International Conference on Information Science and Appli-
cations (ICISA), IEEE, pp 1–2

15. Tsai C-W, Huang W-C, Chiang M-H, Chiang M-C, Yang C-S
(2014) A hyper-heuristic scheduling algorithm for cloud. IEEE
Trans Cloud Comput 2(2):236–250

16. Abdullahi M, Ngadi MS (2016) Hybrid symbiotic organisms
search optimization algorithm for scheduling of tasks on cloud
computing environment. PLoS ONE 11(6):e0158229. doi:10.
1371/journal.pone.0158229

17. Awad AI, EL-Hefnawy NA, Abdel_kader HM (2015) Dynamic
multi-objective task scheduling in cloud computing based on
modified particle swarm optimization. Adv Comput Sci Int J
4(5):110–117

18. Jena RK (2015) Multi-objective task scheduling in cloud envi-
ronment using nested PSO framework. Proc Comput Sci J
57(2015):1219–1227

19. Liu C-Y, Zou C-M, Wu P (2014) A task scheduling algorithm
based on genetic algorithm and ant colony optimization in cloud
computing. In: Proceedings of the 13th International Symposium
on Distributed Computing and Applications to Business, Engi-
neering and Science (DCABES), IEEE, pp 68–72

20. Netjinda N, Sirinaovakul B, Achalakul T (2012) Cost optimiza-
tion in cloud provisioning using particle swarm optimization. In:

Proceedings of the 9th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), IEEE, pp 1–4

21. Ramezani F, Lu J, Taheri J, Hussain FK (2015) Evolutionary
algorithm-based multi-objective task scheduling optimization
model in cloud environments. World Wide Web
18(6):1737–1757

22. Singh S, Kalra M (2014) Scheduling of independent tasks in
cloud computing using modified genetic algorithm. In: Proceed-
ings of the Sixth International Conference on Computational
Intelligence and Communication Networks (CICN), IEEE,
pp 565–569

23. Tawfeek AM, El-Sisi A, Keshk EA, Torkey AF (2013) An ant
algorithm for cloud task scheduling. In: Proceedings of the
International Workshop on Cloud Computing and Information
Security (CCIS 2013), IEEE, pp 64–69

24. Wang J, Li F, Zhang L (2014) QoS preference awareness task
scheduling based on PSO and AHP methods. Int J Control Autom
7(4):137–152

25. Wu Z, Ni Z, Gu L, Liu X (2010) A revised discrete particle
swarm optimization for cloud workflow scheduling. In: Pro-
ceedings of the International Conference on Computational
Intelligence and Security (CIS), IEEE, pp 184–188

26. Abdulhamid SM, Abd Latiff MS, Abdul-Salaam G, Madni SHH
(2016) Secure scientific applications scheduling technique for
cloud computing environment using global league championship
algorithm. PLoS ONE 11(7):e0158102

27. Ashwin TS, Domanal SG, Guddeti RMR (2014) A novel bio-
inspired load balancing of virtual machines in cloud environment.
In: Proceedings of the IEEE International Conference on Cloud
Computing in Emerging Networks (CCEM), IEEE, pp 1–4

28. Chu S-C, Tsai P-W (2007) Computational intelligence based on
the behavior of cats. Int J Innov Comput Inf Control
3(2007):163–173

29. Bansal N, Maurya A, Kumar T, Singh M, Bansal S (2015) Cost
performance of QoS-driven task scheduling in cloud computing.
Proc Comput Sci J 57(2015):126–130

30. Pradhan PM, Panda G (2012) Solving multi-objective problems
using cat swarm optimization. Int J Expert Syst Appl
39(2012):2956–2964

31. Tsai P-W, Pan J-S, Chen S-M, Lio B-Y (2012) Enhanced parallel
cat swarm optimization based on Taguchi method. Expert Syst
Appl 39(2012):6309–6319

32. Abd K, Abhary K, Marian R (2013) Simulation modelling and
analysis of scheduling in robotic flexible assembly cells using
Taguchi method. Int J Prod Res 52(9):2654–2666

33. Cavory G, Dupas R, Goncalves G (2001) A genetic approach to
the scheduling of preventive maintenance tasks on a single pro-
duct manufacturing production line. Int J Prod Econ
74(2001):135–146

34. Asefi H, Jolai F, Rabiee M, Araghi MET (2014) A hybrid NSGA-II
and VNS for solving a bi-objective no-wait flexible flowshop
scheduling problem. Int J AdvManuf Technol 75(2014):1017–1033

35. Chang H-C, Chen Y-P, Liu T-K, Chou J-H (2015) Solving the
flexible job shop scheduling problem with makespan optimization
by using a hybrid Taguchi-genetic algorithm. IEEE J Mag
3:1740–1754

36. Caprilhan R, Kumar A, Stecke KE (2013) Evaluation of the
impact of information delays on flexible manufacturing systems
performance in dynamic scheduling environments. Int J Adv
Manuf Technol 67(1):311–338

37. Taguchi G, Chowdhury S, Taguchi S (2000) Robust engineering.
McGraw-Hill, New York

38. Bilgaiyan S, Sagnika S, Das M (2015) A multi-objective cat
swarm optimization algorithm for workflow scheduling in cloud
computing environment. Int J Soft Comput 10(1):37–45

1862 Neural Comput & Applic (2018) 30:1845–1863

123

Author's personal copy

http://dx.doi.org/10.1371/journal.pone.0158229
http://dx.doi.org/10.1371/journal.pone.0158229

39. Kalaiselvan G, Lavanya A, Natrajan V (2011) Enhancing the per-
formanceofwatermarkingbased on cat swarmoptimizationmethod.
In: Proceedings of the IEEE-International Conference on Recent
Trends in Information Technology (ICRTIT), IEEE, pp 1081–1086

40. Pappula L, Ghosh D (2014) Linear antenna array synthesis using
cat swarm optimization. Int J Electr Commun 68:540–549

41. Al-Salamah M (2015) Constrained binary artificial bee colony to
minimize the makespan for single machine batch processing with
non-identical job sizes. Appl Soft Comput 29(2015):379–385

42. Shojaee R, Faragardi RH, Alaee S, Yazdani N (2012) A new cat
swarm optimization based algorithm for reliability-oriented task
allocation in distributed systems. In: Symposium on Sixth Inter-
national Telecommunications (IST), IEEE, pp 861–866

43. Xu R, Chen H, Li X (2012) Makespan minimization on single
batch-processing machine via ant colony optimization. Comput
Oper Res 39(2012):582–593

44. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R
(2010) CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

45. Garey MR, Johnson DSA (2016) Guide to the theory of NP-
completeness. WH Freemann, New York

46. Al-Olimat HS, Alam M, Green R, Lee KJ (2015) Cloudlet
scheduling with particle swarm optimization. In: Fifth Interna-
tional Conference on Communication Systems and Network
Technologies (CSNT), IEEE, pp 991–995

47. Eberhart RC, Shi Y (2000) Comparing inertia weights and con-
striction factors in particle swarm optimization. In: Proceedings
of the IEEE Conference on Evolutionary Computation, ICEC,
IEEE, pp 84–88

48. Abdulhamid SM, Abd Latiff MS, Madni SHH (2016) Fault tol-
erance aware scheduling technique for cloud computing envi-
ronment using dynamic clustering algorithm. Neural Comput
Appl. doi:10.1007/s00521-016-2448-8

49. El-Sisi AB, Tawfeek MA, Keshk AE, Torkey FA (2014) Intel-
ligent method for cloud scheduling based on particle swarm
optimization algorithm. In: Proceedings of the International Arab
Conference on Information Technology (Acit2014), IEEE,
pp 39–44

50. Zhou Z, Zhigang H (2014) Task scheduling algorithm based on
greedy strategy in cloud computing. Open Cybern Syst J
8:111–114

Neural Comput & Applic (2018) 30:1845–1863 1863

123

Author's personal copy

http://dx.doi.org/10.1007/s00521-016-2448-8

	Orthogonal Taguchi-based cat algorithm for solving task scheduling problem in cloud computing
	Abstract
	Introduction
	Related Taguchi-based scheduling works
	Taguchi orthogonal approach
	Problem formulation
	Mathematical model of the scheduling goal

	Cat swarm optimization
	Seeking and tracing mode of cat
	Seeking mode
	Tracing mode

	Proposed CSO tracing mode (local search)

	Taguchi optimization algorithm
	OTB-CSO based algorithm
	Taguchi experimental illustration for task scheduling

	Experimental setup
	Performance metric
	Makespan time
	Degree of imbalance
	Performance improvement rate (PIR%)

	Results and discussion
	Results
	Discussion

	Conclusion
	Acknowledgement
	References

