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ABSTRACT 
This paper introduces a method for clustering complex and 
linearly non-separable datasets, without any prior knowledge of 
the number of naturally occurring clusters. The proposed method 
is based on an improved variant of the Particle Swarm 
Optimization (PSO) algorithm. In addition, it employs a kernel-
induced similarity measure instead of the conventional sum-of-
squares distance. Use of the kernel function makes it possible to 
cluster data that is linearly non-separable in the original input 
space into homogeneous groups in a transformed high-
dimensional feature space. Computer simulations have been 
undertaken with a test bench of five synthetic and three real life 
datasets, in order to compare the performance of the proposed 
method with a few state-of-the-art clustering algorithms. The 
results reflect the superiority of the proposed algorithm in terms of 
accuracy, convergence speed and robustness. 

Categories and Subject Descriptors 
I.2.2 [Automatic Programming], I.2.6 [Learning], I.5.3 
[Clustering], H.3.3 [Information Search and Retrieval] 

General Terms 
Algorithms, Experimentation. 

Keywords 
Particle Swarm Optimization, Kernel, Clustering, Validity index, 
Genetic Algorithm. 

1. INTRODUCTION 
Clustering means the act of partitioning an unlabeled dataset into 
groups of similar objects. Each group, called a ‘cluster’, consists 
of objects that are similar between themselves and dissimilar to 
objects of other groups. In the past few decades, cluster analysis 
has played a central role in diverse domains of science and 
engineering [1-3].  

Data clustering algorithms can be hierarchical or partitional [4]. 
In hierarchical clustering, the output is a tree showing a sequence 
of clustering with each cluster being a partition of the data set [4]. 
Partitional clustering algorithms, on the other hand, attempts to 

decompose the data set directly into a set of disjoint clusters. They 
try to optimize certain criteria (e.g. a squared-error function). The 
criterion function may emphasize the local structure of the data, as 
by assigning clusters to peaks in the probability density function, 
or the global structure. Clustering can also be performed in two 
different modes: crisp and fuzzy. In crisp clustering, the clusters 
are disjoint and non-overlapping in nature. Any pattern may 
belong to one and only one class in this case. In case of fuzzy 
clustering, a pattern may belong to all the classes with a certain 
fuzzy membership grade [4]. A comprehensive survey of the 
various clustering algorithms can be found in [4]. 

The problem of partitional clustering has been approached from 
diverse fields of knowledge like statistics (multivariate analysis) 
[5], graph theory [6], expectation maximization algorithms [7], 
artificial neural networks [8], evolutionary computing [9-12], 
swarm intelligence [13-15] and so on.  

Most of the existing evolutionary or swarm based clustering 
algorithms employ an Euclidian distance metric to construct their 
fitness functions. They work well with datasets in which the 
natural clusters are nearly hyper-spherical and linearly separable 
(like the artificial dataset 1 used in this paper). But the same 
algorithms provide severe misclassifications when the dataset is 
complex, with linearly non-separable patterns (like the synthetic 
datasets 2, 3 and 4 described in Section 5).  Moreover, very few 
works [16-18] have been undertaken to determine the number of 
clusters ‘k’ in a dataset, instead of accepting the same as a user 
input. Although, the problem of finding an optimal k is quite 
important from a practical point of view, the research outcome is 
still unsatisfactory even for some of the benchmark datasets [19]. 

In this paper, we propose an alternative approach towards the 
problem of automatic clustering (without having any prior 
knowledge of k initially) using a modified version of the PSO 
algorithm [20]. Our procedure employs a kernel induced 
similarity measure instead of the conventional Euclidean distance 
metric used by majority of the existing clustering techniques. A 
kernel function measures the distance between two data points by 
implicitly mapping them into a high dimensional feature space 
where the data is linearly separable. Not only does it preserves the 
inherent structure of groups in the input space, but also simplifies 
the associated structure of the data patterns [21, 22]. Several 
kernel-based learning methods, including the Support Vector 
Machine (SVM), have recently shown to perform remarkably well 
in supervised learning [23-25].  The kernelized versions of the k-
means [26] and the fuzzy c-means (FCM) [27] algorithms 
reported in [22] and [25] have reportedly outperformed their 
original counterparts over several test cases. 
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Now, we may summarize the contributions made in the paper as 
follows: 

i) First, we develop a framework for detecting the number of 
partitions in a dataset along with the simultaneous refining of the 
cluster prototypes through one shot of optimization. 

ii) We propose a new version of the PSO algorithm based on the 
multi-elitist strategy, well-known in the field of evolutionary 
algorithms. Our experiments indicate that the proposed MEPSO 
algorithm yields more accurate solutions than the classical PSO in 
context to the present problem. 

iii) We reformulate the CS cluster validity index [28] using the 
kernelized distance measure. This reformulation eliminates the 
need to compute the cluster-centroids repeatedly for evaluating 
CS value, due to the implicit mapping via the kernel function. The 
new CS measure forms the objective function in our algorithm. 

We have undertaken extensive performance comparisons in order 
to establish the effectiveness of the proposed method. The rest of 
the paper is organized as follows: Section 2 briefly describes the 
clustering problem, the kernel distance metric and the 
reformulation of the CS measure. In Section 3, we briefly outline 
the classical PSO and then introduce the MEPSO algorithm. 
Section 4 describes the novel procedure for automatic clustering 
with MEPSO. Experimental results are presented and discussed in 
Section 5. Finally the paper is concluded in Section 6. 

2. KERNEL BASED CLUSTERING AND 
THE VALIDITY INDICES 

2.1 The Crisp Clustering Problem 
Let },...,,{ 21 nxxxX

rrr
= be a set of n unlabeled patterns in the d-

dimensional input space. Here, each element xi,j in the i-th 
vector ixr corresponds to the j-th real valued feature (j = 1, 2, 
.....,d) of the i-th pattern ( i =1,2,...., n). Given such a set, the 
partitional clustering algorithm tries to find a partition C = {C1, 
C2,......, Ck}of k classes, such that the similarity of the patterns in 
the same cluster is maximum and patterns from different clusters 
differ as far as possible. The partitions should maintain the 
following properties: 

1) Φ≠iC },...,2,1{ ki∈∀ . 

2) Φ=∩ ji CC , ji ≠∀ and },...,2,1{, kji ∈ . 

3) PC
K

i
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1

. 

The most popular way to evaluate similarity between two patterns 
amounts to the use of the Euclidean distance, which between any 
two d-dimensional patterns ixr  and jxr  is given by,    

ji

d

p
pjpiji xxxxxxd rrrr

−=−= ∑
=1

2
,, )(),(              (1)  

2.2 The Kernel Based Similarity Measure 
Given a dataset X in the d-dimensional real space dℜ , let us 
consider a non-linear mapping function from the input space to a 
high dimensional feature space H:   

 Hd →ℜ:ϕ  , )( ii xx
rr

ϕ→                                                    (2) 

Where T
diiii xxxx ],.....,,[ ,2,1,=

r
and  

T
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By applying the mapping, a dot product j
T

i xx rr . is transformed 

into )().( ji
T xx

rr
ϕϕ .  Now, the central idea in kernel-based 

learning is that the mapping function ϕ need not be explicitly 

specified. The dot product )().( ji
T xx

rr
ϕϕ in the transformed 

space can be calculated through the kernel function ),( ji xxK
rr

 in 

the input space dℜ . Consider the following simple example: 

Example 1: let d = 2 and H = 3 and consider the following 
mapping: 
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Now the dot product in feature space H: 
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Clearly the simple kernel function K is the square of the dot 

product of vectors ixr
and jxr

in
dℜ . Hence, the kernelized 

distance measure between two patterns ixr and jxr is given by:  
2
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Among the various kernel functions used in literature, in the 
present context, we have chosen the most widely used Gaussian 
kernel (also known as the Radial Basis Function) [32], which can 
be represented as: 

           
⎟
⎟
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Where σ > 0. Clearly, for Gaussian kernel, ),( ii xxK
rr

= 1 and thus 
relation (3) reduces to:  

2
)()( ji xx

rr
ϕϕ − = )),(1.(2 ji xxK

rr
−                                         (5) 

2.3 The Kernelized Validity Index 
Cluster validity indices correspond to the statistical-mathematical 
functions used to judge the results of any clustering algorithm on 
a quantitative basis. For crisp clustering, a few well-known 
indices available in the literature are the Dunn’s index (DI) [29], 
Calinski-Harabasz index [30] and Davis-Bouldin (DB) index [31]. 
In this work, we have based our fitness function on a recently 
proposed validity index known as CS measure [28]. This is due to 
the fact that, CS measure has been shown to improve over several 
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other popular validity indices in tackling clusters of different 
densities and/or sizes in [28]. According to Chou et al. the price to 
be paid for this greater accuracy comes in the form of high 
computational load with increasing k and n.  

Before applying the CS measure, centroid of a cluster is computed 
by averaging the data vectors belonging to that cluster using the 
formula, 

                        ∑
∈

=
ij Cx

j
i

i x
N

m
rr 1

                                           (6)                                                                                    

A distance metric between any two data points ixr  and jxr  is 

denoted by ),( ji xxd rr
. Then the CS measure can be defined as,  
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Now, using a Gaussian kernelized distance measure and 
transforming to the high dimensional feature space, the CS 
measure reduces to (using relation (5)): 
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The minimum value of this CS measure indicates an optimal 
partition of the dataset. The value of ‘k’ which minimizes 
CSkernel(k) therefore gives the appropriate number of clusters in 
the dataset.  

3. THE MULTI-ELITIST PSO (MEPSO)  
The concept of Particle swarms, although initially introduced for 
simulating human social behaviors, has become very popular 
these days as an efficient search and optimization technique. In 
PSO, a population of conceptual ‘particles’ is initialized with 
random positions iZ

r
 and velocities iV

r
, and a function, f, is 

evaluated, using the particle’s positional coordinates as input 
values. In an n-dimensional search space, iZ

r
= (Zi1, Zi2, Zi3,...,Zin) 

and iV
r

 = (Vi1, Vi2, Vi3,...,Vin).   Positions and velocities are 
adjusted, and the function is evaluated with the new coordinates at 

each time-step.  The basic update equations for the d-th dimension 
of the i-th particle in PSO may be given as 
 
Vid (t+1) = ω.Vid (t) + C1. φ1. (Plid -Xid (t)) + C2. φ2. (Pgd-X id(t))                             
Zid (t+1) = Zid (t) + Vid (t+1)                                                      (9)                           

The variables φ1 and φ2 are random positive numbers, drawn from 
a uniform distribution and defined by an upper limit φmax, which is 
a parameter of the system. C1 and C2 are called acceleration 
coefficients whereas ω is called inertia weight. lP

r
 is the local best 

solution found so far by the i-th particle, while gP
r

 represents the 

positional coordinates of the fittest particle found so far in the 
entire community. Once the iterations are terminated, most of the 
particles are expected to converge to a small radius surrounding 
the global optima of the search space. 

The canonical PSO has been subjected to empirical and 
theoretical investigations by several researchers [32, 33].  In many 
occasions, the convergence is premature, especially if the swarm 
uses a small inertia weight ω or constriction coefficient [33]. As 
the global best found early in the searching process may be a poor 
local minima, we propose a multi-elitist strategy for searching the 
global best of the PSO. We call the new variant of PSO the 
MEPSO. The idea draws inspiration from the works reported in 
[34]. We define a growth rate β for each particle. When the fitness 
value of a particle at the t-th iteration is higher than that of a 
particle at the (t-1)-th iteration, the β will be increased. After the 
local best of all particles are decided in each generation, we move 
the local best, which has higher fitness value than the global best 
into the candidate area. Then the global best will be replaced by 
the local best with the highest growth rate β. Therefore, the fitness 
value of the new global best is always higher than the old global 
best. The pseudo code about MEPSO is as follows: 

 

Procedure MEPSO 

For t =1 to tmax 
   For j =1 to N                           // swarm size is N 
      If (the fitness value of particlej in t-th time-step>     that of 
particlej in (t-1)-th time-step) 
                                βj = βj +1; 
      End  
       Update Local bestj . 
      If (the fitness of Local bestj > that of Global best now) 
          Choose Local bestj put into candidate area. 
      End 
    End 
    Calculate β of every candidate, and record the candidate of βmax. 
    Update the Global best to become the candidate of  
     β max . 
    Else 
       Update the Global best to become the particle of      highest 
fitness value. 
  End 
End 

4
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4. THE AUTOMATIC CLUSTERING 
ALGORITHM 

4.1 The Particle Representation 
In the proposed method, for n data points, each p-dimensional, 
and for a user-specified maximum number of clusters kmax , a 
particle is a vector of real numbers of dimension kmax + kmax × p. 
The first cmax entries are positive floating-point numbers in (0, 1), 
each of which controls whether the corresponding cluster is to be 
activated (i.e. to be really used for classifying the data) or not. The 
remaining entries are reserved for kmax cluster centers, each p-
dimensional. A single particle can be shown as: 

)(tZi
r

= 

 

    Activation Threshhold                       Cluster Centroids 

The j-th cluster center in the i-th particle is active or selected for 
partitioning the associated dataset if Ti,j > 0.5. On the other hand, 
if Ti,j < 0.5, the particular j-th cluster is inactive in the i-th particle. 
Thus the Ti,j ‘s behave like control parameters (we call them 
activation thresholds) in the particles governing the selection of 
the active cluster centers. The rule for selecting the actual number 
of clusters specified by one particle is: 

IF Ti,j  > 0.5 THEN the j-th cluster center jim ,
r

is ACTIVE 

ELSE jim ,
r

is INACTIVE                                                    (10)                                     

The quality of the partition yielded by such a particle can be 
judged by an appropriate cluster validity index.  

If due to mutation some threshold T in a particle exceeds 1 or 
becomes negative, it is fixed to 1 or zero, respectively. However, 
if it is found that no flag could be set to one in a particle (all 
activation thresholds are smaller than 0.5), we randomly select 2 
thresholds and re-initialize them to a random value between 0.5 
and 1.0. Thus the minimum number of possible clusters is 2. 

4.2 The Fitness Function 
One advantage of the proposed algorithm is that it can use any 
suitable validity index as its fitness function. We have used the 
kernelized CS measure as the basis of our fitness function, which 
for the i-th particle can be described as: 

                         
epskCS

f
inel

i +
=

)(
1

ker
                          (11)                                                                         

where eps is a very small constant (we used 0.0002). 
Maximization of fi implies a minimization of the kernelized CS 
measure leading to the optimal partitioning of the dataset. 

4.3 Avoiding Erroneous Particles with Empty 
Clusters or Unreasonable Fitness Evaluation 
There is a possibility that in our scheme, during computation of 
the kernelized CS index, a division by zero (a positive infinity like 
5.0/0.0 or not a number situation like 0.0/0.0) may be 
encountered. This can occur when one of the selected cluster 
centers is outside the boundary of distributions of the data set. To 

avoid this problem we first check to see if in any particle, any 
cluster has fewer than 2 data points in it. If so, the cluster center 
positions of this special particle are re-initialized by an average 
computation. Suppose there are k active cluster centers in this 
particle and we have total n data points. Then we collect n/k data 
points for every individual cluster center that has the minimum 
distance between data points and itself. Finally, we update the 
new cluster centers by computing the average value of n/k data 
points that were selected into the corresponding cluster centers. 

4.4 Complete Procedure 
The complete algorithm can now be presented in the following 
form: 

Step 1:  Initialize each chromosome to contain k number                  
of randomly selected   cluster centers and k (randomly chosen) 
activation thresholds in [0, 1]. 
 
Step 2: Find out the active cluster centers in each particle with the 
help of the rule described in (10). 

 
Step 3: For t =1to tmax do 

i) For each data vector pX
r

, calculate its distance metric  

  ),( , jip mXd
rr

 from   all        active cluster centers of the i-

th particle iZ
r

. 

 ii) Assign pX
r

 to that particular cluster center jim ,
r

where                            

 
 
iii)  Check if the number of data points belonging to any 

cluster center    mi,j is less than 2. If so, update the cluster 
centers of the particle using the concept of average 
described earlier.           

iv)  Change the population members according to the 
MEPSO algorithm. Use the fitness of the particles to 
guide the dynamics of the swarm. 

 
Step 4:  Report as the final solution the cluster centers and the 
partition obtained   by the globally best particle (one yielding the 
highest value of the fitness function) at time t = tmax. 

5. EXPERIMENTS 
To test the effectiveness of the proposed method, we compare its 
performance with five other clustering algorithms using a test-suit 
of five artificial and three real world datasets. Among the 
considered clustering algorithms, there are two recently developed 
automatic clustering algorithms well known as the GCUK 
(Genetic Clustering with an Unknown number of clusters K) [12] 
and the DCPSO (Dynamic Clustering PSO) [18]. In order to 
investigate the effects of the changes made in the classical PSO 
algorithm, we have compared MEPSO with an ordinary PSO 
based kernel-clustering method that uses the same particle 
representation and fitness function as the MEPSO. Both of these 
algorithms were let run on the same initial populations. The rest of 
the clustering algorithms  are the kernel k-means algorithm [22] 
and a kernelized version of the subtractive clustering [35]. Both 
the algorithms were provided with the correct number of clusters 
as they are non-automatic.   

Ti,1 Ti,2 ..... Ti,Kmax 
1,imr  2,imr  ......

. max,kimr  
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Table 2. Parameter settings for different algorithms   

 

Table 1. Description of the datasets  

 
Dateset 

Number of 
Datapoints 

(n) 

Number 
of clusters 

(k) 

Data-
dimension 

(d) 
Synthetic1 500 2 2 

Synthetic2 52 2 2 

Synthetic3 400 4 3 

Synthetic4 250 5 2 

Synthetic5 600 2 2 

Glass 214 6 9 

Vowel 871 6 3 

Breast cancer 683 2 9 
 

We used datasets with a wide variety in the number and shape of 
clusters, number of data points and the count of features of each 
datum. The real life datasets used in the experiments are well-
known as the Vowel [12], Glass and the Wisconsin breast cancer 
data set [36]. The synthetic datasets included, comes with linearly 
non-separable clusters of different shapes (like elliptical, 
concentric circular dish and shell, rectangular etc). Brief details of 
the datasets have been provided in Table 1. Scatter plot of the 
synthetic datasets have also been shown in Figure 1.The clustering 
results were judged using Huang’s accuracy measure [37]:                                                                                        

 

                                                                                                   (12) 

where ni is the number of data occurring in both the i-th cluster 
and its corresponding true cluster, and n is the total number of 
data points in the data set. According to this measure, a higher 
value of r indicates a better clustering result, with perfect 
clustering yielding a value of r = 1. We used σ = 1.1 for all the 
artificial datasets, σ = 0.9 for breast cancer dataset and σ = 2.0 for 
vowel and glass dataset for the RBF kernel. In these experiments, 
the kernel k-means was run 100 times with the initial centroids 
randomly selected from the data set. A termination criterion of ε = 
0.001. The parameters of the kernel-based subtractive methods 
were set to α = 5.4 and β = 1.5 [35]. Rest of the parameter settings 
are shown in Table 2. Table 3 compares the algorithms on the 
quality of the optimum solution as judged by the Huang’s 
measure. The mean and the standard deviation (within 
parentheses) for 40 independent runs (with different seeds for the 
random number generator) of each of the six algorithms are 
presented in Table 3.  Missing values of standard deviation 
indicate a zero standard deviation. The best solution in each case 
has been shown in bold. Table 4 shows results of unpaired t-tests 

between the better of the new algorithm (MEPSO) and the best of 
the other five in each case (standard error of difference of the two 
means, 95% confidence interval of this difference, the t value, and 
the two-tailed P value).Table 5 presents the mean and standard 
deviation of the number of classes found by the three automatic 
clustering algorithms. In Figure 2 we present the clustering results 
on the synthetic datasets by the new MEPSO algorithm (to save 
space we do not provide all the results obtained through 
simulation). For comparing the speed of the stochastic algorithms 
like GA, PSO or DE, we choose number of fitness function 
evaluations (FEs) as a measure of computation time instead of 
generations or iterations. From the data provided in Table 3, we 
choose a threshold value of the classification accuracy for each 
dataset. This threshold value is somewhat larger than the 
minimum accuracy attained by each automatic clustering 
algorithm. Now we run an evolutionary clustering algorithm on 
each dataset and stop as soon as the algorithm achieves the proper 
number of clusters as well as the threshold accuracy. We then note 
down the number of fitness function evaluations the algorithm 
takes. A lower number of FEs corresponds to a faster algorithm. 
The speed comparison results are provided in Table 6. The kernel 
k-means and the subtractive clustering method are not included in 
this table, as they are non-automatic and do not employ 
evolutionary operators as in GCUK and PSO based methods.  

As evident from Tables 3, 5 and 6, the kernel based MEPSO 
algorithm performed markedly better as compared to the other 
competitive clustering algorithms, in terms of both accuracy and 
convergence speed. We note that in general, the kernel based 
clustering methods including the simple kernel k-means and the 
kernel-subtractive clustering algorithm, outperform the GCUK or 
DCPSO algorithms (which do not use the kernelized fitness 
function) especially on linearly non-separable artificial datasets 
like synthetic_1, synthetic_2 and synthetic_5. Although the 
proposed method provided a better clustering result than the other 
methods for Synthetic_5 dataset, its accuracy for this data was 
lower than the seven other data sets considered. This indicates that 
the proposed approach is limited in its ability to classify non-
spherical clusters. The PSO based methods (especially MEPSO) 
on average took lesser computational time than the GCUK 
algorithm over most of the datasets.  One possible reason of this 
may be the use of less complicated variation operators (like 
mutation) in PSO as compared to the operators used for GA. We 
also note that the MEPSO performs much better than the classical 
PSO based kernel-clustering scheme. Since both the algorithms 
use same particle representation and starts with the same initial 
population, difference in their performance must be due to the 
difference in their internal operators and parameter values. This 
demonstrates the effectiveness of the multi-elitist strategy 
incorporated in the MEPSO algorithm. 

GCUK DCPSO PSO MEPSO 

Pop_size 70 Pop_size 40 Pop_size 40 Pop_size 40 
Cross-over Probability μc 0.85 Inertia weight 0.75 Inertia weight 0.75 Inertia weight 0.794 

C1, C2 1.494 Mutation probability μm 0.005 
Pini 0.80 

C1, C2 2.00 C1 
C2 

0.35 → 2.4 
2.4 → 0.35 

Kmax 
Kmin 

15 
2 

Kmax 
Kmin 

15 
2 

Kmax 
Kmin 

15 
2 

Kmax 
Kmin 

15 
2 
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Table 3: Mean and standard deviation of the clustering accuracy (%) achieved by each  clustering algorithm over 40 independent 
runs (Each run continued up to 50, 000 function evaluations for GCUK, DCPSO, Kernel_ PSO and Kernel_MEPSO)   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Table 4: Results of unpaired t-tests on the data of Table 3 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Table 5: Mean and standard deviation (in parenthesis) of the number of clusters found for four automatic clustering algorithms 
over 40 independent runs. 

 

Algorithms  
Datasets Kernel k-means Kernel Sub_clust GCUK DC-PSO Kernel_PSO Kernel_MEPSO 

Synthetic1 83.45 
(0.032) 

87.28 
 

54.98 
(0.88) 

57.84 
(0.065) 

90.56 
(0.581) 

99.45 
(0.005) 

Synthetic2 71.32 
(0.096) 

75.73 
 

65.82 
(0.146) 

59.91 
(0.042) 

61.41 
(0.042) 

80.92 
(0.0051) 

Synthetic3 89.93 
(0.88) 

94.03 
 

97.75 
(0.632) 

97.94 
(0.093) 

92.94 
(0.193) 

99.31 
(0.001) 

Synthetic4 67.65 
(0.104) 

80.25 
 

74.30 
(0.239) 

75.83 
(0.033) 

78.85 
(0.638) 

87.84 
(0.362) 

Synthetic5 81.23 
(0.127) 84.33 54.45 

(0.348) 
52.55 

(0.209) 
89.46 

(0.472) 
99.75 

(0.001) 

Glass 68.92 
(0.032) 73.92 76.27 

(0.327) 
79.45 

(0.221) 
70.71 

(0.832) 
92.01 

(0.623) 

Vowel 70,83 
(0.202) 

54.36 
 

79.04 
(0.381) 

86.31 
(0.362) 

84.63 
(0.903) 

94.15 
(0.002) 

Breast Cancer 66.84 
(0.321) 70.54 73.22 

(0.437) 
78.19 

(0.336) 
80.49 

(0.342) 
86.35 

(0.211) 
Average 72.28 75.16 74.48 76.49 77.58 91.65 

Datasets Std. Err t 95% Conf. Interval Two-tailed P Significance 
Synthetic1 0.005 976.36 (-5.01, -4.98) < 0.0001 Extremely significant 
Synthetic2 0.001 9094.7 (-7.19, -7.18) < 0.0001 Extremely significant 
Synthetic3 0.015 129.88 (-1.94, -1.88) < 0.0001 Extremely significant 
Synthetic4 0.057 132.61 (-7.70, -7.48) <0.0001 Extremely Significant 
Synthetic5 0.075 137.88 (10.14, 10.44) <0.0001 Extremely Significant 

Glass 0.105 120.17 (-12.77 , -12.35) <0.0001 Extremely Significant 

Vowel 0.057 134.52 (-7.81,  -7.58) < 0.0001 Extremely significant 

Breast Cancer 0.063 130.07 (8.04, 8.28) < 0.0001 Extremely significant 

Algorithms Synthetic_1 Synthetic_2 Synthetic_3 Synthetic_4 Synthetic_5 Glass Breast 
cancer Vowel  

GCUK 2.50 
(0.021) 

3.05 
(0.118) 

4.15 
(0.039) 

9.85 
(0.241) 

4.25 
(0.921) 

5.85 
(0.035) 

2.25 
(0.063) 

5.05 
(0.008) 

DCPSO 2.45 
(0.121) 

2.80 
(0.036) 

4.25 
(0.051) 

9.05 
(0.726) 

6.05 
(0.223) 

5.60 
(0.009) 

2.25 
(0.026) 

7.50 
(0.057) 

Ordinary PSO 2.50 
(0.026) 

2.65 
(0.126) 

4.10 
(0.062) 

9.35 
(0.335) 

2.25 
(0.361) 

5.75 
(0.075) 

2.00 
(0.00) 

5.70 
(0.025) 

Kernel_MEPSO 2.10 
(0.033) 

2.15 
(0.102) 

4.00 
(0.00) 

10.05 
(0.021) 

2.05 
(0.001) 

6.05 
(0.015) 

2.00 
(0.00) 

5.90 
(0.001) 
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          (a) Synthetic1                             (b) Synthetic3 
 
   
                                                     
 
 
 
 
 
 
  
            
               (c) Synthetic4                           (d) Synthetic5 
 
 Fig. 1. Two- and three-dimensional synthetic datasets used in 

this study. 
 

Table 6:  Mean and standard deviations of the number of FEs 
(over 40 successful runs) required by each algorithm to reach 

a predefined cut-off value of the classification accuracy. 

 
Dateset 

Thresh- 
hold 

accurac
y (in %) 

GCUK DCPSO Ordinary 
PSO 

Kernel 
MEPSO 

Synthetic1 50.00 48000.05 
(21.43) 

42451.15 
(11.57) 

43812.30 
(2.60) 

37029.65 
(17.48) 

Synthetic2 55.00 41932.10 
(12.66) 

45460.25 
(20.97) 

40438.05 
(18.52) 

36271.05 
(10.41) 

Synthetic3 85.00 40000.35 
(4.52) 

35621.05 
(12.82) 

37281.05 
(7.91) 

32035.55 
(4.87) 

Synthetic4 65.00 46473.25 
(7.38) 

43827.65 
(2.75) 

42222.50 
(2.33) 

36029.05 
(6.38) 

Synthetic5 50.00 43083.35 
(5.30) 

39392.05 
(7.20) 

42322.05 
(2.33) 

35267.45 
(9.11) 

Glass 65.00 47625.35 
(6.75) 

40382.15 
(7.27) 

38292.25 
(10.32) 

37627.05 
(12.36) 

Vowel 55.00 43392.25 
(31.83) 

41271.05 
(8.03) 

34070.65 
(5.26) 

32847.95 
(23.62) 

Breast 
Cancer 65.00 40390.00 

(11.45) 
37262.65 
(13.64) 

35872.05 
(8.32) 

32837.65 
(4.26) 

 

6. CONCLUSIONS 
This paper has presented a new, PSO-based strategy for clustering 
of linearly non-separable patterns. An important feature of the 
proposed technique is that it is able to find the optimal number of 
clusters automatically (that is, the number of clusters does not 
have to be known in advance) for any previously unhandled 
dataset. The proposed kernel_MEPSO algorithm has been shown 
to outperform the other state-of-the-art clustering algorithms in a 
 

 
 
 
          
 
 
 
  

 
(a) Synthetic1                                  (b) Synthetic3 

 

 
 
 
 
 
 
 
           
  

(c) Synthetic5                                   (d) Synthetic4 
 

Fig. 2. Two- and three-dimensional synthetic datasets 
clustered with MEPSO. 

 
statistically meaningful way over all the benchmark datasets 
discussed in this paper. This certainly does not lead us to claim 
that it may outperform DCPSO or GCUK over every dataset since 
it is impossible to model all the possible complexities of a real life 
data with the limited test-suit that we used for testing the 
algorithms. In addition, the performance of DCPSO and GCUK 
may also be enhanced by modifying there fitness functions with a 
kernel induced distance metric. This renders itself to further 
research with these algorithms. However, the only conclusion we 
can draw at this point is that MEPSO with a kernel based CS 
measure can serve as an attractive alternative for dynamic 
clustering of completely unknown datasets with complex cluster 
structures.  
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