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Abstract: Particle Swarm Optimization (PSO) is arguably 

one of the most popular nature- inspired algorithms for real 

parameter optimization at present. The existing theoretical 

research on PSO is mostly based on the gbest (global best) 

particle topology, which usually is susceptible to false or 

premature convergence over multi-modal fitness 

landscapes. The present standard PSO (SPSO 2007) uses an 

lbest (local best) topology where a particle is stochastically 

attracted not towards the best position found in the entire 

swarm, but towards the best position found by any particle 

in its topological neighborhood. This paper presents a first 

step towards a probabilistic analysis of the lbest PSO with 

variable random neighborhood topology by addressing 

issues like inter-particle interaction and probabilities of 

selection based on particle ranks. 

 

Keywords: Particle Swarm Optimization, Neighborhood 

Topologies,  Swarm Intelligence, Global Optimization. 

 

1. Introduction 
 

The concept of particle swarm, although initially introduced 

for simulating human social behavior, has become very 

popular these days as an efficient means for intelligent 

search and optimization. The Particle Swarm Optimization 

(PSO) [1 - 5], as it is called now, does not require any 

gradient information of the function to be optimized uses 

only primitive mathematical operators and is conceptually 

very simple. Since its inception in 1995, PSO has attracted a 

great deal of attention of the researchers all over the globe 

resulting into nearly uncountable number of variants of the 

basic algorithm, theoretical and empirical investigations of 

the dynamics of the particles, parameter selection and 

control, and applications of the algorithm to a wide 

spectrum of real world problems from diverse field of 

science and engineering. For a comprehensive knowledge 

on the foundations, perspectives, applications of PSO [6 - 

8].  

The first stability analysis of the particle dynamics was due 

to Clerc and Kennedy [9]. They considered a deterministic 

approximation of the swarm dynamics by treating the 

random coefficients as constants, and studied stable and 

limit cyclic behavior of the dynamics for the settings of 

appropriate values to its parameters. A more generalized 

stability analysis of particle dynamics based on Lyapunov 

stability theorems was undertaken by Kadirkamanathan et 

al. [10]. Some other significant works in this direction can 

be found in [11–13, 22]. A majority of the research works 

including the above-mentioned theoretical studies on PSO 

are centered around the gbest PSO model, where a particle 

is attracted towards the best position found in the entire 

swarm. The gbest PSO, however, is susceptible to premature 

and/or false convergence over the multi-modal fitness 

landscapes [5, 14].  

The current standard PSO (SPSO 2007) [14], obtainable 

from the Particle Swarm Central [15], uses an lbest topology 

where each particle is stochastically attracted to the best 

solution that any particle in their neighborhood has found.  

In this work, we provide a simple probabilistic analysis of 

the information exchange among the particles in lbest PSO 

using the variable random topology model of SPSO 2007. 

The analysis provides important insights into the process of 

choosing the informants by a particle in variable random 

neighborhood. The analysis undertaken in this paper is the 

first of its kind and will provide a basis for the future 

theoretical investigation of the internal search mechanisms 

of lbest PSO.  

 

2. The Particle Swarm Optimization Algorithm 

 
2.1. The Classical PSO 
 

The classical PSO starts with the random initialization of a 

population of candidate solutions (particles) over the fitness 

landscape. However, unlike other evolutionary computing 

techniques, PSO uses no direct recombination of genetic 



material between individuals during the search. Rather it 

works depending on the social behavior of the particles in 

the swarm. Therefore, it finds the global best solution by 

simply adjusting the trajectory of each individual towards its 

own best position and toward the best neighboring particle 

at each time-step (generation). In a D-dimensional search 

space, the position vector of the i-th particle is given by 

),.......,,( ,2,1, Diiii xxxX =
r

and velocity of the i-th particle is 

given by ),.......,,( ,2,1, Diiii vvvV =
r

. Positions and velocities 

are adjusted and the objective function to be optimized 

)( iXf
r

 is evaluated with the new coordinates at each time-

step. The velocity and position update equations for the d-th 

dimension of the i-th particle in the swarm may be 

represented as: 
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 where 1rand and 2rand are random positive numbers 

uniformly distributed in (0,1) and are drawn anew for each 

dimension of each particle.
l

ip
r

 is the personal best solution 

found so far by an individual particle while 
g

ip
r

represents 

the best particle in a neighborhood of the i-th particle, for 

lbest PSO model. Note that in PSO, a neighborhood is 

defined for each individual particle as the subset of particles 

which it is able to communicate with. The gbest PSO may 

be regarded as a special case of the lbest model where the 

entire swarm acts as the neighborhood of any particle and 

inbest simply becomes the globally best position found so 

far by all the particles in the population. In lbest PSO, if at 

any iteration, a particle is the best in its neighborhood, then 

the velocity update formula for this particle will be: 
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The first term in the velocity updating formula is referred to 

as the ‘cognitive part’. The last term of the same formula is 

interpreted as the ‘social part’, which represents how an 

individual particle is influenced by the other members of its 

society. C1 and C2 are called acceleration coefficients and 

they determine the relative influences of the cognitive and 

social parts on the velocity of the particle. The particle’s 

velocity is clamped to a maximum 

value
T

DvvvV ],...,,[ max,2max,1max,max =
r

. If in d-th 

dimension, div ,  exceeds dvmax, specified by the user, then 

the velocity of that dimension is assigned to 

ddi vvsign max,, *)( , where sign(x) is the triple-valued 

signum function.  

 

2.2. Topological variants of the classical PSO 
 

The basic PSO algorithm used in most of the existing papers 

implicitly uses a fully connected neighborhood topology (or 

gbest). Every particle is a neighbor of every other particle. 

Hence all particles are stochastically attracted towards the 

best solution found so far by any member of the swarm. 

Here each particle has access to the information of all other 

members in the community.  

However, local neighborhood models (or lbest) have also 

been proposed for PSO long ago, where each particle has 

access to the information corresponding to its immediate 

neighbors, according to a certain swarm topology. The two 

most common topologies are the ring topology, in which 

each particle is connected with two neighbors and the wheel 

topology (typical for highly centralized business 

organizations), in which the individuals are isolated from 

one another and all the information is communicated to a 

focal individual. Kennedy and Mendes [17 - 19] evaluated a 

number of topologies presented as well as the case of 

random neighbors. Their research [18, 20] suggest that the 

gbest version converges fast but can be trapped in a local 

optimum very often, while the lbest network has more 

chances to find an optimal solution, although with slower 

convergence. The current standard PSO (SPSO’07 [16]) 

uses an lbest network with variable random neighborhood 

model and our present analysis will mostly be based on this 

model only.  It is described in more details in the next 

subsection. 

 

2.2. The Variable Random Topology 

 
The variable neighborhood topology is described in Maurice 

Clerc’s book on PSO [5] and it can be seen now as a 

particular case of the stochastic star of the work of Miranda 

et al. [21]. In this topology, there is no centralized concept 

of a global best. The particles select each other as 

informants, and out of these informants, one particle may be 

selected as the selecting particle’s global best. The topology 

is highly dependent on a threshold probability p, which is 

constant for all particles in the swarm. Each particle assigns 

a uniformly distributed random value (between 0 and 1) to 

every other particle in the swarm. Then it checks how many 

of these particles have values less than the threshold p.  

The particles having values less than p are chosen as 

informants, implying that the selecting particle will attempt 

to select its global best from these particles. The best 

particle among the informants is chosen as the global best     

for the selecting particle. If the particle’s own fitness is 

better than the best informant, the particle simply takes its 

own locally best position into account.  

 

 

 



3. The Analytical Treatment  

 
Without the loss of generality, in the analysis that follows, 

we assume that the particles are arranged in an ascending 

order of their locally best fitness. From now on, when we 

refer to the i-th particle, we mean the i-th ranked particle. In 

the following theorems we shall derive the probabilities that 

the i-th particle selects the j-th particle i.e. the j-th ranked 

particle is selected as the globally best position by the i-th 

ranked particle. We shall show that a particle cannot select 

particles inferior to it.  

 

Theorem 1:  If ijP denotes the probability that the i-th 

ranked particle selects the j-th ranked particle as its global 

best where i<j then 0=ijP . 

 

Proof:  The i-th particle compares its own fitness with the 

best fitness of the k-selected informants. If the best particle 

among k members (here, the j-th particle) is worse than the 

fitness of the i-th particle then it cannot be selected. Thus 

the probability that the i-th ranked particle selects the j-th 

ranked particle as its global best becomes zero. 

 

Lemma 1: If n denotes the swarm size then the probability 

that the i-th ranked particle chooses itself (i.e. uses equation 

(3)) when the number of chosen informants is k, is given by    
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Proof:  The i-th particle chooses itself if it cannot find a 

particle superior to it among the chosen k members. Thus 

the chosen k particles consist only of particles inferior to it. 

Since there are in − particles inferior to it, the number of 

such possible combinations is k

in
C

−
. The total number of all 

possible combinations is given by k

n
C

1−
. Hence the 

probability that the particle chooses itself is given 

by

k

n
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Lemma 2:  If kijP , denotes the probability that the i-th 

ranked particle selects the j-th ranked particle as its global 

best where i>j and exactly k informants are chosen, then 
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Proof: The j-th particle can be selected only if it is superior 

to all other particles from the chosen k particles. There are 

n-j particles inferior to the     j -th particle and there are n-j-1 

particles inferior when we exclude the selecting particle 

itself. We are effectively selecting k-1 particles, since the j-

th particle is already present among the chosen k particles. 

The total number of such combinations is given by 

1

1
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−−

k

jn
C . The total number of all possible combinations is 

given by k

n
C

1−
. The probability is hence  
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Two important observations follow. First, when the j-th 

ranked particle is selected by inferior particles, the selection 

probability is the same for all particles inferior to the j-th 

particle. The result of lemma 3 shows us that 
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= is dependent only on j, n, and k.  

In the following theorems, we find the respective 

probabilities that the i th particle follows the j th particle’s 

locally best position, and that it follows its own locally best 

position. The results depend, to a large extent on the value 

of p, the probability with which each particle is selected as 

an informant.   

 

Theorem 2: The probability that the i-th particle follows the 

locally best position of the j-th particle is given by 
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Proof: We first derive the probability with which exactly k 

informants are selected. Out of n-1 particles, there are 

k

n
C

1−
 ways in which k particles can be selected as 

informants. For each combination, the probability that k 

particles are chosen and n-1-k particles are not chosen as 

informants is given by
knk pp −−

−
1)1( . Hence the total 

probability that exactly k particles are chosen as informants 

is given by
knk

k

n

k ppCP
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11 )1(  . When exactly k 

informants are chosen, the probability that the i th particle 

follows the locally best position of the j th particle is given 

by 
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We can find the probability that the i-th particle follows the 

j-th particle by summing over the entire range of k from 0 to 

n-1 as follows: 
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We substitute 1−= kλ  in the above expression to obtain: 
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The lower limit of k is zero, and so the lower limit of 

λ should be -1. However the value of 
λ

C
jn −−1

becomes 

zero for λ = -1, so we neglect the lower limit, and begin our 

summation from 0=λ . Again, j is a rank, so the inequality 

nj ≤≤1 holds. Hence 21 −≤−− njn . Further 

01
=

−−

λ
C
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for jn −−> 1λ . Thus we can shift the 

upper limit of summation to jn −−= 1λ . The expression 

for ijP is now given by: 
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We arrive at the final expression through application of the 

binomial theorem. 

 

Theorem 3:  The probability that the i th particle follows its 

own locally best position is given by  
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Proof:  Proceeding in a similar manner to the proof of 

Theorem 2, we first derive the probability that exactly k 

informants are selected. Out of n-1 particles, there are 

k

n
C

1−
 ways in which k particles can be selected as 

informants. For each combination, the probability that k 

particles are chosen and n-1-k particles are not chosen as 

informants is given by
knk pp −−

−
1)1( . Hence the total 

probability that exactly k particles are chosen as informants 

is given by
knk

k
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k ppCP
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11 )1( . When exactly k 

informants are chosen, the probability that the i th particle 

follows its own locally best position is given by 
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We can find the probability that the i th particle follows 

itself by summing over the entire range of k from 0 to 

1−n as follows: 
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We have shifted the upper limit of λ to in − in a manner 

similar to the proof of Theorem 2. Here also, we use the 

binomial theorem to arrive at the final expression. 

 

The results of the theorem are highly dependent on the value 

of p. When p=1, the algorithm corresponds to the classical 

PSO, in which every particle of the swarm (excluding itself) 

is chosen as an informant for selection of the global best. 

The probability ijP evaluates to 0 when 1≠j  and it 

evaluates to 1 when 1=j . Thus all particles of the swarm 

follow the globally best position. The probability iiP =0 

when 1≠i  which implies that all particles except the 

globally best particle cannot use equation (3) for velocity 

update. When p=0, the particles cease to interact with one 

another, with every particle following its own locally best 

position. The plots in Figure 1 show the probabilities iiP and 

ijP as functions of p.  

 

4. Conclusions 

 
This work attempts to capture an inner view of the particle 

interaction in the variable random topology of an lbest PSO 

by deriving the probabilities with which the particles 

exchange information among themselves. Since the particles 

choose informants on basis of their locally best fitness 

values, we have analyzed their interaction by assigning a 

fitness-based rank to each of them.  We have also shown 

that the classical topology is a special case of the variable 

random topology of the lbest PSO when p = 1.  
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Figure 1. (a) Variation of iiP  with p for different values of I and (b) Variation of ijP  with p for different values of j 
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