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Abstract. This paper proposes a modified line search technique for solving systems of
complex nonlinear equations. Line search is a widely used iterative global search method.
Since optimization strategies have been (and continue to be) successfully used for solving
systems of nonlinear equations, the system is reduced to a one-dimensional equation sys-
tem for optimization purpose. The proposed line search procedure incorporates a re-start
technique, which makes use of derivatives to reduce the search space and to re-generate
thereafter the starting points in between the new ranges. Several well known applications
such as interval arithmetic benchmark, kinematics, neuropsychology, combustion, chem-
ical equilibrium and economics application are considered for testing the performances of
the proposed approach. To validate the strength of the proposed approach, systems having
between 5 and 20 equations are considered. Results are compared with an evolutionary
algorithm approach, which transforms the problem into a multi-objective optimization
problem. Empirical results reveal that the proposed approach is able to deal with high
dimensional equations systems very effectively.

1. Introduction. Polynomial systems play a fundamental role in many areas of sci-
ence and engineering. In our research, we refer to systems of n polynomials in n vari-
ables. The problem of solving a system of equations is NP hard, which involves very
high computational complexity due to several numerical issues [21]. There are several
approaches dealing with polynomial systems reported in an impressive number of publi-
cations [20, 26, 41, 46, 47]. Manocha [24] classifies them into three main categories:

• Symbolic methods : can eliminate variables, reducing the problem to finding the roots
of univariate polynomials. Such methods stem from algebraic geometry. The current
algorithms and implementations are efficient only for sets of low-degree polynomial
systems (no more than three or four polynomials) [48].

• Numeric methods : are based on either iterative or homotopy methods. Iterative
methods, like Newton’s, are good only for local analysis and work well only with
a good initial guess for each solution, which is rather difficult for applications like
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intersections or geometric constraint systems. Homotopy methods, based on contin-
uation techniques, follow paths in complex space. In theory, each path converges to
a geometrically isolated solution [31].

• Geometric methods : develop some algorithms, for example, subdivision-based algo-
rithms for intersections and ray tracing of curves and surfaces. In general, subdivision
algorithms have limited applications and slow convergence [40].

This paper proposes a new approach which transforms the system of nonlinear equations
into a single equation and thereafter treats it as an optimization problem. For solving the
obtained optimization problem a modified line search approach is applied. Several well
known benchmarks are involved to show the performances of the proposed approach for
solving polynomial systems. The proposed approach is compared with another approach
which transforms the system into a multiobjective optimization problem and solves it
using an evolutionary computation technique.
The performances of the proposed approach are evaluated for several well known bench-

mark problems from kinematics, chemistry, combustion and medicine. Numerical results
reveal the efficiency of the proposed approach and its flexibility to solve large scale systems
of equations. While compared with the evolutionary approach (which in its turn outper-
forms other numerical methods), the current research produces more robust solutions and
it is by far more effective in terms of computational cost involved.
The paper is organized as follows: in Section 2, the basic concepts about polynomial

systems as well as the way in which the problem is transformed into an optimization
problem are presented. Section 3 presents the Modified Line Search (MLS) approach.
Section 4 briefly introduces the way in which the problem is reduced to a multiobjective
optimization problem and the evolutionary technique applied to solve it. Section 5 is
dedicated to numerical experiments. 12 instances from interval arithmetic, economics,
kinematics, chemistry, combustion and neurophysiology are considered. Section 6 presents
conclusions of the work and future research ideas.

2. Basic Concepts. A polynomial of degree d in one variable (denoted by x) is a function
of the form

a0x
d + a1x

d−1 + . . .+ ad−1x+ ad

where a0, . . . , ad are the coefficients and the integer powers of x, namely 1, x, x2, . . . , xd,
are monomials. In science and engineering, such functions usually have coefficients that
are real numbers although sometimes they may be complex [41].

Definition 2.1. (Polynomial) A function f(x) : "n → " in n variables x = (x1, . . . , xn)
is a polynomial if it can be expressed as a sum of terms, where each term is the product
of a coefficient and a monomial, each coefficient is a real number, and each monomial is
a product of variables raised to nonnegative integer powers.
A system of polynomials is defined as:

f(x) =





f1(x)
f2(x)
...

fn(x)





where x = (x1, x2, . . . , xn) and f1, . . . , fn are polynomials in the space of all real valued

continuous functions on Ω =
n∏

i=1
[ai, bi] ⊂ "n.
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Finding a solution for a polynomial system of equations f(x) involves finding a solution
such that every equation in the nonlinear system is 0:

(P )






f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

(1)

There is a class of methods for the numerical solutions of the above system which arise
from iterative procedures used for systems of linear equations [35, 37]. These methods use
reduction to simpler one-dimensional nonlinear equations for the components f1, f2, . . . , fn
[18]. In a strategy based on trust regions [25], at each iteration a convex quadratic function
is minimized to determine the next feasible point to step to. The convex quadratic
function is the squared norm of the original system plus a linear function multiplied by
the Jacobian matrix. There is also the approach of homotopy methods, sometimes referred
to as continuation methods [22, 25, 34]. This approach begins with a ‘starting’ system of
equations (not the true system) whose solution is known. This starting system is gradually
transformed to the original system. At each stage, the current system is solved by finding
a starting solution for the next stage system. The idea is that as the system changes, the
solutions trace out a path from a solution of the starting system to a solution of the original
system. At each stage, the current system is normally solved by a Newton-type method
[22]. The Dimension Reducing method, the Modified Reducing Dimension Method and
the Perturbed Dimension Reducing Method [13, 14, 15, 16, 17] are also methods for
numerical solutions of systems of nonlinear equations which incorporate Newton and
nonlinear Successive Over Relaxation (SOR) algorithms [35] and use reduction to simple
one謀 imensional nonlinear equations (but they converge quadratically).

In the approach proposed in [32], the system of equations is transformed into a con-
straint optimization problem. At each step some equations which are satisfied at the
current point are treated as constraints and the other ones as objective functions. The
set {1, 2, . . . n} is divided into two parts S1 and S2, where S2 denotes the complement
{1, 2, . . . , n} \ S1. Then, the problem is:

minimize
∑

i∈S1

f 2
i (x)

subject to fj(x) = 0, j ∈ S2.

The system is reduced to the same form in the approach used in [33].
The optimization problem obtained in [22] by transforming the systems of equations

is similar to the one proposed in [32] and considers the equation given by the sum of
squared components f1, f2, . . . , fn. The approach used in [19] transforms the systems
of equations into a multiobjective optimization problem, each equation representing an
objective and then standard Pareto dominance relationship is used in order to determine
the real solutions of the system.

The proposed approach transforms the equation systems into an optimization problem
using the model presented in [32] as follows:

minimize
n∑

i=1

f 2
i (x)

3. Modified Line Search. Line search is a well established optimization technique. The
modification proposed in this paper for the standard line search technique refers to step
setting and also the incorporation of a re-start approach. To fine tune the performance,
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the first partial derivatives of the function to optimize are also made use of. The proposed
three modifications are summarized below and are described in detail in the subsequent
sections:

1. The first modification refers to the inclusion of multi start principle within the search
process.

2. The second modification is related to the setting of the direction and step.
3. The third modification refers to the re-starting of the line search method.

After a given number of iterations, the process is restarted by reconsidering other
arbitrary starting point (or other multiple arbitrary starting points), which are gen-
erated by taking into account the results obtained at the end of previous set of
iterations.

In the following subsections, the modified line search algorithm is presented in a struc-
tured form.

3.1. Generation of the starting points. It is known that the line search techniques
use a starting point. There are also versions which allow the usage of multiple points and
the search starts separately from each of these points. In the proposed approach, multiple
arbitrary starting points are used. Each point is randomly generated over the definition
domain.
For a function of n variables and the domain of definition given by:

[min1,max1]× [min2,max2]× . . .× [minn,maxn]

where [mini,maxi] is the domain of ith variable, the procedure for generating the starting
points x between the considered limits is given in Algorithm 1:

Algorithm 1 Generate starting points()
for i = 1 to Number of arbitrary starting points

for j = 1 to No of variables
xij = minj +random ∗ (maxj −min xj);

endfor
endfor

The random function generates an arbitrary number between [0, 1].

3.2. Direction and step settings. Several experiments were conducted in order to set
an adequate value for the direction. We used the standard value +1 or −1 and, for some
functions the value −1 was favorable to obtain good performance. We also performed
some experiments by setting the direction value to be a random number between 0 and 1.
Using the random number helped to obtain overall very good performance for the entire
set of considered test functions. So, either of these values (the random value and the value
−1) may be used for better performance. Experiment results reported in this paper used
the random value.
The step is set as follows:

αk = 2 +
3

2k2+1
,

where k refers to the iteration number.
The Line search() technique may be written as Algorithm 2.
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Algorithm 2 Line search()
Set k = 1 (Number of iterations)
Repeat

for i = 1 to Number of starting points
for j = 1 to Number of variables

pk = random;
αk = 2 + 3

2k2+1

xk+1
ij = xk

ij + pk · αk

endfor
if f(xk+1

i ) > f(xk
i )

then xk+1
i = xk

i

Endfor
k = k + 1

Until k = Number of iterations (apriori known).

Remark 3.1. The condition:

if f(xk+1
i ) > f(xk

i ) then xk+1
i = xk

i

allows us to move to the new generated point only if there is an improvement in the quality
of the function.

Remark 3.2. Number of iterations for which line search is applied is apriori known and
is usually a small number. In our experiments, we set the number of these iterations to
10. There is a single benchmark for which only one iteration was used (which means the
boundaries are updated and the process is re-started after each iteration).

Remark 3.3. When restarting the line search method (after the insertion of the re-start
technique), the iteration the iteration count starts again from 1 (this should not subse-
quently be related to the value of α after the first set of iterations).

Remark 3.4. Several experiments were performed to set a value for the step, starting
with random values (until a point is reached for which the objective function is getting
a better value); using a starting value for the step and generating random numbers with
Gaussian distribution around this number, etc. There are other ways to set the step, but
the formula presented seems to perform well.

3.3. Re-start insertion. With the best result obtained in the previous set of iterations,
the following steps are used to restart the algorithm:

• Among all the considered points, the solution for which the objective function ob-
tained the best value is selected. If there are several such solutions, one of them
is randomly selected. This solution will be a multi-dimensional point in the search
space and denoted by x for an easier reference.

• For each dimension i of the point x, the first partial derivative with respect to
this dimension is calculated. This means the gradient of the objective function
is calculated which is denoted by g. Taking this into account, the bounds of the
definition domain for each dimension is re-calculated as follows:

if gi =
∂f
∂xi

> 0 then maxi = xi;

if gi =
∂f
∂xi

< 0 then mini = xi.

• The search process is re-started by re-initializing a new set of arbitrary points (using
Generate starting points() procedure) but between the newly obtained boundaries
(between the new maxi or new mini).
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The pseudo code of the Re-start technique is given in Algorithm 3 (g denotes the
gradient of f).

Algorithm 3 Re start()
Calculate the solution (out of the entire set of points) for which the value of the
function is minimum.
Let x# be minimum obtained at the current moment of the search process.
For i = 1 to Number of dimensions

if gi(x#) > 0 then maxi = x#
i

if gi(x#) < 0 then mini = x#
i

endfor

3.4. Modified line search with re-start (MLS) procedure. The Line Search method
presented in the previous subsections combined with the re-start technique described
above is expressed using the pseudo code as illustrated in Algorithm 4.

Algorithm 4 Modified Line Search with Re-Start (MLS).
Set t = 1;
Repeat

Generate starting points (max, min);
Line search(t);
Re start (new values for maxi and/or mini for each dimension will be obtained);
t = t+ 1;

Until t = Number of applications of the re-start technique (apriori known).
Select the solution x∗ for which the value of the objective function is minimum.
Print x∗.

4. Multiobjective Evolutionary Algorithm Approach. Evolutionary computation
offers practical advantages to the researcher facing difficult optimization problems. These
advantages are multi-fold, including the simplicity of the approach, its robust response to
changing circumstance, its flexibility and many other facets. A population of candidate
solutions (for the optimization task to be solved) is initialized. New solutions are created
by applying reproduction operators (mutation and/or crossover). The fitness (how good
the solutions are) of the resulting solutions are evaluated and a suitable selection strategy
is then applied to determine which solutions will be maintained into the next generation.
An evolutionary technique is proposed in [19] for solving the multiobjective optimization

problem obtained by transforming the system of equations. Some basic definitions of
a multiobjective optimization problem and the optimality concept of the solutions are
presented in [44].
Let Ω be the search space. Consider n objective functions f1, f2, . . . , fn,

fi : Ω → ", i = 1, 2, . . . , n

where Ω ⊂ "m.
The multiobjective optimization problem is defined as:






optimize f(x) = (f1(x), . . . , fn(x))
subject to
x = (x1, x2, . . . , xm) ∈ Ω.

For deciding whether a solution is better than another solution or not, the following
relationship between solutions might be used.



SOLVING POLYNOMIAL SYSTEMS USING A MLS APPROACH 7

Definition 4.1. (Pareto dominance) Consider a maximization problem. Let x, y be two
decision vectors (solutions) from Ω.

Solution x dominates y (also written as x ) y) if and only if the following conditions
are fulfilled:

(i) fi(x) ≥ fi(y), ∀i = 1, 2, . . . , n,
(ii) ∃j ∈ {1, 2, . . . , n} : fj(x) > fj(y).

That is, a feasible vector x is Pareto optimal if no feasible vector y can increase some
criterion without causing a simultaneous decrease in at least one other criterion. In the
literature, other terms have also been used instead of Pareto optimal or minimal solutions,
including words such as ‘nondominated’, ‘noninferior’, ‘efficient’ and ‘functional-efficient’
solutions. The solution x0 is ideal if all objectives have their optimum in a common point
x0.

Definition 4.2. (Pareto front) The images of the Pareto optimum points in the criteria
space are called the Pareto front.

In the approach used in [19], the system of equations (P ) is transformed into a mul-
tiobjective optimization problem. Each equation is considered as an objective function.
The goal of this optimization function is to minimize the differences (in absolute value)
between the left side and the right side of the equation. Since the right term is zero, the
objective function is to be given by the absolute value of the left term.

The system (P ) is then equivalent to the system:

(P ′)






abs(f1(x1, x2, . . . , xn))
abs(f2(x1, x2, . . . , xn))

...
abs(fn(x1, x2, . . . , xn))

In order to compare two solutions, the Pareto dominance relationship is used. An
external set is used where all the nondominated solutions found during the iteration process
are stored. The size of this external set is fixed and depends on the number of non-
dominatd solutions to be obtained at the end of the search process. At each iteration, this
set is updated by introducing all the nondominated solutions obtained at the respective step
and by removing from the external set all solutions which will become dominated. When
the size of this set is overloaded some of the solutions are removed.

The population of the next iteration is obtained by unifying the current population of the
previous iteration and the external set. The main steps of the evolutionary approach used
are presented in Algorithm 5. Termination criteria of Algorithm 5 refers to a specified
number of iterations.

Algorithm 5 Evolutionary Approach for solving polynomial systems as multiobjec-
tive optimization problems.
Step 1.

Set t = 0.
Randomly generate starting solutions P (t) on a given domain.
Select all the nondominated solutions from P (t) and store them into the external
set E containing the nondominated solutions found so far.
If the cardinality of E exceeds the allowed size reduce the number of solutions
in respect to the sum of absolute values of the objectives.
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Step 2.
Step 2.1. Apply crossover (with a given probability) on P (t)∪E until a nu-

mber of new individual equal to the size of P (t) are obtained.
Let Q(t) be the set obtained from the best between the solutions
which are combined and the solutions obtained after recombination
(Pareto domination relation is applied).

Step 2.2. Mutate (with a given probability) all the individuals from Q(t).
Step 2.3. Update E with the nondominated individuals from P (t)

⋃
Q(t)

and apply the reduction procedure if the allowed size of E is ex-
ceeded.

Step 2.4. Set t = t+ 1;
P (t) = Q(t)

Step 3.
If termination criteria is reached
then go to Step 4
else go to Step 2.

Step 4.
Print E.

5. Experimental Results. This section reports several experimental results for a wide
class of well known applications. The problems are taken from interval analysis, kinemat-
ics, economics, combustion, chemistry and neuropsychology. 12 systems having between
5 and 20 equations are considered. Results obtained by the modified line search are com-
pared to the results obtained by the evolutionary approach. The following three criteria
are used to compare performance results:

• The Euclidian norm (denoted by En) of the vector f which was suggested in 1965
by Broyden [3] and given by:

En =

√√√√
n∑

i=1

f 2
i (x)

• Running time.
• The ratio between the number of solutions obtained by each method which are dom-
inated by the solutions obtained by the other method and the number of solutions
obtained by each method which dominates solution obtained by the other method
(in terms of Pareto dominance).

More specifically, suppose the set of solutions obtained by the two methods are S1 and
S2 respectively. Then the dominance ratio for the first technique (denoted by D1) is given
by:

D1 =
dominated(S2, S1)

dominate(S1, S2)

where dominated(S2, S1) returns the number of solutions from the set S1 which are dom-
inated by solutions from the set S2 and dominate(S1, S2) returns the number of solutions
from the set S1 which dominate solutions from the set S2. We are not effectively comput-
ing the value of this ratio. Sometimes the denominator can be 0. We are just showing this
ratio with respect to the nondominance between two sets of solutions. Also, the value of

D2 =
1

D1
.
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This third criteria for comparison is mainly used because results obtained by the evo-
lutionary approach are reported in terms of nondominance.

The benchmark problems considered for performance evaluation (which are described
in detail in the following subsections) are given in Table 1. We consider and compare a
set of 8 solutions obtained by each approach.

Table 1. The 12 benchmarks used in experiments

Benchmark Number of variables Range References
1. Interval i1 10 [–2, 2] [21, 23, 28]
2. Interval i2 20 [–1, 2] [21, 23, 28]
3. Interval i3 20 [–2, 2] [21, 23, 28]
4. Interval i4 10 [–1, 1] [21, 23, 28]
5. Interval i5 10 [–1, 1] [21, 23, 28]
6. Neurophysiology application 6 [–10, 10] [45]
7. Chemical equilibrium 5 [–10, 10] [29]
8. Kinematics kin1 12 [–10, 10] [23]
9. Kinematics kin2 8 [–10, 10] [23]
10. Combustion application 10 [–10, 10] [29]
11. Economics e1 10 [–10, 10] [29]
12. Economics e2 20 [–10, 10] [29]

Parameters used by the MLS and Evolutionary Approach are listed in Table 2.

Table 2. MLS and evolutionary approach parameter settings

Parameter Value
MLS i1 i2, i3 i4, i5 neuro chemical kin1 kin2 combustion e1 e2

No of starting
100 100 100 100 100 100 100 100 100 100

arbitrary points
No of re-starts

10 10 10 10 10 20 10 10 10 10
(reinitializations)
No of iterations

10 10 10 10 10 1 10 10 10 10per each
restarting phase
Evolutionary
approach

Population size 300 500 300 300 500 500 500 500 300 500
External set size 200 200 200 200 200 200 200 200 200 200

Number of
250 300 250 250 500 500 1000 300 300 300

generations
Sigma

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(for mutation)
Tournament size 5 5 5 5 5 5 5 5 5 5

5.1. Interval arithmetic benchmarks. We consider five interval arithmetic standard
benchmarks [21, 23, 28].

5.1.1. Benchmark i1. The benchmark i1 consists of the following system of equations:
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0 = x1 − 0.25428722− 0.18324757x4x3x9

0 = x2 − 0.37842197− 0.16275449x1x10x6

0 = x3 − 0.27162577− 0.16955071x1x2x10

0 = x4 − 0.19807914− 0.15585316x7x1x6

0 = x5 − 0.44166728− 0.19950920x7x6x3

0 = x6 − 0.14654113− 0.18922793x8x5x10

0 = x7 − 0.42937161− 0.21180486x2x5x8

0 = x8 − 0.07056438− 0.17081208x1x7x6

0 = x9 − 0.34504906− 0.19612740x10x6x8

0 = x10 − 0.42651102− 0.21466544x4x8x1

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 3. The time displayed is in milliseconds.

Table 3. Comparison of results for the benchmark i1

Solution
MLS

Solution
Evolutionary Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.19190

1/1 516

Sol. 1 0.74686

1/1 39,077

Sol. 2 0.21902 Sol. 2 0.68843
Sol. 3 0.22084 Sol. 3 0.79977
Sol. 4 0.19419 Sol. 4 0.80754
Sol. 5 0.18906 Sol. 5 0.88129
Sol. 6 0.21086 Sol. 6 0.84142
Sol. 7 0.21813 Sol. 7 0.82571
Sol. 8 0.22125 Sol. 8 0.81332

The convergence of all the 8 solutions obtained by MLS is depicted in Figure 1(a).
The comparison of En obtained by the MLS and Evolutionary Approach is presented in
Figure 2(a).
As evident from the results presented, MLS obtained better results in terms of running

time and Euclidian norm. For this example, DMLS and DEA have the same value: 1/1.

5.1.2. Benchmark i2. Benchmark i2 consists of the set of equations given in Figure 3.
The comparison of the results obtained by the MLS and Evolutionary Approach are

presented in Table 4. The time displayed is in milliseconds. The convergence of all 8
solutions obtained by MLS is depicted in Figure 1(b). The Comparison of En obtained
by the MLS and Evolutionary Approach is presented in Figure 2(b).
As evident from the results presented, MLS obtaines better results in terms of running

time and Euclidian norm. DMLS and DEA have the same value: 0/0.

5.1.3. Benchmark i3. Benchmark i3 has the same equations as i2 but has initial intervals
[–2, 2].
The comparison of the results obtained by the MLS and Evolutionary Approach are

presented in Table 5. The time displayed is in milliseconds.
The convergence of all 8 solutions obtained by MLS is depicted in Figure 1(c). The

comparison of En obtained by the MLS and Evolutionary Approach is presented in Figure
2(c).
As evident from the results presented, MLS obtains better results in terms of running

time and Euclidian norm. For this example, DMLS and DEA have the same value: 0/0.
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(a)

(b)

(c)

(d)

(e)

Figure 1. Convergence of the 8 solutions obtained by MLS for interval
benchmarks: (a)-benchmark i1, (b)-benchmark i2, (c)-benchmark i3, (d)-
benchmark i4 and (e)-benchmark i5
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(a) (b)

(c) (d)

(e)

Figure 2. Comparison of euclidian norm for MLS and EA for interval
benchmarks: (a)-benchmark i1, (b)-benchmark i2, (c)-benchmark i3, (d)-
benchmark i4 and (e)-benchmark i5

5.1.4. Benchmark i4. Benchmark i4 consists of the equations given below:





0 = x2
1 − 0.25428722− 0.18324757x2

4x
2
3x

2
9

0 = x2
2 − 0.37842197− 0.16275449x2

1x
2
10x

2
6

0 = x2
3 − 0.27162577− 0.16955071x2

1x
2
2x

2
10

0 = x2
4 − 0.19807914− 0.15585316x2

7x
2
1x

2
6

0 = x2
5 − 0.44166728− 0.19950920x2

7x
2
6x

2
3

0 = x2
6 − 0.14654113− 0.18922793x2

8x
2
5x

2
10

0 = x2
7 − 0.42937161− 0.21180486x2

2x
2
5x

2
8

0 = x2
8 − 0.07056438− 0.19612740x2

1x
2
7x

2
6

0 = x2
9 − 0.34504906− 0.19612740x2

10x
2
6x

2
8

0 = x2
10 − 0.42651102− 0.21466544x2

4x
2
8x

2
1
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Figure 3. Benchmark i2

Table 4. Comparison of results obtained by MLS and the evolutionary
approach for the benchmark i2

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.60634

0/0 1,297

Sol. 1 2.22042

0/0 38,750

Sol. 2 0.65069 Sol. 2 2.25937
Sol. 3 0.65608 Sol. 3 2.17129
Sol. 4 0.66470 Sol. 4 2.27246
Sol. 5 0.66435 Sol. 5 2.21490
Sol. 6 0.67599 Sol. 6 1.85480
Sol. 7 0.69210 Sol. 7 2.09113
Sol. 8 0.68729 Sol. 8 2.06740

Table 5. Comparison of the results obtained for the benchmark i3

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.61134

0/0 1,016

Sol. 1 2.20300

0/0 44,655

Sol. 2 0.63608 Sol. 2 2.20944
Sol. 3 0.65165 Sol. 3 2.20199
Sol. 4 0.65716 Sol. 4 2.17253
Sol. 5 0.67047 Sol. 5 2.18607
Sol. 6 0.67475 Sol. 6 2.24221
Sol. 7 0.68942 Sol. 7 2.10679
Sol. 8 0.70766 Sol. 8 2.38613
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Table 6. Comparison of the results obtained by MLS and the evolutionary
approach for the benchmark i4

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.20734

0/6 953

Sol. 1 0.93678

6/0 366,404

Sol. 2 0.21872 Sol. 2 0.98004
Sol. 3 0.24194 Sol. 3 0.98569
Sol. 4 0.26271 Sol. 4 0.98555
Sol. 5 0.26738 Sol. 5 0.96763
Sol. 6 0.27376 Sol. 6 0.96981
Sol. 7 0.27924 Sol. 7 0.94115
Sol. 8 0.27768 Sol. 8 0.95304

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 6. The time displayed is in milliseconds. The convergence of all 8
solutions obtained by MLS is depicted in Figure 1(d). The comparison of En obtained
by the MLS and Evolutionary Approach is presented in Figure 2(d).
As evident from the results presented, MLS obtains better results in terms of running

time and Euclidian norm. The values of DMLS and DEA are 0/6 and 6/0 respectively.
This means that no solutions obtained by MLS are dominated by solutions obtained by
the evolutionary approach while 6 of the solutions obtained by the evolutionary approach
are dominated by solutions obtained by MLS.

5.1.5. Benchmark i5. Benchmark i5 consists of the equations given below.





0 = x2
1 − 0.25428722− 0.18324757x3

4x
3
3x

3
9 + x4

3x
7
9

0 = x2
2 − 0.37842197− 0.16275449x3

1x
3
10x

3
6 + x4

10x
7
6

0 = x2
3 − 0.27162577− 0.16955071x3

1x
3
2x

3
10 + x4

2x
7
10

0 = x2
4 − 0.19807914− 0.15585316x3

7x
3
1x

3
6 + x4

1x
7
6

0 = x2
5 − 0.44166728− 0.19950920x3

7x
3
6x

3
3 + x4

6x
7
3

0 = x2
6 − 0.14654113− 0.18922793x3

8x
3
5x

3
10 + x4

5x
7
10

0 = x2
7 − 0.42937161− 0.21180486x3

2x
3
5x

3
8 + x4

5x
7
8

0 = x2
8 − 0.07056438− 0.19612740x3

1x
3
7x

3
6 + x4

7x
7
6

0 = x2
9 − 0.34504906− 0.19612740x3

10x
3
6x

3
8 + x4

6x
7
8

0 = x2
10 − 0.42651102− 0.21466544x3

4x
3
8x

3
1 + x4

8x
7
1

Table 7. Comparison of the results obtained by the MLS and evolutionary
approach for the benchmark i5

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.23610

0/1 1,000

Sol. 1 0.96990

1/0 120,546

Sol. 2 0.23820 Sol. 2 1.12068
Sol. 3 0.24163 Sol. 3 1.04682
Sol. 4 0.24384 Sol. 4 1.15779
Sol. 5 0.24698 Sol. 5 1.11078
Sol. 6 0.24618 Sol. 6 1.12241
Sol. 7 0.24565 Sol. 7 1.07363
Sol. 8 0.24702 Sol. 8 1.09669

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 7. The time displayed is in milliseconds. The convergence of all 8
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solutions obtained by MLS is depicted in Figure 1(e). The comparison of the En obtained
by the MLS and Evolutionary Approach is presented in Figure 2(e). As evident from the
results presented, MLS obtains better results in terms of running time and Euclidian
norm. For this example the values of DMLS and DEA are 0/1 and 1/0 respectively.
This means that no solutions obtained by MLS are dominated by solutions obtained by
the evolutionary approach while one solution obtained by the evolutionary approach is
dominated by solutions obtained by MLS.

5.2. A neurophysiology application. We considered the example proposed in [45] and
consisting of the equations given below:






x2
1 + x2

3 = 1
x2
2 + x2

4 = 1
x5x3

3 + x6x3
4 = c1

x5x3
1 + x6x3

2 = c2
x5x1x2

3 + x6x2
4x2 = c3

x5x2
1x3 + x6x2

2x4 = c4

The constants ci can be randomly chosen. In our experiments, we considered ci = 0,
i = 1, . . . , 4.

Table 8. Comparison of the results obtained by the MLS and evolutionary
approach for neurophysiology application

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.01998

0/6 922

Sol. 1 0.34755

6/0 28,906

Sol. 2 0.05158 Sol. 2 0.38236
Sol. 3 0.05608 Sol. 3 0.38443
Sol. 4 0.05769 Sol. 4 0.36612
Sol. 5 0.06200 Sol. 5 0.59597
Sol. 6 0.06544 Sol. 6 0.34708
Sol. 7 0.07451 Sol. 7 0.34823
Sol. 8 0.08732 Sol. 8 0.20563

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 8. The time displayed is in milliseconds. The convergence of all 8
solutions obtained by MLS is depicted in Figure 4. The comparison of En obtained by
the MLS and Evolutionary Approach is presented in Figure 5.

As evident from the results presented, MLS obtains better results in terms of running
time and Euclidian norm. For this example, the values of DMLS and DEA are 0/6 and
6/0 respectively. This means that no solutions obtained by MLS are dominated by so-
lutions obtained by the evolutionary approach while six of the solutions obtained by the
evolutionary approach are dominated by solutions obtained by MLS.

5.3. Chemical equilibrium application. We consider the chemical equilibrium system
given by the following equations [27] (see also [21]):





x1x2 + x1 − 3x5 = 0
2x1x2 + x1 + x2x2

3 +R8x2 −Rx5 + 2R10x2
2 +R7x2x3 +R9x2x4 = 0

2x2x2
3 + 2R5x2

3 − 8x5 +R6x3 +R7x2x3 = 0
R9x2x4 + 2x2

4 − 4Rx5 = 0
x1(x2 + 1) +R10x2

2 + x2x2
3 +R8x2 + R5x2

3 + x2
4 − 1 + R6x3 +R7x2x3 +R9x2x4 = 0
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where 




R = 10
R5 = 0.193
R6 =

0.002597√
40

R7 =
0.003448√

40

R8 =
0.00001799

40
R9 =

0.0002155√
40

R10 =
0.00003846

40

Figure 4. Convergence of the 8 solutions obtained by MLS for the neuro-
physiology application

Figure 5. Comparison of euclidian norm obtained by MLS and the evo-
lutionary approach for the neurophysiology application

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 9. The time displayed is in milliseconds. The convergence of all 8
solutions obtained by MLS is depicted in Figure 6. The comparison of the En values
obtained by MLS and the evolutionary approach is presented in Figure 7.
As evident from the results presented, MLS obtains better results in terms of running

time and Euclidian norm. For this example, the values of DMLS and DEA are 0/4 and
4/0 respectively. This means that no solutions obtained by MLS are dominated by solu-
tions obtained by the evolutionary approach while four of the solutions obtained by the
evolutionary approach are dominated by solutions obtained by MLS.
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Figure 6. Convergence of the 8 solutions obtained by MLS for the chem-
ical equilibrium application

Figure 7. Comparison of euclidian norm for MLS and evolutionary ap-
proach for chemical equilibrium application

Table 9. Comparison of the results obtained by the MLS and evolutionary
approach for the chemical equilibrium application

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.16072

0/4 922

Sol. 1 0.50300

4/0 28,906

Sol. 2 0.21222 Sol. 2 0.65838
Sol. 3 0.29502 Sol. 3 0.61190
Sol. 4 0.30787 Sol. 4 0.50826
Sol. 5 0.32114 Sol. 5 0.33594
Sol. 6 0.34612 Sol. 6 0.40933
Sol. 7 0.35578 Sol. 7 0.37625
Sol. 8 0.35341 Sol. 8 0.53241

5.4. Kinematic applications.

5.4.1. Kinematic application kin1. Application kin1 comes from robotics and describes
the inverse kinematics of an elbow manipulator [23]. It consists of a sparse system with
12 variables as given below.
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kin1 application






s2c5s6 − s3c5s6 − s4c5s6 + c2c6 + c3c6 + c4c6 = 0.4077
c1c2s5 + c1c3s5 + c1c4s5 + s1c5 = 1.9115
s2s5 + s3s5 + s4s5 = 1.9791
c1c2 + c1c3 + c1c4 + c1c2 + c1c3 + c1c2 = 4.0616
s1c2 + s1c3 + s1c4 + s1c2 + s1c3 + s1c2 = 1.7172
s2 + s3 + s4 + s2 + s3 + s2 = 3.9701
s2i + c2i = 1, 1 ≤ i ≤ 6

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 10. The convergence of all 8 solutions obtained by MLS is depicted
in Figure 8(a). The comparison of the En values obtained by the MLS and Evolutionary
Approach is presented in Figure 9(a). As evident from the results presented, MLS obtains
better results in terms of running time and Euclidian norm. The value of DMLS is 0/8
and the value of DEA is 8/0 which means that all 8 solutions obtained by the evolutionary
approach are dominated.

Table 10. Results obtained by the MLS and evolutionary approach for
kinematics application kin1

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.64788

0/8 937

Sol. 1 6.96304

8/0 109,327

Sol. 2 0.75080 Sol. 2 6.72439
Sol. 3 0.74959 Sol. 3 6.38505
Sol. 4 0.83451 Sol. 4 6.79585
Sol. 5 0.83541 Sol. 5 6.40160
Sol. 6 0.83830 Sol. 6 6.88722
Sol. 7 0.84435 Sol. 7 6.44937
Sol. 8 0.85331 Sol. 8 6.35426

5.4.2. Kinematic application kin2. We consider the kinematic application kin2 as intro-
duced in [29] (see also [21]) which describes the inverse position problem for a six revolute
joint problem in mechanics. The equations describe a denser constraint system and are
given below:

kin2 application






x2
i + x2

i+1 − 1 = 0
a1ix1x3 + a2ix1x4 + a3ix2x3 + a4ix2x4

+a5ix2x7 + a6ix5x8 + a7ix6x7 + a8ix6x8

+a9ix1 + a10ix2 + a11ix3 + a12ix4 + a13ix5 + a14ix6

+a15ix7 + a16ix8 + a17i = 0
1 ≤ i ≤ 4

The coefficients aki, 1 ≤ k ≤ 17, 1 ≤ i ≤ 4 for kin2 are given in Table 11.
The comparison of the results obtained by the MLS and Evolutionary Approach are

presented in Table 12. The time displayed is in milliseconds.
The convergence of all 8 solutions obtained by MLS is depicted in Figure 8(b). The

comparison of the En values obtained by MLS and Evolutionary Approach is presented
in Figure 9(b).
As evident from the results presented, MLS obtains better results in terms of running

time and Euclidian norm. DMLS and DEA have the values 0/4 and 4/0 respectively. This
means that no solutions obtained by MLS are dominated by solutions obtained by the
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(a)

(b)

Figure 8. Convergence of the 8 solutions obtained by MLS for the kine-
matics applications: (a)-kin1 and (b)-kin2

(a) (b)

Figure 9. Comparison of euclidian norm for MLS and evolutionary ap-
proach for kinematics applications: (a)-kin1 and (b)-kin2

evolutionary approach while four of the solutions obtained by the evolutionary approach
are dominated by solutions obtained by MLS.

5.5. Combustion application. We consider the combustion problem for a temperature
of 3000◦ as proposed in [30] (see also [21]). The problem is described by the sparse system
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Table 11. Coefficients aki for the kinematic example kin2

–0.249150680 +0.125016350 –0.635550077 +1.48947730
+1.609135400 –0.686607360 –0.115719920 +0.23062341
+0.279423430 –0.119228120 –0.666404480 +1.32810730
+1.434801600 –0.719940470 +0.110362110 –0.25864503
+0.000000000 –0.432419270 +0.290702030 +1.16517200
+0.400263840 +0.000000000 +1.258776700 –0.26908494
–0.800527680 +0.000000000 –0.629388360 +0.53816987
+0.000000000 –0.864838550 +0.581404060 +0.58258598
+0.074052388 –0.037157270 +0.195946620 –0.20816985
–0.083050031 +0.035436896 –1.228034200 +2.68683200
–0.386159610 +0.085383482 +0.000000000 –0.69910317
–0.755266030 +0.000000000 –0.079034221 +0.35744413
+0.504201680 –0.039251967 +0.026387877 +1.24991170
–1.091628700 +0.000000000 –0.057131430 +1.46773600
+0.000000000 –0.432419270 –1.162808100 +1.16517200
+0.049207290 +0.000000000 +1.258776700 +1.07633970
+0.049207290 +0.013873010 +2.162575000 –0.69686809

Table 12. Comparison of the results obtained by the MLS and evolution-
ary approach for the kinematics application kin2

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.38881

0/4 969

Sol. 1 1.67496

4/0 221,295

Sol. 2 0.40146 Sol. 2 1.34899
Sol. 3 0.45731 Sol. 3 1.31849
Sol. 4 0.47221 Sol. 4 1.53427
Sol. 5 0.49747 Sol. 5 1.95724
Sol. 6 0.49547 Sol. 6 1.39915
Sol. 7 0.50620 Sol. 7 0.77671
Sol. 8 0.49329 Sol. 8 1.16787

of equations as given below.

Combustion application






x2 + 2x6 + x9 + 2x10 = 10−5

x3 + x8 = 3 · 10−5

x1 + x3 + 2x5 + 2x8 + x9 + x10 = 5 · 10−5

x4 + 2x7 = 10−5

0.5140437 · 10−7x5 = x2
1

0.1006932 · 10−6x6 = 2x2
2

0.7816278 · 10−15x7 = x2
4

0.1496236 · 10−6x8 = x1x3

0.6194411 · 10−7x9 = x1x2

0.2089296 · 10−14x10 = x1x2
2

The comparison of the results obtained by the MLS and Evolutionary Approach are
presented in Table 13. The time displayed is in milliseconds. The convergence of all 8
solutions obtained by MLS is depicted in Figure 10. The comparison of En obtained by
the MLS and Evolutionary Approach is presented in Figure 11.
MLS is obtaining better results in terms of both running time and Euclidian norm. For

this example, the values of DMLS and DEA are 0/7 and 7/0 respectively. This means
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Table 13. Comparison of the results obtained by the MLS and evolution-
ary approach for combustion application

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.01506

0/7 860

Sol. 1 0.19273

7/0 151,123

Sol. 2 0.01887 Sol. 2 0.28188
Sol. 3 0.02539 Sol. 3 0.24526
Sol. 4 0.02556 Sol. 4 0.32531
Sol. 5 0.02870 Sol. 5 0.27724
Sol. 6 0.03029 Sol. 6 0.06548
Sol. 7 0.03052 Sol. 7 0.11600
Sol. 8 0.03131 Sol. 8 0.15219

Figure 10. Convergence of the 8 solutions obtained by MLS for the com-
bustion application

Figure 11. Comparison of euclidian norm for MLS and evolutionary ap-
proach for the combustion application

that no solution obtained by MLS is dominated by solutions obtained by the Evolution-
ary Approach while seven of the solutions obtained by the Evolutionary Approach are
dominated by solutions obtained by MLS.
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5.6. Economics modelling application. The following modelling problem is consid-
ered difficult and can be scaled up to arbitrary dimensions. The problem is given by the
system of equations:






(
xk +

n−k−1∑
i=1

xixi+k

)
xn − ck = 0, 1 ≤ k ≤ n− 1

n−1∑
l=1

xl + 1 = 0

The constants ck can be chosen randomly. We are considering the value 0 for the
constants in our experiments.
We consider two instances e1 and e2 having 10 and 20 equations respectively.

Table 14. Comparison of results obtained by the MLS and evolutionary
approach for the economics application e1

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.00294

0/0 266

Sol. 1 0.69997

0/0 396,399

Sol. 2 0.00371 Sol. 2 0.73992
Sol. 3 0.00464 Sol. 3 0.61761
Sol. 4 0.00483 Sol. 4 0.43294
Sol. 5 0.00493 Sol. 5 0.10015
Sol. 6 0.00716 Sol. 6 0.02090
Sol. 7 0.00772 Sol. 7 0.11216
Sol. 8 0.00832 Sol. 8 0.60376

5.6.1. Economics modelling application e1. The comparison of the results obtained by
the MLS and Evolutionary Approach are presented in Table 14. The time displayed
is in milliseconds. The convergence of all 8 solutions obtained by MLS is depicted in
Figure 12(a). The comparison of the En values obtained by the MLS and Evolutionary
Approach is presented in Figure 13(a). As evident from the results presented, MLS is
obtaining better results in terms of running time and Euclidian norm. for this example
the values DMLS and DEA are having the same values: 0/0.

5.6.2. Economics modelling application e2. The comparison of the results obtained by
the MLS and Evolutionary Approach are presented in Table 15. The time displayed is in
milliseconds. The convergence of all 8 solutions obtained by MLS is depicted in Figure
12(b). The Comparison between En obtained by MLS and the Evolutionary Approach
is presented in Figure 13(b). As evident from the results presented, MLS obtains better
results in terms of running time and Euclidian norm. For this example DMLS and DEA

have the same value 0/0.

6. Discussions and Conclusions. The proposed Modified Line Search approach (MLS)
seems to be very efficient for solving nonlinear equation systems. We first compared our
approach for some simple equations systems having only two equations which were recently
used for analyzing the performances of a new proposed method.
The results obtained using the proposed method were very promising outperforming

some of the classical methods established in the literature (such as Newton, Broyden and
secant methods).
The promising results obtained by the MLS approach for two-equation systems were the

starting point and we extended the approach for high dimensional nonlinear equation sys-
tems. We also used some of the most well known applications such as: interval arithmetic
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(a)

(b)

Figure 12. Convergence of the 8 solutions obtained by MLS for the eco-
nomics modelling applications: (a)-e1 and (b)-e2

(a) (b)

Figure 13. Comparison of euclidian norm for the MLS and evolutionary
approach for the economics modelling applications: (a)-e1 and (b)-e2

benchmarks, neuropsychology, chemical equilibrium, kinematic, combustion and economic
applications. All these applications consists of systems having a higher number of equa-
tions: 10 to 20 equations for the 5 different interval arithmetic benchmarks, 6 equations
for the neuropsychology example, 5 equations for the chemical equilibrium application, 8
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Table 15. Comparison of results obtained by the MLS and evolutionary
approach for the economics modelling application e2

Solution
MLS

Solution
Ev. Approach

En DMLS Running time (mS) En DEA Running time (mS)
Sol. 1 0.00459

0/0 1,078

Sol. 1 0.41106

0/0 640,922

Sol. 2 0.00585 Sol. 2 0.21218
Sol. 3 0.00844 Sol. 3 0.39753
Sol. 4 0.00918 Sol. 4 0.22624
Sol. 5 0.00917 Sol. 5 0.43207
Sol. 6 0.01163 Sol. 6 0.20873
Sol. 7 0.01072 Sol. 7 0.21682
Sol. 8 0.01123 Sol. 8 0.17264

to 12 equations for the kinematic application, 10 equations for the combustion application
and 10 to 20 equations for the economics application.
Since we transformed a system of equations into an optimization problem, our task

is to deal with complicated high dimensional optimization problems. The goal is to
obtain as close to zero as possible value for the merit function. As evident from the
obtained empirical results, the proposed approach is very much appealing for solving high
dimensional equation systems. As a measure of quality for the solutions obtained, the
sum of absolute values of the objectives (which are the modified equations of the initial
system) are considered. The closer the value of this sum to zero, the better the solution.
From the graphical illustrations provided in the manuscript, it may be concluded that

the proposed approach could obtain very good results even for some complicated systems
such as the combustion application, neuropsychology application and chemical equilibrium
application.
The proposed method could be extended for much higher dimensional systems even

though this will also involve an increased computational complexity. In a similar manner,
we can also solve inequations systems and system of differential equations, which are part
of our future research work.
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