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A Hybrid Genetic Algorithm and Bacterial Foraging
Approach for Global Optimization and Robust Tuning
of PID Controller with Disturbance Rejection

D.H. Kim and A. Abraham

Summary. The social foraging behavior of Escherichia coli (E. Coli) bacteria has been used
to solve optimization problems. This chapter proposes a hybrid approach involving genetic
algorithm (GA) and bacterial foraging (BF) algorithm for function optimization problems. We
first illustrate the proposed method using four test functions and the performance of the algo-
rithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic
steps, and the lifetime of the bacteria. The proposed algorithm is then used to tune a PID
controller of an Automatic Voltage Regulator (AVR). To design disturbance rejection tuning,
disturbance rejection conditions based on H∞ are illustrated and the performance of response
is computed for the designed PID controller as the integral of time weighted squared error.
Simulation results clearly illustrate that the proposed approach is very efficient and could eas-
ily be extended for other global optimization problems.

8.1 Introduction

In the last decade, approaches based on genetic algorithms (GA) have received
increased attention from the academic and industrial communities for dealing with
optimization problems that have been shown to be intractable using conventional
problem solving techniques.

In the past, some researchers have focused on using hybrid genetic algorithm
approaches for optimization problems. Buczak and Uhrig [1] proposed a novel
hierarchical fuzzy-genetic information fusion technique. The combined reasoning
takes place by means of fuzzy aggregation functions, capable of combining infor-
mation by compensatory connectives that better mimic the human reasoning process
than union and intersection, employed in traditional set theories. The parameters of
the connectives are found by genetic algorithms.

Gomez-Skarmeta et al. [3] evaluated the use of different methods from the fuzzy
modeling field for classification tasks and the potential of their integration in pro-
ducing better classification results. The methods considered, approximate in nature,
study the integration of techniques with an initial rule generation step and a following
rule tuning approach using different evolutionary algorithms.
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To discover classification rules, Carvalho and Freitas [2] proposed a hybrid
decision tree/genetic algorithm method. The central idea of this hybrid method
involves the concept of small disjunctions in data mining. The authors developed
two genetic algorithms specifically designed for discovering rules in examples
belonging to small disjunctions, whereas a conventional decision tree algorithm is
used to produce rules covering examples belonging to large disjunctions. Lee and
Lee [4] proposed a hybrid search algorithm combining the advantages of genetic
algorithms and ant colony optimization (ACO) that can explore the search space and
exploit the best solutions.

Constraint handling is one of the major concerns when applying genetic algo-
rithms to solve constrained optimization problems. Chootinan and Chen [5] proposed
gradient information, derived from the constraint set, to systematically repair infeasi-
ble solutions. The proposed repair procedure is embedded in a simple GA as a special
operator. Haouari and Siala [6] presented a lower bound and a genetic algorithm for
the prize collecting Steiner tree problem. The lower bound is based on a Lagrangian
decomposition of a minimum spanning tree formulation of the problem.

Natural selection tends to eliminate animals with poor foraging strategies through
methods for locating, handling, and ingesting food, and favors the propagation of
genes of those animals that have successful foraging strategies, since they are more
likely to obtain reproductive success [7, 8]. After many generations, poor foraging
strategies are either eliminated or restructured into good ones. Since a foraging
organism/animal takes actions to maximize the energy utilized per unit time spent
foraging, considering all the constraints presented by its own physiology, such as
sensing and cognitive capabilities and environmental parameters (e.g., density of
prey, risks from predators, physical characteristics of the search area), natural evo-
lution could lead to optimization. It is essentially this idea that could be applied to
complex optimization problems. The optimization problem search space could be
modeled as a social foraging environment where groups of parameters communicate
cooperatively for finding solutions to difficult engineering problems [9].

The rest of the chapter is organized as follows. Section 8.2 provides a brief
literature overview of the bacterial foraging algorithm followed by the proposed
hybrid approach based on bacterial foraging (BF) and genetic algorithms (GA).
The performance of the algorithm is illustrated using four benchmark functions in
Sect. 8.3 [10]. The proposed hybrid algorithm is further validated for PID controller
tuning in Sect. 8.4. PID controller tuning with disturbance rejection is presented in
Sect. 8.5. Some conclusions are also provided towards the end.

8.2 Hybrid System Consisting of Genetic Algorithm
and Bacteria Foraging

8.2.1 Genetic Algorithms

A typical genetic algorithm procedure takes the following steps: A population of can-
didate solutions (for the optimization task to be solved) is initialized. New solutions
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are created by applying genetic operators (mutation and/or crossover). The fitness
(how good the solutions are) of the resulting solutions are evaluated and suitable se-
lection strategy is then applied to determine which solutions will be maintained into
the next generation. The procedure is then iterated.

Genetic algorithms are ubiquitous nowadays, having been successfully applied
to numerous problems from different domains, including optimization, automatic
programming, machine learning, operations research, bioinformatics, and social sys-
tems.

8.2.2 Bacterial Foraging Algorithm

Recently, search and optimal foraging of bacteria have been used for solving opti-
mization problems [7]. To perform social foraging, an animal needs communication
capabilities and over a period of time it gains advantages that can exploit the sensing
capabilities of the group. This helps the group to predate on a larger prey, or alterna-
tively, individuals could obtain better protection from predators while in a group.

Overview of Chemotactic Behavior of Escherichia coli

We considered the foraging behavior of E. coli, which is a common type of bacteria.
Its behavior and movement comes from a set of six rigid spinning (100–200 rps) flag-
ella, each driven as a biological motor. An E. coli bacterium alternates through run-
ning and tumbling. Running speed is 10–20 μm s−1 , but they cannot swim straight.
The chemotactic actions of the bacteria are modeled as follows:

– In a neutral medium, if the bacterium alternatively tumbles and runs, its action
could be similar to search.

– If swimming up a nutrient gradient (or out of noxious substances) or if the bac-
terium swims longer (climb up nutrient gradient or down noxious gradient) its
behavior seeks increasingly favorable environments.

– If swimming down a nutrient gradient (or up noxious substance gradient), then
search action is like avoiding unfavorable environments.

Therefore, it follows that the bacterium can climb up nutrient hills and at the same
time avoids noxious substances. The sensors it needs for optimal resolution are recep-
tor proteins, which are very sensitive and possess high gain. That is, a small change
in the concentration of nutrients can cause a significant change in behavior. This is
probably the best-understood sensory and decision-making system in biology [8].

Mutations in E. coli affect the reproductive efficiency at different temperatures,
and occur at a rate of about 10−7per gene per generation. E. coli occasionally en-
gages in a conjugation that affects the characteristics of the population. There are
many types of taxis that are used in bacteria such as, aerotaxis (attracted to oxy-
gen), phototaxis (light), thermotaxis (temperature), magnetotaxis (magnetic lines of
flux), and some bacteria can change their shape and number of flagella (based on the
medium) to reconfigure in order to ensure efficient foraging in a variety of media.



174 D.H. Kim and A. Abraham

Bacteria could form intricate stable spatio-temporal patterns in certain semisolid nu-
trient substances and they can survive through a medium if placed together initially at
its center. Moreover, under certain conditions, they will secrete cell-to-cell attractant
signals so that they will group and protect each other.

The Optimization Function for the Hybrid Genetic Algorithm–Bacterial
Foraging (GA–BF) Algorithm

The main goal of the Hybrid GA–BF-based algorithm is to find the minimum of a
function P(φ), φ ∈ Rn, which is not in the gradient∇P(φ). Here, φ is the position
of a bacterium, and P(φ) is an attractant–repellant profile. That is, where nutrients
and noxious substances are located, P < 0, P = 0, and P > 0 represents the presence
of nutrients. A neutral medium and the presence of noxious substances, respectively
can be defined by

H(i, j,k) = φ x( j,k, l)| x = 1,2, . . . ,N. (8.1)

(8.1) represents the position of each member in the population of N bacteria at the
jth chemotactic step, kth reproduction step, and lth elimination-dispersal event. Let
P(x, j,k, l) denote the cost at the location of the lth bacterium at position φ x(i, j,k)
in Rn, and

φ x = (i+ 1, j,k) = φ x(i, j,k)+C(x)ϕ(i), (8.2)

so that C(i) > 0 is the step size taken in the random direction specified by the tumble.
If at φ x(i+1, j,k) the cost P(i, j +1,k, l) is better (lower) than at φ x(i, j,k), then an-
other chemotactic step of size C(x) in this same direction will be taken and repeated
up to a maximum number of Ns steps. Ns is the length of the lifetime of the bac-
teria measured by the number of chemotactic steps. Function Pi

c(φ) i = 1,2, . . . ,S
to model the cell-to-cell signaling via an attractant and a repellant is represented by
Passino [8]:

Pc(φ) =
N

∑
i=1
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N

∑
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−δattract

n
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j=1

(φ j−)2

)]
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N
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n

∑
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(φ j −φ i
j)

2

)]
,

(8.3)

where φ = [φ1, · · · ,φp]T is a point on the search space, Lattract is the depth of the
attractant released by the cell and σattract is a measure of the width of the attractant
signal. Krepellant = Lattract is the height of the repellant effect magnitude, and σattract is
a measure of the width of the repellant. The expression Pφ means that its value does
not depend on the nutrient concentration at position φ . That is, a bacterium with high
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nutrient concentration secretes stronger attractant than one with low nutrient concen-
tration. The model uses the function Par(φ) to represent the environment-dependent
cell-to-cell signaling as

Par(φ) = exp(T −P(φ))Pc(φ), (8.4)

where T is a tunable parameter. By considering the minimization of P(i, j,k, l) +
Par(φ i( j,kl)), the cells try to find nutrients, avoid noxious substances, and at the
same time try to move toward other cells, but not too close to them. The function
Par(φ i( j,k, l)) implies that, with T being constant, the smaller the value of P(φ), the
lager Par(φ) and thus the stronger the attraction, which is intuitively reasonable. For
tuning the parameter T , it is normally found that, when T is very large, Par(φ) is
much larger than Jφ , and thus the profile of the search space is dominated by the
chemical attractant secreted by E. coli. On the other hand, if T is very small, then
Par(φ) is much smaller than P(φ), and it is the effect of the nutrients that dominates.
In Par(φ), the scaling factor of Pc(φ) is given as in exponential form.

The algorithm to search optimal values of parameters is described as follows:

[Step 1 ] Initialize parameters n, N, Nc, Ns, Nre, Ned, Ped, C(i)( i = 1,2, · · · ,N), φ i.
where,

n: Dimension of the search space,
N: The number of bacteria in the population,
Nc: Chemotactic steps,
Nre: The number of reproduction steps,
Ned: The number of elimination-dispersal events,
Ped: Elimination-dispersal with probability,
C(i): The size of the step taken in the random direction specified by the
tumble.

[Step 2 ] Elimination-dispersal loop: l = l + 1
[Step 3 ] Reproduction loop: k = k + 1
[Step 4 ] Chemotaxis loop: j = j + 1

[Sub-step A ] For i = 1,2, · · · ,N, take a chemotactic step for bacterium i as
follows.

[Sub-step B ] Compute fitness function, integral of time weighted squared er-
ror, ITSE(i, j,k, l).

[Sub-step C ] Let ITSElast = ITSE(i, j,k, l) to save this value, since we may
find a better cost during a run.

[Sub-step D ] Tumble: generate a random vector Δ(i)εRn with each element
Δm(i), m = 1,2, · · · , p, a random number within [−1,1].

[Sub-step E ] Move: Let φ x(i+1, j,k) = φ x(i, j,k)+C(i) Δ (i)√
Δ T (i)Δ (i)

, this results

in a step of size C(i) in the direction of the tumble for bacterium i.
[Sub-step F ] Compute ITSE(i, j + 1,k, l).
[Sub-step G ] Swim

(1) Let m = 0 (counter for swim length).
(2) While m < Ns (if have not climbed down too long).
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Let m = m+ 1.
If ITSE(i, j + 1,k, l) < ITSElast if doing better), let ITSElast =
ITSE(i, j + 1,k, l) and let φ x(i + 1, j,k) = φ x(i + 1, j,k) +
C(i) Δ (i)√

Δ T (i)Δ (i)
and use this φ x(i + 1, j,k) to compute the new

ITSE(i, j + 1,k, l) as in [Sub-step F].
Else, let m = Ns. This is the end of the while statement.

[Sub-step H ] Go to next bacterium (i, j) if i �= N(i.e., go to [Sub-step B] to
process the next bacterium).

[Step 5 ] If j < Nc, go to Step 3. In this case continue chemotaxis, since the life of
the bacteria is not over.

[Step 6 ] Reproduction:
[Sub-step A ] For the given k and l, and for each i = 1,2, · · · ,N, let ITSEi

health =
∑Nc+1

j=1 ITSE(i, j,k, l) be the health of the bacterium i (a measure of how
many nutrients it got over its lifetime and how successful it was at avoiding
noxious substances). Sort bacteria and chemotactic parameters C(i) in order
of ascending cost ITSEhealth (higher cost means lower health).

[Sub-step B ] The S, bacteria with the highest ITSEhealth values die and the
remaining S, bacteria with the best values split (this process is performed by
the copies that are made placed at the same location as their parent).

[Step 7 ] If k < Nre, go to [Step 3]. In this case, we have not reached the number of
specified reproduction steps, so we start the next generation of the chemotactic
loop.

[Step 8 ] Elimination-dispersal: For i = 1,2, · · · ,N, with probability Ped, eliminate
and disperse each bacterium, which results in keeping the number of bacteria in
the population constant. To do this, if a bacterium is eliminated, simply disperse
one to a random location on the optimization domain. If l < Ned, then go to
[Step 2]; otherwise end.

8.3 Experiment Results Using Test Functions

This section illustrates some comparisons between the proposed GA–BF (genetic
algorithm–bacteria foraging algorithm) and the conventional Simple Genetic Al-
gorithm (SGA) using some test functions as depicted in Table 8.1. Table 8.1 also
illustrates the initial conditions of objective values, parameter values, chemotactic
steps (CS), total number of chemotactic reaction of bacteria, step sizes, basic unit for
movement of bacteria the number of critical reaction (N), the number of bacteria (S),
generations (G), mutation (Mu), and crossover (Cr).

8.3.1 Mutation Operation in GA–BF

Dynamic mutation [11] is used in the proposed GA–BF algorithm using

x j =

{
x̃ j + Δ(k,x(U)

j − x̃ j) τ = 0

x̃ j −Δ(k, x̃ j − x(L)
j ) τ = 1,

(8.5)
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Table 8.1. Initial conditions for test functions and variation of different parameters

Range GA parameters BF parameters

Test function xL
i xU

i G Mu Cr CS Step size Ns S

F1(x) = ∑3
i=1 x2

i −5.12 5.11 20 300 0.9 0.1 1000 1e-007 3 10
F2(x) = 100(x2

1 −x2)2 +(1−x1)2 −2.048 2.047 20 600 0.9 0.1 1000 1e-007 3 10
F3 = ∑5

i=1[xi] −5.12 5.12 20 180 0.9 0.1 1000 1e-007 3 10
F4 = ∑30

i=1 ix4
i +N(0,1) −1.28 1.27 20 300 0.9 0.1 1000 1e-007 3 10

where the random constant τ becomes 0 or 1 and Δ(k,y) is given as

Δ(k,y) = yη(1− k
z
)A. (8.6)

Here, η = 0 or 1 randomly and z is the maximum number of generations as defined
by the user.

8.3.2 Crossover Operation in GA–BF

A modified simple crossover [12] is used for the BF-GA algorithm using

x̃u
j = λ x̄v

j +(1−λ )x̄u
j (8.7)

x̃v
j = λ x̄u

j +(1−λ )x̄v
j, (8.8)

where, x̄u
j , x̄v

j refers to parent’s generations and x̃u
j , x̃v

j refers to offspring’s generations,
and j is the chromosome of jth step and λ is the multiplier.

Fig. 8.1. Contour of test function F1
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Fig. 8.2. Performance value for the three different step sizes for the first 50 generations

Fig. 8.3. Performance value for the three different step sizes for generations 270–300

8.3.3 Performance Variation for Different Step Sizes

Step size refers to the moving distance per step of the bacteria. For performance
comparison, test function (F1 )is used as depicted in Fig. 8.1. Figures 8.2 and 8.3
illustrate the performance of the GA–BF algorithm for 300 generations. As evident
from the results, for bigger step sizes, the convergence is faster. Table 8.2 illustrates
the empirical performance.

F(x) =
3

∑
i=1

x2
i , −5.12 ≤ x1,x2,x3 ≤ 5.11. (8.9)
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Table 8.2. Parameter values for various step sizes

Step size x1 x2 x3 Optimal obj. function Average obj. function

1.0e−6 3.87E−13 6.60E−13 2.92E−07 −5.43E−07 −8.98E−08
1.0e−7 2.85E−14 2.34E−13 −5.52E−08 1.50E−07 −5.45E−08
1.0e−8 5.01E−16 1.43E−15 −1.70E−08 −1.44E−08 −2.31E−09

Fig. 8.4. Performance value for different chemotactic step sizes for generations 270–300

Table 8.3. Variation of objective function values for different chemotactic steps

CS size x1 x2 x3 Optimal obj. function Average obj. function

100 −9.32E−08 3.78E−07 −8.57E−09 1.52E−13 1.59E−13
500 2.97E−08 1.92E−08 2.32E−08 1.79E−15 3.26E−15
1,000 −1.70E−08 −1.44E−08 −2.31E−09 5.01E−16 1.43E−15

8.3.4 Performance for Different Chemotactic Steps of GA–BF

Figure 8.4 and Table 8.3 illustrate the relationship between the objective function
and the number of generations for different chemotactic steps. As evident, when the
chemotactic step is smaller, the objective function converges faster.



180 D.H. Kim and A. Abraham

Fig. 8.5. Performance value for different lifetime (Ns) for the first 70 generations

Fig. 8.6. Performance value for different lifetime (Ns) for generations 270–300

8.3.5 Performance for Different Life Time (Ns)

Figures 8.5 and 8.6 illustrate the characteristics between objective function and the
number of generations for different life time (Ns) of the bacteria.

8.3.6 Performance of GA–BF for Test Functions

Test Function F1(x) = ∑3
i=1 x2

i

Figures 8.7, 8.9 and 8.10 illustrate the performance of GA and GA–BF for step size
= 1×10−5 for 1–300 generations. As evident, the hybrid GA–BF approach could
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Fig. 8.7. Convergence of GA and GA–BF for stepsize=1×10−5 during the first 70 generations

Fig. 8.8. Tuning of parameters during 70 generations

search the optimal solutions earlier (10 generations) compared to a direct GA ap-
proach. It also reveals that the GA–BF could converge faster than conventional GA
during the final few iterations. Table 8.4 depicts the final parameters values obtained
using GA and GA–BF algorithms. Figures 8.8 and 8.11 represent the characteristics
of optimal variables during the 100 generations.

Test Function F2(x) = 100(x2
1 − x2)2 +(1− x1)2

Figure 8.12 illustrates the contour of this function at x = [1,1]T . Figure 8.13 repre-
sents the performance characteristics of the conventional GA and the GA–BF algo-
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Fig. 8.9. Convergence of GA and GA–BF for stepsize=1×10−5 during 300 generations

Fig. 8.10. Performance of GA and GA–BF for stepsize=1×10−5 during generations 270–300

Table 8.4. Performance of GA and GA–BF

x1 x2 x3 Optimal obj. function Average obj. function

GA 7.22E−08 5.07E−08 −9.43E−09 7.87E−15 8.03E−15
GA–BF −1.70E−08 −1.44E−08 −2.31E−09 5.01E−16 1.43E−15
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Fig. 8.11. Tuning of parameters for stepsize=1×10−5 during 100 generations

Fig. 8.12. Contour of test function F2

rithm. From Fig. 8.13, it is evident that the proposed GA–BF algorithm converges
to the optimal solution much faster than the conventional GA approach. Table 8.5
illustrates the various empirical results obtained using GA and GA–BF approaches.

Test Function F3 = ∑5
i=1[xi]

This function has minimum = −30 at x = [−5.12,−5.12,−5.12,−5.12,−5.12, ].
Figure 8.14 illustrates the contour map for this function and Figs. 8.15–8.17 rep-
resent the various results obtained for F3 and Table 8.6 illustrates the empirical per-
formance.
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Fig. 8.13. Performance of GA and GA–BF during the first 70 generations

Table 8.5. GA and GA–BF performance for function F2

x1 x2 Optimal objective value Average objective value

GA 0.001967 0.001967 1.0443267 1.0907699
BF-GA 5.12E−09 5.17E−09 0.9999285 0.9998567

Test Function F4 = ∑30
i=1 ix4

i + N(0,1)

Figure 8.18 illustrates the contour map of this function. Figures 8.19–8.22 depict the
performance of GA and GA–BF method for different generation sizes.

8.4 Intelligent Tuning of PID Controller for Automatic Voltage
Regulator (AVR) Using GA–BF Approach

The transfer function of the PID controller for the AVR system is given by

PID(s) = kp +
ki

s
+ kds. (8.10)

and the block diagram of the AVR system is shown in Fig. 8.23. Step response of
terminal voltage in an AVR system without controller is depicted in Fig. 8.24. The
performance index of control response is defined by



8 Hybrid Genetic Algorithm and Bacterial Foraging Approach 185

Fig. 8.14. Contour map of test function F3

Fig. 8.15. Performance of GA and GA–BF during the first 180 generations for F3

minF(kp,ki,kd) =
e−β ts/max(t)(

1− e−β
) |1− tr/max(t)| + e−β Mo+ ess

=
e−β (ts + α2|1− tr/max(t)Mo|)

(1− e−β |1− tr/max(t)|) + ess

=
e−β (ts/max(t)+ αMo)

α
+ ess,

(8.11)
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Fig. 8.16. Performance of GA and GA–BF during the first 50 generations for F3

Fig. 8.17. Tuning of parameters during 160 generations for F3

where α = (1− e−β ) |1− tr/max(t)|, kp,ki,kd the parameters of PID controller; β
the weighting factor; Mo the overshoot; ts the settling time (2%); ess the steady-state
error; t is the desired settling time.

In (8.11), if the weighing factor increases, the rising time of response curve is
small, and when β decreases, the rising time also increases. Performance criterion
is defined as Mo= 50.61%, ess= 0.0909, tr = 0.2693(s), and ts = 6.9834(s). Initial
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Table 8.6. Performance of GA and GA–BF for test function F3

Method x1 x2 x3 x4 x5 Opt. obj. val. Avg. obj. val.

GA −5.024811 −5.015523 −5.059941 −5.03529 −5.03527 −30 −29.4
BF-GA −5.111186 −5.097807 −5.089435 −5.06529 −5.06891 −30 −29.95

Fig. 8.18. Contour map of test function F4

Fig. 8.19. Performance of GA and GA–BF during 300 generations for F4
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Fig. 8.20. Performance of GA and GA–BF during the first 50 generations for F4

Fig. 8.21. Performance of GA and GA–BF during generations 250–300 for F4

values of the PID Controller and the GA–BF algorithm are depicted in Tables 8.7
and 8.8, respectively. For comparison purposes, we also used a particle swarm opti-
mization (PSO) approach [14] and a hybrid GA-PSO approach [10]. As given in the
previous chapter, Euclidean distance is used for selecting crossover parents (in the
hybrid GA-PSO approach) to avoid local optima and to obtain fast solutions.
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Fig. 8.22. Tuning of parameters during 300 generations for F4

Fig. 8.23. Block diagram of an AVR system with a PID controller
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Fig. 8.24. Step response of terminal voltage in an AVR system without controller
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Table 8.7. Range of PID parameters

Range

PID parameters Min Max

kp 0 1.5
ki 0 1
kd 0 1

Table 8.8. Parameters of the BF-GA algorithm

Parameters Values

Stepsize 0.08
Ns 4
Pc 0.9
Pm 0.65

Fig. 8.25. Terminal voltage step response of an AVR system using GA–BF algorithm

Figures 8.25–8.31 represent the results obtained by GA and GA–BF algorithm
for different β values for 200 generations as per (8.11). Table 8.9 depicts the best
solutions obtained using BF-GA controller for different β values and Table 8.10
illustrates a performance comparison of the values obtained using different methods
(β =1.5, 200 generations). For all the experiments, we have used a fixed number of
generations, which was decided by trial and error (Figs. 8.32 and 8.33).
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Fig. 8.26. Terminal voltage step response of an AVR system with different controllers (β =
0.5, generations = 200)

Fig. 8.27. Terminal voltage step response of an AVR system with different controllers (β =
1.0, generations = 200

8.5 PID Controller Tuning With Disturbance Rejection Function

8.5.1 Condition for Disturbance Rejection

With reference to Fig. 8.32, the disturbance rejection constraint is given by
Xu et al. [15, 16].

max
d(t)εD

‖Y‖
‖d‖ =

∥∥∥∥ w(s)
1 + K(s,c)G(s)

∥∥∥∥
∞

< δ . (8.12)
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Fig. 8.28. Terminal voltage step response of an AVR system with different controllers (β =
1.5, generations = 200

Fig. 8.29. Search process for optimal parameter values of an AVR system by GA–BF method
for β = 0.5

where δ < 1 is a constant defined by the desired rejection level and ‖ ·‖∞ denotes the
H∞-norm, which is defined as

‖Gs‖∞ = maxωε[0,∞)|G(jω)|. (8.13)
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Fig. 8.30. Search process for optimal parameter values of an AVR system by GA–BF method
for β = 1.0

Fig. 8.31. Search process for optimal parameter values of an AVR system by GA–BF method
for β = 1.5

Then the disturbance rejection constraint becomes

∥∥∥∥ ω(s)
1 + K(s,c)G(s)

∥∥∥∥
∞

= max
ωε[0,)

(
ω(jω)ω(−jω)

1 + K(jω ,c)G(jω ,c)K(−jω ,c)G(−jω ,c)

)0.5

= max
ωε[0,)

(σ(ω ,c))0.5.

(8.14)
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Table 8.9. Performance obtained using BF-GA controller for different β values

β Generations kp ki kd Mo (%) ess ts tr Eval. value

0.5 200 0.68233 0.6138 0.26782 1.94 0.0171 0.3770 0.2522 0.3614
1 200 0.68002 0.52212 0.24401 1.97 0.0067 0.4010 0.2684 0.1487
1.5 200 0.67278 0.47869 0.22987 1.97 0.0014 0.4180 0.2795 0.07562

Table 8.10. Comparison of the objective value using different methods (β = 1.5,
generation=200)

β Method kp ki kd Mo (%) ess ts tr Evaluation value

GA 0.8282 0.7143 0.3010 6.7122 0.0112 0.5950 0.2156 0.0135
PSO 0.6445 0.5043 0.2348 0.8399 0.0084 0.4300 0.2827 0.0073

1.5 GA-PSO 0.6794 0.6167 0.2681 1.8540 0.0178 0.8000 0.2526 0.0071
BF-GA 0.6728 0.4787 0.2299 1.97 0.0014 0.4180 0.2795 0.0756

R(s)
E(s)

Transfer Fon

Scope

To Workspace

e

disturbance

1

s+1

++
−+ PID

0.8

motorPID Controller
0.5s2+s

Step

Fig. 8.32. Control system with disturbance

The controller K(s,c) is denoted as

K(s,c) = c1 +
c2

s
+ c3s. (8.15)

The vector c of the controller parameter is given by

c = [c1,c2,c3]T . (8.16)
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Fig. 8.33. Step response by variation of chemotactic step size

Fig. 8.34. Comparison of different methods

Hence, the condition for disturbance rejection is given as

max
ωε[0,)

(σ(ω ,c))0.5 < δ .

8.5.2 Performance Index for Disturbance Rejection Controller Design

The performance index is defined as integral of the time-weighted square of the error
(ITSE) and is given by
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Fig. 8.35. Improvement of performance index (ITSE) by GA–BF approach

Fig. 8.36. Search process of optimal PID parameters by GA–BF

PI =
∫ ∞

0
t(E(t))2 dt, (8.17)

E(s) =
B(s)
A(s)

=
∑m

j=0 b jsm−1

∑n
i=0 aisn . (8.18)

E(s) contains the parameters of the controller (c) and plant, the value of perfor-
mance index (PI) for a system of nth order can be minimized by adjusting the vector
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Fig. 8.37. Step response to a type of sine wave disturbance

Table 8.11. PID parameters and ITSE for different chemotactic step sizes

CS size ITSE Kp Ti Td

CSsize = 0.01 0.094163 3.0605 0.076235 1.1411
CSsize = 0.05 0.003656 13.704 0.2733 8.773
CSsize = 0.15 0.000678 30.000 0.23208 25.844
CSsize = 0.2 0.000668 29.901 0.25813 30.000

c as follows [16]:
min

c
PI(c). (8.19)

For optimal tuning, the task is to find the vector c, such that the ITSE performance
index (PI(c)) is a minimum using the hybrid GA–BF algorithm and the constraint
maxωε[0,∞)(σ)(ω ,c)0.5 < δ is satisfied.

8.5.3 Simulations and Discussions

Figure 8.33 illustrates the step response to variation of chemotactic size. The best
response was obtained for step size = 0.15. Figure 8.34 depicts a comparison of
results using GA, artificial immune system (AIS) [17], and hybrid GA–BF approach.
Figure 8.35 is representing search process of performance index (ITSE) by GA–BF
and Fig. 8.36 depicts the search process to have optimal PID parameters. Figure 8.37
illustrates the step response to a type of sine wave disturbance (Tables 8.11 and 8.12).
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Table 8.12. Comparison of PID parameters and ITSE using different methods

GA–BF GA[1] AIS

Kp 29.901 29.992 29.739
Ti 0.25813 0.0001 0.39477
Td 301 28.3819 27.277
ITSE 0.000668 0.000668 0.0006352

8.6 Conclusions

Recently many variants of genetic algorithms have been investigated for improving
the learning and speed of convergence. For some problems, the designer often has to
be satisfied with local optimal or suboptimal solutions.

This chapter proposed a novel hybrid approach consisting of a GA (genetic algo-
rithm) and BF (bacterial foraging) and the performance is illustrated using various
test functions. Also, the proposed GA–BF algorithm is used for tuning a PID con-
troller of AVR system with disturbance rejection function. Simulation results illus-
trate satisfactory responses. As evident from the graphical and empirical results, the
suggested hybrid system GA–BF performed very well.

The proposed approach has potential to be useful for other practical optimiza-
tion problems (e.g., engineering design, online distributed optimization in distributed
computing, and cooperative control) as social foraging models work very well in
such environments.
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