
Synergy of Particle Swarm Optimization with

Evolutionary Algorithms for Intelligent Search and

Optimization

Swagatam Das1 and Ajith Abraham2

1 Department of Electronics and Telecommunication Engineering,

 Jadavpur University, Kolkata 700032, India.

2 IITA Professorship Program,School of Computer Science,

Yonsei University,134 Shinchon-dong, Sudaemoon-ku,

Seoul 120-749, Republic of Korea

ajith.abraham@ieee.org

Abstract. The concept of Particle Swarms, although initially introduced for

simulating human social behaviors, has become very popular these days as an

efficient global optimization technique. On the other hand, a keen observation

of the underlying relation between optimization and biological evolution has led

to the development of an important paradigm of Computational Intelligence,

marked as ‘Evolutionary Algorithms’ (EA). The EA algorithms are

ubiquitously used for performing very complex search and optimization. In this

article we focus on the possible synergies of these two powerful search

techniques in order to enjoy the best of both the worlds i.e. the fast convergence

and high diversity. We provide a few computer simulations undertaken for this

study to demonstrate the effectiveness of the hybrid algorithms.

Keywords: Particle Swarm Optimization, Evolutionary Algorithms,

Differential Evolution, Global Optimization, Swarm Intelligence.

1 Introduction

Scientists and engineers from all disciplines often have to deal with the classical

problem of search and optimization. Optimization means an action of finding the best-

suited solution of some problem within the given constraints and flexibilities. It has

now become a well known fact among the researchers that a class of stochastic search

algorithms can perform better on complex real life optimization problems as

compared to the classical deterministic algorithms such as the steepest descent search

[1]. Particle Swarm Optimization (PSO) [2, 3] and Evolutionary Algorithms (EA) [4-

7] are two important members of the former class.

The PSO is based on the simulation of the collective behavior of a flock of birds or

the movements of a school of fish. The dynamics of the search is motivated by the

modes of communication among the members of such a swarm of social creatures.

The particles are conceptual mathematical entities, which accelerate simultaneously

along two directions – the best positions of the search space individually experienced

by each of them at some point of time and the globally best position found by the

entire swarm so far. Thus the particles have a tendency to fly towards the better and

better regions of the search space over time, which results in the fast convergence of

the search. PSO requires no gradient information of the function to be optimized, is

very easy to implement in any standard programming language and uses only

primitive mathematical operators throughout. Due to these features, the algorithm has

become very popular among the researchers since its advent in 1995.

Evolutionary algorithms on the other hand, employ selection and mutation

operators to locate the global maxima/minima of a complex objective function. It also

starts with a population of agents or the trial solutions of the search problem. The

selection operator forces the individual agent to find better fitness in order to survive

to the next generation. The mutation operator brings about diversity in the population

to avoid premature convergence or trapping in some local optima. The main concept

in EA is to keep the competition in the population. It may be mentioned here that the

key concept in PSO is the cooperation among the population members.

In the present article, we discuss a few hybrid algorithms that integrate

evolutionary operators, such as selection and mutation, into the standard PSO

algorithm. The chapter gives special emphasis on a recently developed hybrid

algorithm known as PSO-DV (Particle Swarm Optimization with Differentially

perturbed Velocity) [8]. The algorithm synergistically combines PSO with a very

powerful member of the EA family, well-known as Differential Evolution (DE) [9,

10]. It incorporates a selection mechanism in PSO and thus saves the limited

computational source by prohibiting the particles from visiting the useless regions of

the search space. It also incorporates the vector differential operator borrowed from

DE, in the PSO dynamics.

The rest of the chapter is organized as follows. Section 2 provides a brief outline of

the classical PSO and the EA family of algorithms. In section 3, we review a few

hybrid PSO-EA algorithms developed in recent past. Section 4 describes the PSO-DV

algorithm in sufficient details. A performance comparison of the PSO-DV with the

original PSO and DE on a few representative benchmark objective functions has been

provided in section 5. Finally, the chapter is concluded in section 6.

2 Brief Introduction to PSO and EA

PSO is in principle such a multi-agent parallel search technique. Particles are

conceptual entities which fly through the multi-dimensional search space. At any

particular instant each particle has a position and a velocity. The position vector of a

particle with respect to the origin of the search space represents a trial solution of the

search problem. In classical PSO, a population of particles is initialized with random

positions iX
r

 and velocities iV
r

, and a function, f, is evaluated, using the particle’s

positional coordinates as input values. In a D-dimensional search space,
iX
r

 = (Xi1,

Xi2, Xi3 ...XiD) and
iV
r

 = (Vi1, Vi2, Vi3 ...ViD). Positions and velocities are adjusted, and

an objective function is evaluated with the new coordinates at each time-step. The

fundamental velocity and position update equations for the d-th dimension of the i-th

particle in the swarm may be given as

Vid (t+1) = ω.Vid (t) + C1. φ1. (Pid -Xid (t)) + C2. φ2. (Pgd-X id(t))

Xid (t+1) = Xid (t) + Vid (t+1) (1)

The variables φ1 and φ2 are random positive numbers, drawn from a uniform

distribution and restricted to an upper limit φmax that is a parameter of the system. C1

and C2 are called acceleration constants whereas ω is called inertia weight. Pi is the

best solution found so far by an individual particle while Pg represents the fittest

particle found so far in the entire community.

Below we illustrate the general principle of an EA with a simple pseudo-code.

Here P(t) denotes a population of chromosomes (trial solutions of the problem at

hand) at time t. The procedure initializes a population P(t) randomly at iteration t = 0.

The function: Evaluate P(t) determines the fitness of the chromosomes by employing

a specially constructed fitness measuring function. The ‘while’ loop includes three

main steps. First it increases the iteration index by 1. Next it selects a population P(t)

from P(t-1) based on the results of fitness evaluation. The function: Alter P(t) evolves

P(t) by some complex non-linear operations. The while loop then re-evaluates P(t) for

the next iteration, and continues evolution until the terminating condition is reached.

Procedure Evolutionary-Computation

Begin

 t←0;

 Initialize P(t);

 Evaluate P(t);

 While (terminating condition not reached) do

 Begin

 t←t+1;

 Select P(t) from P(t-1);

 Alter P(t);

 Evaluate P(t);

 End While;

End.

The main functioning loop of an EA can also be illustrated in figure 1. Depending

upon the alteration scheme of P(t) and the selection mechanisms, the EAs can have a

wide range of variants. A comprehensive foundation of the various forms of EA can

be found in [5, 10].

Fig. 1. The main loop of an EA

3 The Hybrid PSO-EA Algorithms – An Outline

Both the social and cognitive components of PSO focus more on the cooperation of

the particles. With memory, each particle can track its personal best performance and

that achieved in its neighborhood throughout its life time. However, the particles in

PSO are not eliminated even when they come up with worst fitness (in terms of the

objective function value) and thus waste the limited computational resources. On the

other hand, the individuals in EA compete for survival, but the winning survivors

hardly retain sufficient history. Clearly, the advantage of one algorithm can

compensate for the other’s shortcoming. Therein lays the motivation to develop

hybrid algorithms based on PSO and EA.

Based on the complementary properties of PSO and EA, Cai et al. [11, 12]

proposed a promising hybrid algorithm, which they successfully used in training the

feed-forward neural networks. In each generation, the hybrid algorithm selects half of

the PSO population as the winners (elites) according to the fitness value, and discards

the rest half as losers. These elites are enhanced, sharing the information in the

community and benefiting from their learning history using a standard PSO

procedure. The enhanced elites then serve as parents for an EA mutation operation to

produce the same amount of offspring to fill up the vacuum that the discarded

individuals left in the population size. The offspring also inherit the social and

cognitive information from the corresponding parents and carry this to the next

generation if they become the winners. Cai et al. applied the hybrid PSO-EA

algorithms in neural network learning and showed that it performs better than both

PSO and EA in terms of speed and accuracy. Some other approaches to combine PSO

with EAs can be traced in the works like [13]. In what follows, we describe a novel

hybrid algorithm based on PSO and Differential Evolution (DE). The DE is a recent

addition to the vast realm of EAs. Shortly after its advent in 1995, the algorithm

appeared as an attractive alternative to the classical EAs including the Genetic

Algorithms (GAs) in several real world search problems.

4 A Synergism of PSO and DE – the PSO-DV Algorithm

The canonical PSO has been subjected to empirical [14-16] and theoretical [17, 18]

investigations by several researchers. In many occasions the convergence is

premature, especially if the swarm uses a small inertia weight ω [19] or constriction

coefficient [17]. From equations (1), we see that if Vid is small, and if |Plid-Xid| and

|Pgd-Xid| too are small enough, Vid cannot attain a large value in the upcoming

generations. That would mean a loss of exploration power. Such a case can occur

even at an early stage of the search process, when the particle is the global best,

causing both |Plid-Xid| and |Pgd-Xid| to be zero, and Vid gets damped quickly with the

ratio w. Also, the swarm suffers from loss of diversity in later generations if Plid and

Pgd are close enough [20, 21, and 16].

 In an attempt to circumvent the problems mentioned in the previous section, Das et

al. coupled a differential operator with the velocity-update scheme of PSO [8]. The

operator is invoked on the position vectors of two randomly chosen particles

(population-members), not on their individual best positions. Further, unlike the PSO

scheme, a particle is actually shifted to a new location only if the new location yields

a better fitness value, i.e., a selection strategy has been incorporated into the swarm

dynamics.

 In the proposed algorithm, for each particle i in the swarm, two other distinct

particles, say j and k (i ≠ j ≠ k), are selected randomly. The difference between their

positional coordinates is taken as a difference vector δ:

 jk XX −=δ
 (2)

 Then the d-th velocity component (1 < d < n) of the target particle i is updated as

 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)), if randd (0, 1) <CR (3)

 = Vid (t), otherwise

 where CR is the crossover probability, δd is the d-th component of the difference

vector δ defined in (2), and β is a scale factor in [0, 1]. In essence the cognitive part of

the velocity update formula in (1) is replaced with the vector differential operator to

produce some additional exploration capability. Clearly, for CR < 1, some of the

velocity components will retain their old values. Creation of the trial location is

illustrated in figure 2.

 Now, a new trial location Tri is created for the particle by adding the updated

velocity to the previous position Xi:

)1()(++= tVtXrT iii

rrr
 (4)

 The particle is placed at this new location only if the coordinates of the location

yield a better fitness value. Thus if we are seeking the minimum of an n-dimensional

function)(Xf
r

, then the target particle is relocated as follows:

 rTtX i

rr
=+)1(if))(()(tXfrTf ii

rr
<

)()1(tXtX ii

rr
=+ Otherwise (5)

Fig. 2. Illustrating PSO-DV on a two dimensional function surface

 Therefore, every time its velocity changes, the particle either moves to a better

position in the search space or sticks to its previous location. The current location of

the particle is thus the best location it has ever found. In other words, unlike the

classical PSO, in the present scheme, Plid always equals Xid. So the cognitive part

involving |Plid-Xid| is automatically eliminated in our algorithm. If a particle gets

stagnant at any point in the search space (i.e., if its location does not change for a

predetermined number of iterations), then the particle is shifted by a random mutation

(explained below) to a new location. This technique helps escape local minima and

also keeps the swarm “moving”:

If ())(....)2()1()((NtXtXtXtX iiii +==+=+=
rrrr

and ())((NtXf i +
r

then
for (r = 1 to n)

 Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin) (6)

 where f* is the global minimum of the fitness function, N is the maximum number

of iterations up to which stagnation can be tolerated and (Xmax, Xmin) define the

permissible bounds of the search space. The pseudo code for this new method, called

PSO-DV (Particle Swarm Optimization with Differentially perturbed Velocity), is

presented below:

Procedure PSO-DV

begin
 initialize population;

 while stopping condition not satisfied do

Globally Best Position found
by the swarm Pgb

Scaled Differential Velocity
Component βδ

Inertial velocity
ωVi

Social Velocity Component

C2. φ2. (Pg-X i(t)),

The

Difference

Vector δ

 for i = 1 to no_of_particles

 evaluate fitness of particle;

 update Pgd ;

 select two other particles j and k (i≠j≠k) randomly;

 construct the difference vector as jk XX
rr

−=δ ;

 for d = 1 to no_of_dimensions

 if randd (0, 1) < CR

 Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t));

 else Vid (t+1) = Vid (t);

 endif

 endfor

 create trial location as)1()(++= tVtXrT iii

rrr
;

 if ())(()(tXfrTf ii

rr
<) then rTtX i

rr
=+)1(;

 else)()1(tXtX ii

rr
=+ ;

 endif

 endfor
 for i = 1 to no_of_particles

 if Xi stagnates for N successive generations

 for r = 1 to no_of_dimensions

 Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)

 end for

 end if

 end for

 end while

end

5 Experimental Results

In this section we present a performance comparison of the PSO-DV algorithm with

classical PSO, DE and a recently proposed improved version of PSO over a test bed

of three well-known multi-modal benchmark functions. The PSO-variant that we

consider are known as HPSO-TVAC (Self Organizing Hierarchical PSO with Time
Varying Acceleration Coefficient) [22]. For DE and PSO-DV, we chose a population

size equal to ten times the dimension of the test function, whereas for the two PSO

algorithms, we used a swarm of 40 particles. The functions were tested for 10, 20, 30,

and 40 dimensions. Through empirical studies on numerical benchmarks, Eberhart

and Shi [23] suggested that it is good to limit the maximum velocity, Vmax, to the

upper limit of the dynamic range of search, Xmax. We used this limit in this

investigation. In case of the HPSO-TVAC algorithm, the acceleration-coefficient C1

was varied from 0.35 to 2.4 and that for C2 should be from 2.4 to 0.35 in equation (1).

Moreover, the re-initialization velocity was set to change from Vmax to 0.1Vmax. For

the PSO-DV algorithm, we used β = 0.8. In PSO-DV, the value of the parameter N

depends on the nature of the test function. The classical PSO algorithm is applied with

inertia factor ω = 0.749, C1 = C2 = 1.494. In case of the classical DE, we choose the

conventional parameter set up [9]: CR = 0.9 and scale factor F = 0.8.

 In figure 3 to 5, we have graphically presented the rate of convergence of all the

methods on three test functions (in 30 dimensions). Figure 6 shows the scalability of

the six methods on three test functions -- how the average time to convergence varies
with an increase in the dimensionality of the search space. We used the number of

Fitness Function Evaluations (FEs) as a measure of computation time instead of

‘generations’ or ‘iterations’, since different algorithms perform different amounts of

work in their inner loops through each iteration.

 (a) (b)

Fig. 3. (a) Fitness landscape of the 2-dimensional Ackley function (b) Progress toward the

optima with computation time, for four competitive algorithms.

 (a) (b)

Fig. 4. (a) Fitness landscape of the 2-dimensional Griewank function (b) Progress toward the

optima with computation time, for four competitive algorithms.

 (a) (b)

Fig. 5. (a) Fitness landscape of the 2-dimensional Rosenbrock function. (b) Progress toward the

optima with computation time, for four competitive algorithms.

 (a) (b)

 (c)

Fig. 6. Variation of mean convergence time with increase in dimensionality of the search space

(a) Ackley Function (b) Griewank Function (c) Rosenbrock function.

As can be perceived from the figures 3 to 5, in all the test cases, PSO-DV

outperforms the original PSO, DE and a state-of-the-art variant of the PSO, in terms

of both accuracy and speed. Detailed experimental results reported in [8] reveal that

over seven standard benchmark functions, PSO-DV meet or beat all other competitive

algorithms in a statistically meaningful way. The particles in PSO-DV were able to
land at or very near to the global optima of the fitness landscape at a much faster rate.

A close scrutiny of figure 5 shows that PSO-DV is least affected by the increase of

the dimensionality of the search space as compared to its competitors.

6 Conclusions

PSO and EA mark two promising families of algorithms for global search and

optimization of current interest. In this chapter the combination of the search

capabilities of these two methods has been explored. A novel synergy of PSO and DE

has been presented in sufficient details. The hybrid algorithm inherits both

cooperative and competitive characteristics from PSO and EA. It shares the searching
information within the promising individuals, which leads to faster convergence,

while replacing the worse individuals from the offspring of elites or prohibiting the

particles from visiting the points far away from the global optima as we have seen for

the PSO-DV. In this way, the search of the particles soon becomes more focussed

near the global optima thus saving the computational cost. The purpose of

incorporating DE-type mutation to PSO is to increase the diversity of the population

and thus enable the particles to escape from local optima. Future research may focus

on incorporating other kinds of mutation and crossover strategies (like the simplex

crossover, the parent centric recombination and so on [24]) from EA domain in PSO.

Some PSO concepts like that of the neighbourhood topologies may also be

incorporated in EAs like DE. Preliminary work towards this direction has been
undertaken in [25].

References

1. Snyman, A.: Practical Mathematical Optimization: An Introduction to Basic Optimization

Theory and Classical and New Gradient-Based Algorithms. Springer Publishing. (2005).

2. Kennedy, J.: Eberhart, R. Particle swarm optimization, In Proceedings of IEEE

International Conference on Neural Networks, (1995) 1942-1948.

3. Kennedy, J.: Eberhart, R. and Shi, Y., Swarm Intelligence, Morgan Kaufmann Academic

Press (2001).

4. Fogel, L. J., Owens A. J. and Walsh, M. J.: Artificial Intelligence Through Simulated

Evolution. New York: Wiley, (1966).

5. Yao, X.: Evolutionary Computation: Theory and Applications, World Scientific Press

(1999).

6. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.

Springer-Verlag, Berlin Heidelberg New York (1996)

7. Schwefel, H.-P. : Evolution and Optimum Seeking. New York, NY: Wiley, 1st edition

(1995).

8. Das, S., Konar, A. and Chakraborty, U. K.: An Improved Particle Swarm Optimization

Algorithm for Faster Global Search in ACM-SIGEVO Proceedings of Genetic and

Evolutionary Computation Conference (GECCO-2005), Washington DC, (2005).

9. Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for Global

continuous spaces, Journal of Global Optimization, 11(4) (1997) 341–359.

10. DeJong, K. A.: Evolutionary Computation, a Unified Approach, MIT Press, (2002).

11. Cai, X., Zhang, N., Venayagamoorthy G. K. and Wunsch II D. C.: Time series prediction

with recurrent neural networks using hybrid PSO-EA algorithm, Proc. of INNS-IEEE

International Joint Conference on Neural Networks (IJCNN), Vol. 2, (2004) 1647-1652,

Budapest, Hungary.

12. Cai, X., Zhang, N., Venayagamoorthy G. K. and Wunsch II D. C.: Time series prediction

with recurrent neural networks using hybrid PSO-EA algorithm, Neurocomputing, accepted

for publication, 2005.

13. Løvbjerg, M., Rasmussen, T., K. and Krink, T. Hybrid Particle Swarm Optimizer with

Breeding and Subpopulations. In: Proceedings of the third Genetic and Evolutionary

Computation Conference (GECCO-2001), vol. 1, (2001) 469-476.

14. Angeline, P. J.: Evolutionary optimization versus particle swarm optimization: Philosophy

and the performance difference, Lecture Notes in Computer Science, vol. 1447, Evolutionary

Programming VII, (1998) 84-89.

15. Kennedy, J.: Bare bones particle swarms, In Proceedings of IEEE Swarm Intelligence

Symposium, (2003) 80-87.

16. Xie, X. F., Zhang, W. J., Yang Z. L.: A dissipative particle swarm optimization, In

Proceedings of Congress on Evolutionary Computation (2002), 1456-1461.

17. Clerc, M. and Kennedy, J.: The particle swarm - explosion, stability, and convergence in a

multidimensional complex space, In IEEE Transactions on Evolutionary Computation (2002)

6(1): 58-73.

18. Trelea, C. I.: The particle swarm optimization algorithm: convergence analysis and

parameter selection, Information Processing Letters (2003), 85(6), 317–325.

19. Eberhart, R. C. and Shi, Y.: Particle swarm optimization: Developments, applications and

resources, In Proceedings of IEEE International Conference on Evolutionary Computation,

vol. 1 (2001), 81-86.

20. Higashi, N. and Iba, H.: Particle swarm optimization with Gaussian mutation, In IEEE

Swarm Intelligence Symposium (2003) 72-79.

21. Xie, X., F, Zhang, W., J. and Yang, Z, L.: Adaptive particle swarm optimization on

individual level, In Proceedings of International Conference on Signal Processing (2002),

1215-1218.

22. Ratnaweera, A. and Halgamuge, K. S.: Self organizing hierarchical particle swarm

optimizer with time-varying acceleration coefficients, In IEEE Transactions on

Evolutionary Computation (2004) 8(3): 240-254.

23. Eberhart, R. C. and Shi, Y.: Comparing inertia weights and constriction factors in particle

swarm optimization, In Proceedings of IEEE International Congress on Evolutionary

Computation, Vol. 1 (2000), 84-88.

24. Deb, K., Anand, A. and Joshi, D.: A Computationally Efficient Evolutionary Algorithm for

Real-Parameter Optimization, Evolutionary computation, 10(4), (2002) 371 – 395.

25. Chakraborty, U. K., Das, S. and Konar, A.: DE with Local Neighborhood proceedings of

Congress on Evolutionary Computation (CEC 2006), Vancouver, BC, Canada, IEEE Press.

