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Abstract. The concept of Particle Swarms, although initially introduced for 

simulating human social behaviors, has become very popular these days as an 

efficient global optimization technique. On the other hand, a keen observation 

of the underlying relation between optimization and biological evolution has led 

to the development of an important paradigm of Computational Intelligence, 

marked as ‘Evolutionary Algorithms’ (EA). The EA algorithms are 

ubiquitously used for performing very complex search and optimization. In this 

article we focus on the possible synergies of these two powerful search 

techniques in order to enjoy the best of both the worlds i.e. the fast convergence 

and high diversity. We provide a few computer simulations undertaken for this 

study to demonstrate the effectiveness of the hybrid algorithms.   

Keywords: Particle Swarm Optimization, Evolutionary Algorithms, 

Differential Evolution, Global Optimization, Swarm Intelligence. 

1   Introduction 

Scientists and engineers from all disciplines often have to deal with the classical 

problem of search and optimization. Optimization means an action of finding the best-

suited solution of some problem within the given constraints and flexibilities. It has 

now become a well known fact among the researchers that a class of stochastic search 

algorithms can perform better on complex real life optimization problems as 

compared to the classical deterministic algorithms such as the steepest descent search 

[1]. Particle Swarm Optimization (PSO) [2, 3] and Evolutionary Algorithms (EA) [4-

7] are two important members of the former class.   

The PSO is based on the simulation of the collective behavior of a flock of birds or 

the movements of a school of fish. The dynamics of the search is motivated by the 

modes of communication among the members of such a swarm of social creatures. 

The particles are conceptual mathematical entities, which accelerate simultaneously 



along two directions – the best positions of the search space individually experienced 

by each of them at some point of time and the globally best position found by the 

entire swarm so far. Thus the particles have a tendency to fly towards the better and 

better regions of the search space over time, which results in the fast convergence of 

the search. PSO requires no gradient information of the function to be optimized, is 

very easy to implement in any standard programming language and uses only 

primitive mathematical operators throughout. Due to these features, the algorithm has 

become very popular among the researchers since its advent in 1995.  

Evolutionary algorithms on the other hand, employ selection and mutation 

operators to locate the global maxima/minima of a complex objective function. It also 

starts with a population of agents or the trial solutions of the search problem. The 

selection operator forces the individual agent to find better fitness in order to survive 

to the next generation. The mutation operator brings about diversity in the population 

to avoid premature convergence or trapping in some local optima. The main concept 

in EA is to keep the competition in the population. It may be mentioned here that the 

key concept in PSO is the cooperation among the population members. 

In the present article, we discuss a few hybrid algorithms that integrate 

evolutionary operators, such as selection and mutation, into the standard PSO 

algorithm. The chapter gives special emphasis on a recently developed hybrid 

algorithm known as PSO-DV (Particle Swarm Optimization with Differentially 

perturbed Velocity) [8]. The algorithm synergistically combines PSO with a very 

powerful member of the EA family, well-known as Differential Evolution (DE) [9, 

10]. It incorporates a selection mechanism in PSO and thus saves the limited 

computational source by prohibiting the particles from visiting the useless regions of 

the search space.  It also incorporates the vector differential operator borrowed from 

DE, in the PSO dynamics. 

The rest of the chapter is organized as follows. Section 2 provides a brief outline of 

the classical PSO and the EA family of algorithms. In section 3, we review a few 

hybrid PSO-EA algorithms developed in recent past. Section 4 describes the PSO-DV 

algorithm in sufficient details. A performance comparison of the PSO-DV with the 

original PSO and DE on a few representative benchmark objective functions has been 

provided in section 5. Finally, the chapter is concluded in section 6. 

2   Brief Introduction to PSO and EA 

PSO is in principle such a multi-agent parallel search technique. Particles are 

conceptual entities which fly through the multi-dimensional search space. At any 

particular instant each particle has a position and a velocity. The position vector of a 

particle with respect to the origin of the search space represents a trial solution of the 

search problem. In classical PSO, a population of particles is initialized with random 

positions iX
r

 and velocities iV
r

, and a function, f, is evaluated, using the particle’s 

positional coordinates as input values. In a D-dimensional search space, 
iX
r

 = (Xi1, 

Xi2, Xi3 ...XiD) and 
iV
r

 = (Vi1, Vi2, Vi3 ...ViD).   Positions and velocities are adjusted, and 



an objective function is evaluated with the new coordinates at each time-step.  The 

fundamental velocity and position update equations for the d-th dimension of the i-th 

particle in the swarm may be given as  
 

Vid (t+1) = ω.Vid (t) + C1. φ1. (Pid -Xid (t)) + C2. φ2. (Pgd-X id(t))                   

Xid (t+1) = Xid (t) + Vid (t+1)                                                                                  (1)                        

     

The variables φ1 and φ2 are random positive numbers, drawn from a uniform 

distribution and restricted to an upper limit φmax that is a parameter of the system. C1 

and C2 are called acceleration constants whereas ω is called inertia weight. Pi is the 

best solution found so far by an individual particle while Pg represents the fittest 

particle found so far in the entire community. 

Below we illustrate the general principle of an EA with a simple pseudo-code. 

Here P(t) denotes a population of chromosomes (trial solutions of the problem at 

hand) at time t. The procedure initializes a population P(t) randomly at iteration t = 0. 

The function: Evaluate P(t) determines the fitness of the chromosomes by employing 

a specially constructed fitness measuring function. The ‘while’ loop includes three 

main steps. First it increases the iteration index by 1. Next it selects a population P(t) 

from P(t-1) based on the results of fitness evaluation. The function: Alter P(t) evolves 

P(t) by some complex non-linear operations. The while loop then re-evaluates P(t) for 

the next iteration, and continues evolution until the terminating condition is reached.  

 

Procedure Evolutionary-Computation 

Begin 

    t←0; 

    Initialize P(t); 

    Evaluate P(t); 

    While (terminating condition not reached) do 

      Begin 

        t←t+1; 

        Select P(t) from P(t-1); 

        Alter P(t); 

        Evaluate P(t); 

     End While; 

End. 

 

The main functioning loop of an EA can also be illustrated in figure 1. Depending 

upon the alteration scheme of P(t) and the selection mechanisms, the EAs can have a 

wide range of variants. A comprehensive foundation of the various forms of EA can 

be found in [5, 10].  

 

 



 
Fig. 1. The main loop of an EA 

3   The Hybrid PSO-EA Algorithms – An Outline 

Both the social and cognitive components of PSO focus more on the cooperation of 

the particles. With memory, each particle can track its personal best performance and 

that achieved in its neighborhood throughout its life time. However, the particles in 

PSO are not eliminated even when they come up with worst fitness (in terms of the 

objective function value) and thus waste the limited computational resources. On the 

other hand, the individuals in EA compete for survival, but the winning survivors 

hardly retain sufficient history. Clearly, the advantage of one algorithm can 

compensate for the other’s shortcoming. Therein lays the motivation to develop 

hybrid algorithms based on PSO and EA. 

Based on the complementary properties of PSO and EA, Cai et al. [11, 12] 

proposed a promising hybrid algorithm, which they successfully used in training the 

feed-forward neural networks. In each generation, the hybrid algorithm selects half of 

the PSO population as the winners (elites) according to the fitness value, and discards 

the rest half as losers. These elites are enhanced, sharing the information in the 

community and benefiting from their learning history using a standard PSO 

procedure. The enhanced elites then serve as parents for an EA mutation operation to 

produce the same amount of offspring to fill up the vacuum that the discarded 

individuals left in the population size. The offspring also inherit the social and 

cognitive information from the corresponding parents and carry this to the next 

generation if they become the winners. Cai et al. applied the hybrid PSO-EA 

algorithms in neural network learning and showed that it performs better than both 

PSO and EA in terms of speed and accuracy. Some other approaches to combine PSO 

with EAs can be traced in the works like [13]. In what follows, we describe a novel 

hybrid algorithm based on PSO and Differential Evolution (DE). The DE is a recent 

addition to the vast realm of EAs. Shortly after its advent in 1995, the algorithm 

appeared as an attractive alternative to the classical EAs including the Genetic 

Algorithms (GAs) in several real world search problems. 



4   A Synergism of PSO and DE – the PSO-DV Algorithm 

The canonical PSO has been subjected to empirical [14-16] and theoretical [17, 18] 

investigations by several researchers.  In many occasions the convergence is 

premature, especially if the swarm uses a small inertia weight ω [19] or constriction 

coefficient [17]. From equations (1), we see that if Vid is small, and if |Plid-Xid| and 

|Pgd-Xid| too are small enough, Vid cannot attain a large value in the upcoming 

generations. That would mean a loss of exploration power. Such a case can occur 

even at an early stage of the search process, when the particle is the global best, 

causing both |Plid-Xid| and |Pgd-Xid| to be zero, and Vid gets damped quickly with the 

ratio w. Also, the swarm suffers from loss of diversity in later generations if Plid and 

Pgd are close enough [20, 21, and 16]. 

    In an attempt to circumvent the problems mentioned in the previous section, Das et 

al. coupled a differential operator with the velocity-update scheme of PSO [8]. The 

operator is invoked on the position vectors of two randomly chosen particles 

(population-members), not on their individual best positions. Further, unlike the PSO 

scheme, a particle is actually shifted to a new location only if the new location yields 

a better fitness value, i.e., a selection strategy has been incorporated into the swarm 

dynamics.            

    In the proposed algorithm, for each particle i in the swarm, two other distinct 

particles, say j and k (i ≠ j ≠ k), are selected randomly. The difference between their 

positional coordinates is taken as a difference vector δ: 

                                             jk XX −=δ
                                                       (2)                                                                                                                            

    Then the d-th velocity component (1 < d < n) of the target particle i is updated as 

  

           Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)),    if randd (0, 1)  <CR          (3) 

                          = Vid (t),                                                    otherwise 

 

    where CR is the crossover probability, δd is the d-th component of the difference 

vector δ defined in (2), and β is a scale factor in [0, 1]. In essence the cognitive part of 

the velocity update formula in (1) is replaced with the vector differential operator to 

produce some additional exploration capability. Clearly, for CR < 1, some of the 

velocity components will retain their old values. Creation of the trial location is 

illustrated in figure 2. 

   Now, a new trial location Tri is created for the particle by adding the updated 

velocity to the previous position Xi: 

                                  )1()( ++= tVtXrT iii

rrr
                                                         (4)                                                                                                                                                       

    The particle is placed at this new location only if the coordinates of the location 

yield a better fitness value. Thus if we are seeking the minimum of an n-dimensional 

function )(Xf
r

, then the target particle is relocated as follows: 

                                 rTtX i

rr
=+ )1(             if ))(()( tXfrTf ii

rr
<  

                                  )()1( tXtX ii

rr
=+      Otherwise                                            (5) 

 



 
Fig.  2. Illustrating PSO-DV on a two dimensional function surface 

               

     Therefore, every time its velocity changes, the particle either moves to a better 

position in the search space or sticks to its previous location. The current location of 

the particle is thus the best location it has ever found. In other words, unlike the 

classical PSO, in the present scheme, Plid always equals Xid. So the cognitive part 

involving |Plid-Xid| is automatically eliminated in our algorithm. If a particle gets 

stagnant at any point in the search space (i.e., if its location does not change for a 

predetermined number of iterations), then the particle is shifted by a random mutation 

(explained below) to a new location. This technique helps escape local minima and 

also keeps the swarm “moving”: 

If ( ))(....)2()1()(( NtXtXtXtX iiii +==+=+=
rrrr

and ( ))(( NtXf i +
r

 

then  
for ( r = 1 to n)   

             Xir(t+N+1) = Xmin + randr(0, 1)*(Xmax-Xmin)                                                  (6)                

   where f* is the global minimum of the fitness function, N is the maximum number 

of iterations up to which stagnation can be tolerated and (Xmax, Xmin) define the 

permissible bounds of the search space. The pseudo code for this new method, called 

PSO-DV (Particle Swarm Optimization with Differentially perturbed Velocity), is 

presented below: 

 

Procedure PSO-DV 

begin 
 initialize population; 

 while stopping condition not satisfied do 

Globally Best Position found  
by the swarm Pgb 

Scaled Differential Velocity  
Component βδ 

 
Inertial velocity 
ωVi 

Social Velocity Component  

C2. φ2. (Pg-X i(t)),  

The 

Difference 

Vector δ 



    for i = 1 to no_of_particles 

      evaluate fitness of particle; 

      update Pgd ; 

      select two other particles j and k (i≠j≠k) randomly; 

      construct the difference vector as jk XX
rr

−=δ ; 

      for d = 1 to no_of_dimensions 

       if randd (0, 1) < CR  

          Vid (t+1) = ω.Vid (t) + β.δd + C2. φ2. (Pgd-X id(t)); 

       else Vid (t+1) = Vid (t);  

       endif 

      endfor   

      create trial location as )1()( ++= tVtXrT iii

rrr
; 

         if ( ))(()( tXfrTf ii

rr
< ) then rTtX i

rr
=+ )1( ; 

            else )()1( tXtX ii

rr
=+ ;  

          endif 

    endfor   
      for i = 1 to no_of_particles 

        if Xi stagnates for N successive generations                          

                       for r = 1 to no_of_dimensions  

                        Xir(t+1) = Xmin + randr(0, 1)*(Xmax-Xmin)   

                        end for 

         end if   

       end for 

  end while 

end 

5   Experimental Results 

In this section we present a performance comparison of the PSO-DV algorithm with 

classical PSO, DE and a recently proposed improved version of PSO over a test bed 

of three well-known multi-modal benchmark functions. The PSO-variant that we 

consider are known as HPSO-TVAC (Self Organizing Hierarchical PSO with Time 
Varying Acceleration Coefficient) [22]. For DE and PSO-DV, we chose a population 

size equal to ten times the dimension of the test function, whereas for the two PSO 

algorithms, we used a swarm of 40 particles. The functions were tested for 10, 20, 30, 

and 40 dimensions. Through empirical studies on numerical benchmarks, Eberhart 

and Shi [23] suggested that it is good to limit the maximum velocity, Vmax, to the 

upper limit of the dynamic range of search, Xmax.  We used this limit in this 

investigation. In case of the HPSO-TVAC algorithm, the acceleration-coefficient C1 

was varied from 0.35 to 2.4 and that for C2 should be from 2.4 to 0.35 in equation (1). 

Moreover, the re-initialization velocity was set to change from Vmax to 0.1Vmax.  For 

the PSO-DV algorithm, we used β = 0.8. In PSO-DV, the value of the parameter N 

depends on the nature of the test function. The classical PSO algorithm is applied with 



inertia factor ω = 0.749, C1 = C2 = 1.494. In case of the classical DE, we choose the 

conventional parameter set up [9]: CR = 0.9 and scale factor F = 0.8.  

    In figure 3 to 5, we have graphically presented the rate of convergence of all the 

methods on three test functions (in 30 dimensions). Figure 6 shows the scalability of 

the six methods on three test functions -- how the average time to convergence varies 
with an increase in the dimensionality of the search space. We used the number of 

Fitness Function Evaluations (FEs) as a measure of computation time instead of 

‘generations’ or ‘iterations’, since different algorithms perform different amounts of 

work in their inner loops through each iteration. 

 

 

 

 

 

 

 

 
 

 

 

 

                    
 

 
                    (a)                                                                                 (b) 

Fig. 3. (a) Fitness landscape of the 2-dimensional Ackley function (b) Progress toward the 

optima with computation time, for four competitive algorithms. 

 

 

 
 

 

 

 

 
 

 

 

 

 
                   (a)                                                                               (b) 

Fig. 4. (a) Fitness landscape of the 2-dimensional Griewank function (b) Progress toward the 

optima with computation time, for four competitive algorithms. 

 



 

 

 

 

 

 

                 

                     (a)                                                                                       (b)       

Fig. 5. (a) Fitness landscape of the 2-dimensional Rosenbrock function. (b) Progress toward the 

optima with computation time, for four competitive algorithms. 
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                                                                           (c)    

Fig.  6. Variation of mean convergence time with increase in dimensionality of the search space 

(a) Ackley Function (b) Griewank Function (c) Rosenbrock function. 



As can be perceived from the figures 3 to 5, in all the test cases, PSO-DV 

outperforms the original PSO, DE and a state-of-the-art variant of the PSO, in terms 

of both accuracy and speed. Detailed experimental results reported in [8] reveal that 

over seven standard benchmark functions, PSO-DV meet or beat all other competitive 

algorithms in a statistically meaningful way. The particles in PSO-DV were able to 
land at or very near to the global optima of the fitness landscape at a much faster rate. 

A close scrutiny of figure 5 shows that PSO-DV is least affected by the increase of 

the dimensionality of the search space as compared to its competitors. 

6   Conclusions 

PSO and EA mark two promising families of algorithms for global search and 

optimization of current interest. In this chapter the combination of the search 

capabilities of these two methods has been explored. A novel synergy of PSO and DE 

has been presented in sufficient details. The hybrid algorithm inherits both 

cooperative and competitive characteristics from PSO and EA. It shares the searching 
information within the promising individuals, which leads to faster convergence, 

while replacing the worse individuals from the offspring of elites or prohibiting the 

particles from visiting the points far away from the global optima as we have seen for 

the PSO-DV. In this way, the search of the particles soon becomes more focussed 

near the global optima thus saving the computational cost. The purpose of 

incorporating DE-type mutation to PSO is to increase the diversity of the population 

and thus enable the particles to escape from local optima. Future research may focus 

on incorporating other kinds of mutation and crossover strategies (like the simplex 

crossover, the parent centric recombination and so on [24]) from EA domain in PSO. 

Some PSO concepts like that of the neighbourhood topologies may also be 

incorporated in EAs like DE. Preliminary work towards this direction has been 
undertaken in [25]. 
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