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Abstract 

 
Since their appearance in 1993, first approaching the 
Shannon limit, turbo codes gave a new direction in the 
channel encoding field, especially since they have been 
adopted for multiple telecommunication norms. To 
obtain good performance, it is necessary to design a 
robust turbo code interleaver. This paper proposes a a 
differential evolution approach to find above average 
turbo code interleavers. Performance is compared with 
the conventional genetic algorithm approach and the 
empirical results illustrate that DE performs well. 

 

1. Introduction 

The introduction of the turbo principle allowed close 
approach to the Shannon limit – a theoretical boundary 
describing the maximum capacity of a noisy 
communication channel. The invention of the turbo 
codes and its superior performance in practical 
applications also initiated a renaissance of channel 
coding research [1, 2]. The exceptional performance of 
the turbo codes can be further improved by finding 
right settings for a particular system. The structure of 
the interleaver, performing a permutation of input bits, 
is one important property of any turbo code system. In 
this research, we optimize the turbo code interleaver by 
genetic algorithms and differential evolution. 

2. Turbo codes  

The turbo codes were introduced by Berrou, Glavieux 
and Thitimajshima in 1993 [2] and they have become a 
hot research topic since then. Prior to the turbo codes, 

 or more separated the spectral efficiency of real 
world channel encoding systems from the theoretical 
maximum described by Shannon theorem [2]. 

The turbo codes are an implementation of parallel 
concatenation of two circular recursive systematic 
convolutional (CRSC) codes based on a pseudo-
random permutation (the interleaver). The general 
scheme of a classic turbo encoder is shown in Figure 1. 

 
The encoder processes a -bit long information frame 

. The input frame is interleaved by the -bit 
interleaver to form permuted frame . Original input 
frame is encoded by the encoder RSC1 and interleaved 
frame is encoded by RSC2. Hereafter, the two encoded 
frames  and  are merged together and with the 
original input sequence  according to some 
puncturing and multiplexing scheme. The rate of the 
code is defined as . 

Previous studies have illustrated that a random 
block interleaver (random permutation of the input 
frame) can be in certain cases (e.g. for ) 
more efficient than other channel encoding schemes 
[3]. In this paper, an optimized turbo code block 
interleaver is compared with a random block 
interleaver by means of BER to evaluate its efficiency. 

 

 
Figure 1. A general scheme of turbo encoder 
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The increase of the interleaver size gives better 
performance and better interleaving gain while 
worsening latency. Equation (1) illustrates the 
influence on the latency: 

 (1)  

In (1),  is the code bit rate,  stands for the frame 
size and  is the number of the decoding stages. 

Interleaver matrix sizes vary from tens to ten-
thousands of bits. When optimizing, it is highly 
inefficient, if not impossible, to test all the possible 
input vectors  with all the possible ! interleaver 
matrices, requiring  tests in total. Therefore, 
advanced interleaver optimization methods are under 
investigation. 

2.1. Interleaver Evaluation 

As noted earlier, the performance of a turbo code can be 
evaluated by the means of bit error rate, i.e. the ratio of 
the number of incorrectly decoded bits to the number 
of all bits transmitted during some period. 
Unfortunately, it is rather hard to compute the BER for 
a turbo code and the simulations can be for larger 
interleavers very inaccurate. The error floor of a C(n, 
k) code can be analytically estimated: 

 (2) 

To estimate BER, the following code properties must 
be known [4]: 

• - the free distance, i.e. the minimum 
number of different bits in any pair of 
codewords 

•  - the free distance multiplicity, 
i.e. the number of input frames 
generating codewords with  

• - the information bit multiplicity, i.e. the 
sum of the Hamming weights of the input 
frames generating the codewords with  
 

There are several algorithms for free distance 
evaluation. Garello et al. [4] presented an algorithm 
designed to effectively compute free distances of large 
interleavers with unconstrained input weight based on 
constrained subcodes. 

This work introduces interleaver optimization 
driven by algebraical estimation of maximum  

evaluated using analytical approach. 

3. Genetic Algorithms 

Genetic algorithms are probably the most popular and 
wide spread member of the class of evolutionary 
algorithms (EA). EAs form a group of iterative 
stochastic search and optimization methods based on 
mimicking successful optimization strategies observed 
in nature [5, 6, 7, 8]. The essence of EAs lies in their 
emulation of Darwinian evolution, utilizing the 
concepts of Mendelian inheritance for use in computer 
science [6]. Together with fuzzy sets, neural networks, 
and fractals, evolutionary algorithms are among the 
fundamental members of the class of soft computing 
methods. 

EAs operate with a population of artificial 
individuals (also referred to as items or chromosomes) 
encoding possible problem solutions. Encoded 
individuals are evaluated using a carefully selected 
objective function which assigns a fitness value to each 
individual. The fitness value represents the quality 
(ranking) of each individual as a solution to a given 
problem. Competing individuals explore the problem 
domain towards an optimal solution [8]. 

Genetic algorithms (GA) introduced by John 
Holland and extended by David Goldberg, are a widely 
applied and highly successful EA variant. Evolutionary 
principles are in GA implemented via iterative 
application of so called genetic operators: the mutation, 
the crossover and the selection. Mutation and selection 
can be found in more evolutionary techniques while 
crossover is significant for genetic algorithms. Many 
variants of the standard generational GA have been 
proposed. The main differences lay mostly in particular 
selection, crossover, mutation, and replacement 
strategies [8]. 

Genetic algorithms have been successfully used to 
solve non-trivial multimodal optimization problems. 
They inherit the robustness of emulated natural 
optimization processes and excel in browsing huge, 
potentially noisy problem domains. Their clear 
principles, ease of interpretation, intuitive and reusable 
practical use and significant results made genetic 
algorithms the method of choice for industrial 
applications, while carefully elaborated theoretical 
foundations attract the attention of academics. 

4. Genetic Algorithms for Interleaver 
Optimization 

The optimization of a turbo code interleaver is a non-
trivial combinatorial optimization task. Genetic 
algorithms have already been considered for 
interleaver matrix optimization. Durand et al. [9] used 
customized GA to optimize an interleaver of the size 
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105, comparing their results to previous interleaver 
design techniques. The genetic algorithm that was used 
was fully based on mutation and the crossover operator 
was omitted. The fitness criterion for every interleaver 
was maximum free distance. 

Rekh et al. [10] presented another GA variant for 
interleaver optimization, introducing 2-point crossover 
to the interleaver evolution process. Nevertheless, the 
crossover impact was influenced by the necessary 
correction of errors caused by crossover applications. 
The fitness criterion was BER and the size of the 
optimized interleaver  was 50. 

4.1. Interleaver GA Design 

An interleaver with the dimension  performs a 
hardware permutation of  input bits and it can be 
seen as a general permutation of  symbols 

, where  and  for all 
. The application of  on a sample 

input vector  for  is illustrated in (3). 

I5 = (0, 1, 0, 1, 1, 1) 
σ5 = (5, 3, 4, 1, 2) 

O5 = σ5(I5) = (1, 0, 1, 0, 1) 
(3) 

Intuitively,  can be used as a permutation encoding 
for genetic algorithms, as utilized e.g. in [10]. Durand 
et al.  [5] did not explicitly specify used interleaver 
encoding, although we can conclude that they used a 
similar interleaver representation. 

In our GA implementation for turbo code 
interleaver optimization two types of selection 
techniques were used. In order to speed up the 
convergence of the algorithm, a semi-elitary hybrid 
selection scheme choosing one parent by elitary 
manners and the second by proportional manners of 
roulette wheel selection. Mutation was implemented by 
swapping the positions of two coordinates in σN. On 
the contrary, traditional crossover operators (except 
uniform crossover) would corrupt the structure of 
intuitively encoded permutation σN and hence they 
cannot be used without some post-processing used for 
chromosome fixing. This is a remarkable fact, since 
crossover is referred to as the primary operator for GA 
[7]. 

4.2. The Role of Crossover in GA 

The crossover operator is the main operator of genetic 
algorithms that distinguishes it from other stochastic 
search methods [7]. Its role in the GA process has been 
intensively investigated and its omission or traversing 
is expected to affect the efficiency of a GA solution 
significantly. 

A crossover operator is primarily a creative force in 
the evolutionary search process. It is supposed to 
propagate building blocks (low-order, low defining-
length schemata with above-average fitness) from one 
generation to another and create new (higher-order) 
building blocks by combining low order building 
blocks. It is intended to introduce large changes to the 
population with low disruption of building blocks [11]. 
In contrast, mutation is expected to insert new material 
to the population by random perturbation of 
chromosome structure. In this way, however, new 
building blocks can be created or old ones disrupted 
[11]. 

An experimental study on crossover and mutation 
in relation to the frequency and lifecycle of building 
blocks in a chromosome population showed that the 
ability of mutation and one-point crossover to create 
new building blocks is almost the same. However, 
crossover is irreplaceable for spreading newly found 
building blocks among the population (which can lead 
to loss of diversity in the population) [11]. 

A mutation-only genetic algorithm avoids the use 
of a crossover operator. This, as already mentioned, 
can be seen as a significant weakening of the 
algorithm. 

Another strategy available for problems involving 
permutation evolution is the random keys encoding 
[12]. With random keys encoding, the permutation is 
represented as a string of real numbers (random keys), 
whose position after ordering corresponds to the 
permutation index. Random keys encoded 
chromosomes and the crossover of randomly encoded 
permutations are illustrated in Figure 2. When there are 
two identical random keys in the population, randomly 
encoded permutations can be corrupted by crossover 
too. However, the occurrence of two equal random 
keys can be considered as a very rare situation. 

There are two other more significant drawbacks of 
the RK encoding. First, it is rather computationally 
expensive. It requires sorting of the real array every 
time a chromosome is modified and needs to be 
evaluated. Second, genetic algorithms were not 
designed to deal with real-valued chromosomes, even 
though there are methods on how to process real-
valued chromosomes by GA. 
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5. Differential Evolution 

Differential evolution (DE) is a reliable, versatile and 
easy to use stochastic evolutionary optimization 
algorithm [13]. DE is a population-based optimizer that 
evolves real encoded vectors representing the solutions 
to given problem. The real-valued nature of population 
vectors differentiates the DE notably from GAs that 
were originally designed to evolve solution encoded 
into binary or finite discrete alphabets. 

The DE starts with an initial population of N real-
valued vectors. The vectors are initialized with real 
values either randomly or so, that they are evenly 
spread over the problem domain. The latter 
initialization leads to better results of the optimization 
process [13]. 

During the optimization, DE generates new vectors 
that are perturbations of existing population vectors. 
The algorithm perturbs vectors with the scaled 
difference of two (or more) randomly selected 
population vectors and adds the scaled random vector 
difference to a third randomly selected population 
vector to produce so called trial vector. The trial vector 
competes with a member of the current population with 
the same index. If the trial vector represents a better 
solution than the population vector, it takes its place in 
the population [13]. 

Differential evolution is parameterized by two 
parameters [13]. Scale factor  controls the 
rate at which the population evolves and the crossover 
probability  determines the ratio of bits that 
are transferred to the trial vector from its opponent. 
The number of vectors in the population is also an 

important parameter of the population. The outline of 
classical DE algorithm is shown in Figure 3. 

 
There are more variants of differential evolution. They 
differ mostly by the way new vectors are generated. 
We used the classical differential evolution algorithm, 
also referred to as DE/rand/1/bin [13]. 

Differential evolution is prospective method for 
turbo code interleaver optimization since it operates on 
real valued vectors and a permutation represented by 
RK encoding is indeed a real vector. Moreover, 
differential evolution has been shown to outperform 
genetic algorithms in some problem domains [13]. 

6. Interleaver Optimization Experiments 

A simulation framework built upon the IT++ library1 
was used to experimentally evaluate the proposed 
interleaver generation method. IT++ is a robust and 
efficient C++ library of mathematical and 
telecommunication algorithms and objects. It provides 
high native code performance and excellent abstraction 
of a well-defined object-oriented framework. We have 
experimented with 64-bit, 128-bit and 256-bit 
interleavers. The settings for optimization experiments 
were: 
 

• Random keys encoding of chromosomes 
• 1000 generations (GA), 3000 and 5000 

evaluations  (DE) 
• Probability of crossover 0.8 and probability of 

mutation 0.2 for GA 

I. Initialize the population  consisting of  vectors 
II. Evaluate an objective function ranking the vectors 

in the population 
III. Create new population:  

For : 
a. Create a trial vector , 

where  is a parameter and  
are three random vectors from the population 

. This step is in DE called mutation. 
b. Validate the range of coordinates of . 

Optionally adjust coordinates of so, that  
is valid solution to given problem. 

c. Perform uniform crossover. Select randomly 
one point (coordinate)  in  . With probability 

 let  for each
 such that  

d. Evaluate the trial vector. If the trial vector  
represent a better solution than population 
vector , replace  in  by  

IV. Check termination criteria; if not satisfied go back 
to III. 
 

Figure 3. A summary of DE algorithm 

 

 

Figure 2. Random key encoding examples 
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• C equal to 0.9 and F equal to 0.9 for DE 
• Population of 20 vectors for DE and population 

of 40 chromosomes for GA 
 

The fitness function used in GA and DE for turbo code  
interleaver optimization was based on analytical  
estimation as defined in [4]. The goal of the fitness 
function was to maximize , and minimize  
and : 

  (4) 

where the coefficients A, B and C were fixed to 100, 10 
and 1 respectively. All experiments were executed 
several times to overcome the stochastic nature of the 
algorithms.  

6.1. Optimization Results 

The results of experimental interleaver optimization 
are summarized in Tables 1 and 2. Table 1 outlines the 
average obtained interleaver free distance for 64, 128 
and 256-bit interleavers. The first column shows 
average free distance of a random interleaver, second 
column shows average  of an inteleaver optimized 
by GA and third and fourth column show average 

 of an interleaver optimized by DE after 3000 and 
5000 evaluations respectively.    

 
 
Table 2 represents maximum values of  for 
investigated interleavers. 

 

 

 
 

The experiment results illustrate that both algorithms 
are powerful interleaver optimizers. Differential 
evolution provided better average free distance for 64 
and 128-bit interleavers. For 256-bit interleaver GA 
delivered the best empirical performance. 

The results of DE were observed after 3000 and 
5000 evaluations of fitness function. 5000 DE 
evaluations required approximately the same time as 
GA with 1000 generations. 

Both DE and GA obtained the same maximum  
values for 64 and 128-bit interleavers. In case of 256-
bit interleaver delivered GA better maximum . 

7. Conclusions 

This paper discussed the problem of efficient turbo 
code interleaver optimization by genetic algorithms 
and differential evolution. The turbo code interleavers 
in the form of permutations were encoded by random 
keys encoding method as vectors of real numbers. An 
analytical estimation of free distance was used as a 
basis of fitness function for both, GA and DE. The 
results suggest that both GA and DE can provide good 

 
Figure 5. Visual comparison of maximum    
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Figure 4. Visual comparison of average    
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N 
max 

random  max GA  max DE 
(3000) 

max DE 
(5000) 

64 13 17 16 17 
128 14 19 18 19 
256 17 21 19 20 

 
Table  2. Comparison of average free distances of 
random interleaver, interleaver evolved by GA 
and interleavers evolved by DE 

 

N 
avg 

random  avg GA  avg DE 
(3000) 

avg DE 
(5000) 

64 13,50 15,70 15,90 16,25 
128 14,25 17,90 17,60 18,25 
256 15,75 20,20 18,20 18,25 

 
Table  1. Comparison of average free distances 
of random interleaver, interleaver evolved by 
GA and interleavers evolved by DE. 
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results. Both algorithms reached the same improved 
maximum for 64 and 128-bit interleavers. DE 
delivered for 64 and 128-bit interleavers better average 

 across multiple experimental runs. Unlike for 
smaller interleavers, GA outperformed DE for 256-bit 
interleaver.  

In our future work, we aim to investigate the 
performance of presented optimizers on more 
interleavers of different sizes to determine which 
algorithm performs better. Moreover, other DE 
variants can be also evaluated. 
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