
Optimization of Turbo Codes by Differential Evolution and
Genetic Algorithms

Pavel Krömer, Václav Snášel, Jan Platoš and Ajith Abraham

FEECS, Dept. of Computer Science
VŠB – Technical University of Ostrava

17. listopadu 15, CZ 708 33 Ostrava–Poruba, Czech Republic
{ pavel.kromer.fei, vaclav.snasel, jan.platos.fei} @ vsb.cz, ajith.abraham @ ieee.org

Abstract

Since their appearance in 1993, first approaching the
Shannon limit, turbo codes gave a new direction in the
channel encoding field, especially since they have been
adopted for multiple telecommunication norms. To
obtain good performance, it is necessary to design a
robust turbo code interleaver. This paper proposes a a
differential evolution approach to find above average
turbo code interleavers. Performance is compared with
the conventional genetic algorithm approach and the
empirical results illustrate that DE performs well.

1. Introduction

The introduction of the turbo principle allowed close
approach to the Shannon limit – a theoretical boundary
describing the maximum capacity of a noisy
communication channel. The invention of the turbo
codes and its superior performance in practical
applications also initiated a renaissance of channel
coding research [1, 2]. The exceptional performance of
the turbo codes can be further improved by finding
right settings for a particular system. The structure of
the interleaver, performing a permutation of input bits,
is one important property of any turbo code system. In
this research, we optimize the turbo code interleaver by
genetic algorithms and differential evolution.

2. Turbo codes

The turbo codes were introduced by Berrou, Glavieux
and Thitimajshima in 1993 [2] and they have become a
hot research topic since then. Prior to the turbo codes,

 or more separated the spectral efficiency of real
world channel encoding systems from the theoretical
maximum described by Shannon theorem [2].

The turbo codes are an implementation of parallel
concatenation of two circular recursive systematic
convolutional (CRSC) codes based on a pseudo-
random permutation (the interleaver). The general
scheme of a classic turbo encoder is shown in Figure 1.

The encoder processes a -bit long information frame

. The input frame is interleaved by the -bit
interleaver to form permuted frame . Original input
frame is encoded by the encoder RSC1 and interleaved
frame is encoded by RSC2. Hereafter, the two encoded
frames and are merged together and with the
original input sequence according to some
puncturing and multiplexing scheme. The rate of the
code is defined as .

Previous studies have illustrated that a random
block interleaver (random permutation of the input
frame) can be in certain cases (e.g. for)
more efficient than other channel encoding schemes
[3]. In this paper, an optimized turbo code block
interleaver is compared with a random block
interleaver by means of BER to evaluate its efficiency.

Figure 1. A general scheme of turbo encoder

2009 Ninth International Conference on Hybrid Intelligent Systems

978-0-7695-3745-0/09 $25.00 © 2009 IEEE

DOI 10.1109/HIS.2009.289

376

The increase of the interleaver size gives better
performance and better interleaving gain while
worsening latency. Equation (1) illustrates the
influence on the latency:

 (1)

In (1), is the code bit rate, stands for the frame
size and is the number of the decoding stages.

Interleaver matrix sizes vary from tens to ten-
thousands of bits. When optimizing, it is highly
inefficient, if not impossible, to test all the possible
input vectors with all the possible ! interleaver
matrices, requiring tests in total. Therefore,
advanced interleaver optimization methods are under
investigation.

2.1. Interleaver Evaluation

As noted earlier, the performance of a turbo code can be
evaluated by the means of bit error rate, i.e. the ratio of
the number of incorrectly decoded bits to the number
of all bits transmitted during some period.
Unfortunately, it is rather hard to compute the BER for
a turbo code and the simulations can be for larger
interleavers very inaccurate. The error floor of a C(n,
k) code can be analytically estimated:

 (2)

To estimate BER, the following code properties must
be known [4]:

• - the free distance, i.e. the minimum
number of different bits in any pair of
codewords

• - the free distance multiplicity,
i.e. the number of input frames
generating codewords with

• - the information bit multiplicity, i.e. the
sum of the Hamming weights of the input
frames generating the codewords with

There are several algorithms for free distance
evaluation. Garello et al. [4] presented an algorithm
designed to effectively compute free distances of large
interleavers with unconstrained input weight based on
constrained subcodes.

This work introduces interleaver optimization
driven by algebraical estimation of maximum

evaluated using analytical approach.

3. Genetic Algorithms

Genetic algorithms are probably the most popular and
wide spread member of the class of evolutionary
algorithms (EA). EAs form a group of iterative
stochastic search and optimization methods based on
mimicking successful optimization strategies observed
in nature [5, 6, 7, 8]. The essence of EAs lies in their
emulation of Darwinian evolution, utilizing the
concepts of Mendelian inheritance for use in computer
science [6]. Together with fuzzy sets, neural networks,
and fractals, evolutionary algorithms are among the
fundamental members of the class of soft computing
methods.

EAs operate with a population of artificial
individuals (also referred to as items or chromosomes)
encoding possible problem solutions. Encoded
individuals are evaluated using a carefully selected
objective function which assigns a fitness value to each
individual. The fitness value represents the quality
(ranking) of each individual as a solution to a given
problem. Competing individuals explore the problem
domain towards an optimal solution [8].

Genetic algorithms (GA) introduced by John
Holland and extended by David Goldberg, are a widely
applied and highly successful EA variant. Evolutionary
principles are in GA implemented via iterative
application of so called genetic operators: the mutation,
the crossover and the selection. Mutation and selection
can be found in more evolutionary techniques while
crossover is significant for genetic algorithms. Many
variants of the standard generational GA have been
proposed. The main differences lay mostly in particular
selection, crossover, mutation, and replacement
strategies [8].

Genetic algorithms have been successfully used to
solve non-trivial multimodal optimization problems.
They inherit the robustness of emulated natural
optimization processes and excel in browsing huge,
potentially noisy problem domains. Their clear
principles, ease of interpretation, intuitive and reusable
practical use and significant results made genetic
algorithms the method of choice for industrial
applications, while carefully elaborated theoretical
foundations attract the attention of academics.

4. Genetic Algorithms for Interleaver
Optimization

The optimization of a turbo code interleaver is a non-
trivial combinatorial optimization task. Genetic
algorithms have already been considered for
interleaver matrix optimization. Durand et al. [9] used
customized GA to optimize an interleaver of the size

377

105, comparing their results to previous interleaver
design techniques. The genetic algorithm that was used
was fully based on mutation and the crossover operator
was omitted. The fitness criterion for every interleaver
was maximum free distance.

Rekh et al. [10] presented another GA variant for
interleaver optimization, introducing 2-point crossover
to the interleaver evolution process. Nevertheless, the
crossover impact was influenced by the necessary
correction of errors caused by crossover applications.
The fitness criterion was BER and the size of the
optimized interleaver was 50.

4.1. Interleaver GA Design

An interleaver with the dimension performs a
hardware permutation of input bits and it can be
seen as a general permutation of symbols

, where and for all
. The application of on a sample

input vector for is illustrated in (3).

I5 = (0, 1, 0, 1, 1, 1)
σ5 = (5, 3, 4, 1, 2)

O5 = σ5(I5) = (1, 0, 1, 0, 1)
(3)

Intuitively, can be used as a permutation encoding
for genetic algorithms, as utilized e.g. in [10]. Durand
et al. [5] did not explicitly specify used interleaver
encoding, although we can conclude that they used a
similar interleaver representation.

In our GA implementation for turbo code
interleaver optimization two types of selection
techniques were used. In order to speed up the
convergence of the algorithm, a semi-elitary hybrid
selection scheme choosing one parent by elitary
manners and the second by proportional manners of
roulette wheel selection. Mutation was implemented by
swapping the positions of two coordinates in σN. On
the contrary, traditional crossover operators (except
uniform crossover) would corrupt the structure of
intuitively encoded permutation σN and hence they
cannot be used without some post-processing used for
chromosome fixing. This is a remarkable fact, since
crossover is referred to as the primary operator for GA
[7].

4.2. The Role of Crossover in GA

The crossover operator is the main operator of genetic
algorithms that distinguishes it from other stochastic
search methods [7]. Its role in the GA process has been
intensively investigated and its omission or traversing
is expected to affect the efficiency of a GA solution
significantly.

A crossover operator is primarily a creative force in
the evolutionary search process. It is supposed to
propagate building blocks (low-order, low defining-
length schemata with above-average fitness) from one
generation to another and create new (higher-order)
building blocks by combining low order building
blocks. It is intended to introduce large changes to the
population with low disruption of building blocks [11].
In contrast, mutation is expected to insert new material
to the population by random perturbation of
chromosome structure. In this way, however, new
building blocks can be created or old ones disrupted
[11].

An experimental study on crossover and mutation
in relation to the frequency and lifecycle of building
blocks in a chromosome population showed that the
ability of mutation and one-point crossover to create
new building blocks is almost the same. However,
crossover is irreplaceable for spreading newly found
building blocks among the population (which can lead
to loss of diversity in the population) [11].

A mutation-only genetic algorithm avoids the use
of a crossover operator. This, as already mentioned,
can be seen as a significant weakening of the
algorithm.

Another strategy available for problems involving
permutation evolution is the random keys encoding
[12]. With random keys encoding, the permutation is
represented as a string of real numbers (random keys),
whose position after ordering corresponds to the
permutation index. Random keys encoded
chromosomes and the crossover of randomly encoded
permutations are illustrated in Figure 2. When there are
two identical random keys in the population, randomly
encoded permutations can be corrupted by crossover
too. However, the occurrence of two equal random
keys can be considered as a very rare situation.

There are two other more significant drawbacks of
the RK encoding. First, it is rather computationally
expensive. It requires sorting of the real array every
time a chromosome is modified and needs to be
evaluated. Second, genetic algorithms were not
designed to deal with real-valued chromosomes, even
though there are methods on how to process real-
valued chromosomes by GA.

378

5. Differential Evolution

Differential evolution (DE) is a reliable, versatile and
easy to use stochastic evolutionary optimization
algorithm [13]. DE is a population-based optimizer that
evolves real encoded vectors representing the solutions
to given problem. The real-valued nature of population
vectors differentiates the DE notably from GAs that
were originally designed to evolve solution encoded
into binary or finite discrete alphabets.

The DE starts with an initial population of N real-
valued vectors. The vectors are initialized with real
values either randomly or so, that they are evenly
spread over the problem domain. The latter
initialization leads to better results of the optimization
process [13].

During the optimization, DE generates new vectors
that are perturbations of existing population vectors.
The algorithm perturbs vectors with the scaled
difference of two (or more) randomly selected
population vectors and adds the scaled random vector
difference to a third randomly selected population
vector to produce so called trial vector. The trial vector
competes with a member of the current population with
the same index. If the trial vector represents a better
solution than the population vector, it takes its place in
the population [13].

Differential evolution is parameterized by two
parameters [13]. Scale factor controls the
rate at which the population evolves and the crossover
probability determines the ratio of bits that
are transferred to the trial vector from its opponent.
The number of vectors in the population is also an

important parameter of the population. The outline of
classical DE algorithm is shown in Figure 3.

There are more variants of differential evolution. They
differ mostly by the way new vectors are generated.
We used the classical differential evolution algorithm,
also referred to as DE/rand/1/bin [13].

Differential evolution is prospective method for
turbo code interleaver optimization since it operates on
real valued vectors and a permutation represented by
RK encoding is indeed a real vector. Moreover,
differential evolution has been shown to outperform
genetic algorithms in some problem domains [13].

6. Interleaver Optimization Experiments

A simulation framework built upon the IT++ library1
was used to experimentally evaluate the proposed
interleaver generation method. IT++ is a robust and
efficient C++ library of mathematical and
telecommunication algorithms and objects. It provides
high native code performance and excellent abstraction
of a well-defined object-oriented framework. We have
experimented with 64-bit, 128-bit and 256-bit
interleavers. The settings for optimization experiments
were:

• Random keys encoding of chromosomes
• 1000 generations (GA), 3000 and 5000

evaluations (DE)
• Probability of crossover 0.8 and probability of

mutation 0.2 for GA

I. Initialize the population consisting of vectors
II. Evaluate an objective function ranking the vectors

in the population
III. Create new population:

For :
a. Create a trial vector ,

where is a parameter and
are three random vectors from the population

. This step is in DE called mutation.
b. Validate the range of coordinates of .

Optionally adjust coordinates of so, that
is valid solution to given problem.

c. Perform uniform crossover. Select randomly
one point (coordinate) in . With probability

 let for each
 such that

d. Evaluate the trial vector. If the trial vector
represent a better solution than population
vector , replace in by

IV. Check termination criteria; if not satisfied go back
to III.

Figure 3. A summary of DE algorithm

Figure 2. Random key encoding examples

379

• C equal to 0.9 and F equal to 0.9 for DE
• Population of 20 vectors for DE and population

of 40 chromosomes for GA

The fitness function used in GA and DE for turbo code
interleaver optimization was based on analytical
estimation as defined in [4]. The goal of the fitness
function was to maximize , and minimize
and :

 (4)

where the coefficients A, B and C were fixed to 100, 10
and 1 respectively. All experiments were executed
several times to overcome the stochastic nature of the
algorithms.

6.1. Optimization Results

The results of experimental interleaver optimization
are summarized in Tables 1 and 2. Table 1 outlines the
average obtained interleaver free distance for 64, 128
and 256-bit interleavers. The first column shows
average free distance of a random interleaver, second
column shows average of an inteleaver optimized
by GA and third and fourth column show average

 of an interleaver optimized by DE after 3000 and
5000 evaluations respectively.

Table 2 represents maximum values of for
investigated interleavers.

The experiment results illustrate that both algorithms
are powerful interleaver optimizers. Differential
evolution provided better average free distance for 64
and 128-bit interleavers. For 256-bit interleaver GA
delivered the best empirical performance.

The results of DE were observed after 3000 and
5000 evaluations of fitness function. 5000 DE
evaluations required approximately the same time as
GA with 1000 generations.

Both DE and GA obtained the same maximum
values for 64 and 128-bit interleavers. In case of 256-
bit interleaver delivered GA better maximum .

7. Conclusions

This paper discussed the problem of efficient turbo
code interleaver optimization by genetic algorithms
and differential evolution. The turbo code interleavers
in the form of permutations were encoded by random
keys encoding method as vectors of real numbers. An
analytical estimation of free distance was used as a
basis of fitness function for both, GA and DE. The
results suggest that both GA and DE can provide good

Figure 5. Visual comparison of maximum

12

14

16

18

20

22

64 128 256

df
re

e

Interleaver size N [bit]

max random max GA

max DE (3000) max DE (5000)

Figure 4. Visual comparison of average

12,00

13,00

14,00

15,00

16,00

17,00

18,00

19,00

20,00

21,00

64 128 256

df
re

e

Interleaver size N [bit]

avg random avg GA

avg DE (3000) avg DE (5000)

N
max

random max GA max DE
(3000)

max DE
(5000)

64 13 17 16 17
128 14 19 18 19
256 17 21 19 20

Table 2. Comparison of average free distances of
random interleaver, interleaver evolved by GA
and interleavers evolved by DE

N
avg

random avg GA avg DE
(3000)

avg DE
(5000)

64 13,50 15,70 15,90 16,25
128 14,25 17,90 17,60 18,25
256 15,75 20,20 18,20 18,25

Table 1. Comparison of average free distances
of random interleaver, interleaver evolved by
GA and interleavers evolved by DE.

380

results. Both algorithms reached the same improved
maximum for 64 and 128-bit interleavers. DE
delivered for 64 and 128-bit interleavers better average

 across multiple experimental runs. Unlike for
smaller interleavers, GA outperformed DE for 256-bit
interleaver.

In our future work, we aim to investigate the
performance of presented optimizers on more
interleavers of different sizes to determine which
algorithm performs better. Moreover, other DE
variants can be also evaluated.

References

[1] A. Burr, “Turbo-codes: the ultimate error control
codes?,” in Electronics & Communication Engineering
Journal, vol. 13, pp. 155–165, IEEE, August 2001.
ISSN: 0954-0695.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima,
“Near Shannon limit error-correcting coding and
decoding: turbo codes,” in Proc. Int. Conf. on
Commun., pp. 1064–1070, 1993.

[3] J. Hokfelt and T. Maseng, “Methodical
interleaver design for turbo codes,” International
Symposium on Turbo Codes, 1997.

[4] R. Garello, F. Chiaraluce, P. Pierleoni,
M. Scaloni, and S. Benedetto, “On error floor and free
distance of turbo codes,” in IEEE International
Conference on Communications (ICC 2001), vol. 1,
pp. 45–49, 2001. ISBN 0-7803-7097-1.

[5] M. Dianati, I. Song, and M. Treiber, “An
introduction to genetic algorithms and evolution
strategies,” technical report, University of Waterloo,
Ontario, N2L 3G1, Canada, July 2002.

[6] U. Bodenhofer, “Genetic Algorithms: Theory and
Applications,” lecture notes, Fuzzy Logic
Laboratorium Linz-Hagenberg, Winter 2003/2004.

[7] M. Mitchell, An Introduction to Genetic
Algorithms. Cambridge, MA: MIT Press, 1996.

[8] G. Jones, “Genetic and evolutionary algorithms,”
in Encyclopedia of Computational Chemistry (P. von
Rague, ed.), John Wiley and Sons, 1998.

[9] N. Durand, J. Alliot, and B. Bartolomé, “Turbo
codes optimization using genetic algorithms,” in
Proceedings of the Congress on Evolutionary
Computation (P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, eds.), vol. 2,
(Mayflower Hotel, Washington D.C., USA), pp. 816–
822, IEEE Press, 6-9 1999.

[10] S. Rekh, S. Rani, W. Hordijk, P. Gift, and
Shanmugam, “Design of an interleaver for turbo codes
using genetic algorithms,” The International Journal of
Artificial Intelligence and Machine Learning, vol. 6,
pp. 1–5, 2006.

[11] A. S. Wu, R. K. Lindsay, and R. Riolo,
“Empirical observations on the roles of crossover and
mutation,” in Proc. of the Seventh Int. Conf. on Genetic
Algorithms (T. Bäck, ed.), (San Francisco, CA),
pp. 362–369, Morgan Kaufmann, 1997.

[12] L. V. Snyder and M. S. Daskin, “A random-key
genetic algorithm for the generalized traveling
salesman problem,” European Journal of Operational
Research, vol. 174, no. 1, pp. 38–53, 2006.

[13] K. V. Price, R. M. Storn, and J. A. Lampinen,
Differential Evolution A Practical Approach to Global
Optimization. Natural Computing Series, Berlin,
Germany: Springer-Verlag, 2005.

381

