
GPUMLib: A New Library to Combine Machine
Learning Algorithms with Graphics Processing Units

Noel Lopes†∗, Bernardete Ribeiro† and Ricardo Quintas†
† Dep of Informatics Engineering, Center for Informatics and Systems of University of Coimbra (CISUC), Portugal

∗UDI/IPG - Research Unit, Polytechnic Institute of Guarda, Portugal
noel@ipg.pt, bribeiro@dei.uc.pt, rquintas@student.dei.uc.pt

Abstract—The Graphics Processing Unit (GPU) is a highly par-
allel, many-core device with enormous computational power, es-
pecially well-suited to address Machine Learning (ML) problems
that can be expressed as data-parallel computations. As problems
become increasingly demanding, parallel implementations of ML
algorithms become critical for developing hybrid intelligent real-
world applications. The relative low cost of GPUs combined
with the unprecedent computational power they offer, make
them particularly well-positioned to automatically analyze and
capture relevant information from large amounts of data. In this
paper, we propose the creation of an open source GPU Machine
Learning Library (GPUMLib) that aims to provide the building
blocks for the scientific community to develop GPU ML algo-
rithms. Experimental results on benchmark datasets demonstrate
that the GPUMLib components already implemented achieve
significant savings over the counterpart CPU implementations.

Keywords-GPU computing; machine learning algorithms

I. INTRODUCTION

The phenomenal growth of the Internet combined with the
emergence of a multitude of devices capable of gathering,
storing and sharing information anytime, anywhere, resulted
in an abundant wealth of data available to researchers. This
brings the need for intelligent systems, and subsequently the
issues posed by more challenging and demanding machine
learning (ML) algorithms, often computationally expensive

The lack of openly available implementations is a serious
obstacle to algorithm replication and application to new tasks
and therefore poses a barrier to the progress of the ML
field. Sonnenburg et al. argue that these problems could be
significantly amended by incentivizing researchers to publish
software under an open source model [1]. This model has
many advantages that ultimately lead to: better reproducibility
of experimental results and fair comparison of algorithms;
quicker detection of errors; quicker adoption of algorithms;
faster adoption of ML methods in other disciplines and in
industry [1]. Sonnenburg et al. also support that software (and
data) should be distributed under a suitable open source license
along with scientific papers. They point out this is common
practice in biomedical research, where protocols and biological
samples are frequently made publicly available. Although
nowadays there are plentiful excellent toolkits which provide
support for developing ML software in several environments
(e.g. Python, R, Lua, Matlab) [2], they fail to meet the expec-
tations in terms of computational performance, in particular

when dealing with many of today’s real-world problems. The
time required by ML algorithms, such as the well-known back-
propagation can make their use impracticable. To cope with
this issue it is necessary to shift towards the use of high-
performance ML libraries. Graphics Processing Units (GPUs)
represent a feasible solution to address above issues in this
direction. GPUs are designed for high-performance rendering
where repeated operations are common, therefore are much
more effective in utilizing parallelism and pipelining than
CPUs [3]. It is not uncommon to reach speedups of over 50×
and there are cases where the computations can be reduced
from weeks to hours [4]. Therefore, GPUs provide an attractive
alternative to use dedicated hardware [5] by enabling high
performance implementations of ML algorithms [6] in partic-
ular in cost expensive datasets. Moreover, GPUs are widely
available and relatively inexpensive [5], [6]. However only
recently General-Purpose computing on GPU (GPGPU) has
become the scientific computing platform of choice, mainly
due to the debut of NVIDIA CUDA (Compute Unified Device
Architecture) platform [7], which allows programmers to use
the industry-standard C language together with extensions to
target a general purpose, massively parallel processor (GPU).
Owens et al. provided a very exhaustive survey on GPGPU,
identifying many of the algorithms, techniques and applica-
tions implemented on graphics hardware [8].

We conducted an in-depth analysis of several papers dealing
with GPU ML implementations. To illustrate the overwhelm-
ing throughput of current research, we conceived Figure 1,
containing the chronology of ML software GPU implementa-
tions, based on the data scrutiny from several papers [3], [5],
[6], [9]–[28]. The number of GPU implementations of ML
algorithms has increased substantially over the last few years.
However, only a few of those were released under open source.
Aside from our own implementation of the Multiple Back-
Propagation software (available at http://dit.ipg.pt/MBP) [26]
we were able to find only four more open source GPU
implementations of ML algorithms. This is a major obstacle
to the progress of the ML field, as it forces researchers, facing
problems with high-computational requirements, to build from
scratch GPU ML algorithms. Moreover being an excellent ML
researcher does not necessary imply being an excellent pro-
grammer [1]. Thus many researchers may not have the skills
or the time required to implement GPU ML algorithms. To
alleviate this problem we propose the creation of a GPU ML

2010 10th International Conference on Hybrid Intelligent Systems

978-1-4244-7365-6/10/$26.00 ©2010 IEEE 229

C
lo

se
d

So
ur

ce
O

pe
n

So
ur

ce

2004 2005 2006 2007 2008 2009 2010

Multilayer Perceptrons (forward-phase)
Oh and Jung

Self-Organizing Maps
Campbell et al.
Luo et al.

Genetic Algorithms
Wong et al.
Yu et al.

Back-Propagation
(two layer)
Steinkrau et al.

Convolutional Neural Networks
Chellapilla et al.

Spiking Neural Networks
Bernhard and Keriven

Belief Propagation
Brunton et al.
Yang et al.

Fuzzy ART neural networks
Martnez-Zarzuela et al.

K-Means Clustering
Shalom et al.

Recurrent networks
Trebatický and Pospı́chal

Decision Trees and Forests
Sharp

Neural Network based text detection
Jang et al.

linear Radial Basis Functions
Brandstetter and Artusi

Deep Belief Networks Sparse Coding
Raina et al.

Back-Propagation (three layer)
Guzhva et al.

Support Vector Machines
Catanzaro et al.

Genetic Algorithms
Langdon and Banzhaf

K-Nearest Neighbor
Garcia et al.

Spiking Neural Networks
Nageswaran et al.

Multiple Back-Propagation
Back-Propagation
Lopes and Ribeiro

Fig. 1. Chronology of ML software GPU implementations.

library (GPUMLib) that we hope will concentrate the works
of ML researchers and practitioners. Such a library would
reduce the effort spent by ML people when implementing
new algorithms on the GPU and contribute to the creation
of innovative applications in the ML field.

The remainder of this paper is structured as follows. The
next section details the proposal for a GPU ML library
(GPUMLib). Section III reports the results obtained with the
algorithms implemented on well-known benchmarks. Finally
in Section IV we draw the conclusions and future work.

II. PROPOSAL FOR A GPU MACHINE LEARNING LIBRARY

We aim at the creation of an open source high performance
GPU ML library, by using the CUDA architecture. This
architecture seems to be the logical choice to build such a
library, because ever since its introduction, around three years
ago, it has steadily become the scientific computing platform
of choice [7]. Therefore, choosing CUDA will allow us to cap-
tivate other researchers and developers to help on this effort.

Our goal is not to replace existing ML libraries such
as WEKA (http://www.cs.waikato.ac.nz/ml/weka/) and KEEL
(http://www.keel.es/) or duplicate in any way the work that
is already done, but rather to complement them. In this sense
we envision the integration of GPUMLib in other ML libraries
and we intend to provide the tools necessary for its integration
with other ML software at a latter phase.

Currently the GPUMLib fully implements the Back-
Propagation (BP), the Multiple Back-Propagation (MBP) and
the Non-Negative Matrix Factorization (NMF) algorithms.
Furthermore, an implementation of the Radial Basis Functions
(RBF) neural networks was developed [29] (an incremental
version is under development) and the implementation of
other algorithms is planned. The library (see Figure 2) is
released under the GNU General Public License and its
source code, documentation and examples can be obtained at
http://gpumlib.sourceforge.net/.

At the core of the library there is a set of CUDA kernels
(special C functions that can be executed in parallel) which
support the execution of ML algorithms on the GPU. For each
specific algorithm, several kernels are required. However, some
kernels may be shared by different algorithms.

Each ML algorithm will have its own C++ class, that is
responsible for: transferring the information (inputs) needed
by the algorithm to the device (GPU); calling the algorithm
kernels in the proper order; and transferring the algorithm
outputs and intermediate values back to the host (CPU). To
facilitate (and standardize) the task of moving information
from and to the GPU, GPUMLib also provides a memory
access framework that accounts for information transfer be-
tween the host and device (and vice-versa) in an effortless
and seemly manner. Furthermore the DeviceMatrix class also
provides an easy way to multiply and obtain the transpose of
device matrices. Moreover, matrices can be created using row-

230

Host (CPU) and device (GPU) memory access framework

HostArray

DeviceArray

HostMatrix

DeviceMatrix

DeviceAccessibleVariable

. . .

C++ classes (algorithms)

Back-
Propagation

Multiple
Back-

Propagation

Radial Basis
Functions

Support
Vector

Machines

Genetic
Algorithms

Non-Negative
Matrix

Factorization

Nonlinear
Dimension
Reduction

. . .

Common
Host (CPU)

Classes

Common
CUDA
Kernels

CUDA (GPU) Kernels

Common
Device
(GPU)

Functions

Multiple
Back-

Propagation

Radial Basis
Functions

Support
Vector

Machines

Genetic
Algorithms

Non-Negative
Matrix

Factorization

Nonlinear
Dimension
Reduction

. . .

Fig. 2. Main components of the GPUMLib.

major or column-major order which is of major importance
due to its impact on the kernels performance.

Finally, a note on the GPUMLib documentation is given,
since good documentation plays a major role in the success
of any software library. In order to ease its usage and devel-
opment, GPUMLib provides extensive quality documentation
and examples. Moreover the library is practical and easy to
use and extend and does not require full understanding of the
details inherent to GPU computing.

III. EXPERIMENTAL SETUP AND RESULTS

To illustrate the GPUMlib, the experimental septup is de-
scribed along with practical examples with datasets obtained at
the UCI machine learning repository [30]. In addition, a more
research-oriented problem with images of faces from the MIT
Center for Biological and Computer Learning is presented.

Table I presents the speedups (×) obtained by the GPUMLib
implementations of the BP and MBP algorithms over the CPU
implementations for the poker benchmark, using an 8600 GT
device (32 cores) and a GTX 280 device (240 cores). This
benchmark consists of classifying a “poker hand” based in
the suit and rank of five cards. We divided the suit into four
different input variables and the rank into 13 different variables
(one for each rank). Thus, the training dataset contained 25010
samples with 5(13 + 4) = 85 inputs and ten outputs.

Using the 8600 GT device we were able to train networks
over 30× faster than on a CPU, whilst using the GTX 280 we
achieved speedups of more than 175×. Moreover, when using
the MBP algorithm, the CPU required more than five minutes
for training a network with 300 hidden neurons, during a single
epoch. Using the GTX 280 device we could train almost 34
epochs per minute and using the 8600 GT we were able to
train almost 11 epochs per minute. Figure 3 shows the number
of epochs trained per minute.

To test and validate the implementations of the NMF
algorithms, the face database #1 from the MIT Center for

TABLE I
BP AND MBP GPU SPEEDUPS (×) IN THE POKER PROBLEM.

Algorithm Hidden neurons 8600 GT GTX 280

BP

12 8.35± 0.07 57.49± 0.35

24 8.05± 2.15 54.79± 0.40

60 8.73± 0.05 59.51± 0.44

120 8.98± 0.08 57.55± 0.35

180 17.80± 0.20 111.30± 0.36

240 27.41± 0.50 159.03± 2.71

300 29.03± 1.58 174.91± 9.50

MBP

12 8.61± 0.07 61.50± 0.44

24 8.13± 0.05 58.42± 0.31

60 8.68± 0.05 58.61± 0.33

120 21.02± 0.16 132.67± 0.91

180 27.85± 1.31 171.73± 8.44

240 30.29± 0.22 174.45± 0.60

300 30.12± 1.15 178.64± 6.86

0.1

1

10

100

1000

0 50 100 150 200 250 300

E
po

ch
s

pe
r

m
in

ut
e

Hidden Layer Neurons

GTX 280
8600 GT

Core 2 6600

Fig. 3. Number of epochs with MBP for the poker problem.

Biological & Computational Learning (available at http://
cbcl.mit.edu/cbcl/software-datasets/FaceData2.html) was used.
This database includes a total of 2429 face images of 19 ×
19 = 361 pixels. Thus, the objective is to decompose matrix
V ∈ IR361×2429

+ into W ∈ IR361×r
+ and H ∈ IRr×2429

+ , such
that V ≈WH [31]. Figure 4 presents the speedups provided
by a GTX 280 GPU relatively to a Core 2 Quad 2.5 GHz CPU.

The RBF implementation consists of several tasks identified
as center selection, parameter selection, and weight calcula-
tion. The testing setup for the GPU version consisted of a
GeForce 9800 GT (112 cores), while the CPU version was
tested on a Intel Core 2 Duo E8400 running at 3.0GHz.
Table II presents the results evaluated using 10 fold cross-
validation. As expected, the results show higher benefits for
larger datasets, as in the case of the Satellite dataset depicting
the greatest performance boost.

IV. CONCLUSION

In this paper we propose the development of a GPU high
performance ML library (GPUMLib). One important compo-

231

120

140

160

180

200

220

240

260

280

300

320

50 100 150 200 250 300

Sp
ee

du
p

(×
)

r

Multiplicative (Euclidean)
Multiplicative (divergence)

Additive (Euclidean)
Additive (divergence)

Fig. 4. GPU Speedups for the NMF algorithms.

TABLE II
COMPARISON BETWEEN CPU AND GPU EXECUTION TIMES IN RBF.

Dataset Samples Features CPU(s) GPU(s) Speedup
Iris 150 4 4.58 12.36 0.37

Breast 569 31 66.99 28.54 2.35

Vehicle 846 18 452.97 346.55 1.31

Vowel 990 10 994.42 866.70 1.15

CMC 1473 9 638.05 501.78 1.27

Satellite 6458 36 10011.50 2365.66 4.23

nent of the approach relies on the building blocks necessary
to create ML software, which can easily be selected by re-
searchers and practitioners in the field minimizing their effort.
It was tested with the BP, MBP, NMF and RBF algorithms
providing remarkable speedups as compared with the CPU
versions of the same algorithms. Finally, we hope to attract
the efforts of other researchers on the endeavor of building
this library. Future work will extend the GPUMLib to support
vector machines, genetic algorithms, among other, opening up
the development of hybrid intelligent systems.

ACKNOWLEDGMENTS

FCT (SFRH/BD/62479/2009) is gratefully acknowledged.

REFERENCES

[1] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou,
G. Holmes, Y. LeCun, K.-R. Müller, F. Pereira, C. E. Rasmussen,
G. Rätsch, B. Schölkopf, A. Smola, P. Vincent, J. Weston, and
R. Williamson, “The need for open source software in machine learning,”
Journal of Machine Learning Research, vol. 8, pp. 2443–2466, 2007.

[2] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009.

[3] H. Jang, A. Park, and K. Jung, “Neural network implementation using
CUDA and OpenMP,” in Proc. of the 2008 Digital Image Computing:
Techniques and Applications (DICTA ’08), 2008, pp. 155–161.

[4] N. Lopes and B. Ribeiro, “Fast pattern classification of ventricular ar-
rhythmias using graphics processing units,” in Proc. 14th Iberoamerican
Conf on Pattern Recognition. Springer, 2009, pp. 603–610.

[5] D. Steinkrau, P. Y. Simard, and I. Buck, “Using GPUs for machine
learning algorithms,” in Proc. of the 8th Int Conf. on Document Analysis
and Recognition, vol. 2, 2005, pp. 1115–1120.

[6] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector
machine training and classification on graphics processors,” in Proc. of
the 25th Int. Conf. on Machine Learning, vol. 307, 2008, pp. 104–111.

[7] D. Schaa and D. Kaeli, “Exploring the multiple-GPU design space,”
in Proc. of the 2009 IEEE Int Symposium on Parallel & Distributed
Processing, 2009, pp. 1–12.

[8] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn,
and T. Purcell, “A survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[9] K.-S.-S. Oh and K. Jung, “GPU implementation of neural networks,”
Pattern Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[10] Z. Luo, H. Liu, and X.Wu, “Artificial neural network computation on
graphic process unit,” in Proc. of the 2005 Int. Joint Conf. on Neural
Networks, vol. 1, 2005, pp. 622–626.

[11] A. Campbell, E. Berglund, and A. Streit, “Graphics hardware imple-
mentation of the parameter-less self-organising map,” in Proc. 2005
Intelligent Data Engineering and Automated Learning. Springer, 2005,
pp. 343–350.

[12] Q. Yu, C. Chen, and Z. Pan, “Parallel genetic algorithms on pro-
grammable graphics hardware,” in Proc. of the 1st Int. Conf. on
Advances in Natural Computation. Springer, 2005, pp. 1051–1059.

[13] M. Wong, T. Wong, and K. Fok, “Parallel evolutionary algorithms on
graphics processing unit,” in Proc. of the 2005 IEEE Congress on
Evolutionary Computation, vol. 3, 2005, pp. 2286–2293.

[14] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Proc. of the 10th Int.
Workshop on Frontiers in Handwriting Recognition, 2006.

[15] F. Bernhard and R. Keriven, “Spiking neurons on GPUs,” in Proc. 2006
Int. Conf. on Computational Science. Springer, 2006, pp. 236–243.

[16] A. Brunton, C. Shu, and G. Roth, “Belief propagation on the GPU for
stereo vision,” in Proc. 3rd Canadian Conf. on Computer and Robot
Vision. IEEE Computer Society, 2006, p. 76.

[17] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér, “Real-
time global stereo matching using hierarchical belief propagation,” in
Proc. of the 2006 British Machine Vision Conf., 2006, pp. 989–998.

[18] M. Zarzuela, F. Pernas, J. Higuera, and M. Rodrı́guez, “Fuzzy ART
neural network parallel computing on the GPU,” in Proc. 9th Int. Work-
Conf. on Artificial Neural Networks. Springer, 2007, pp. 463–470.

[19] W. B. Langdon and W. Banzhaf, “A SIMD interpreter for genetic
programming on GPU graphics cards,” in Proc. 11th European Conf.
on Genetic Programming. Springer, 2008, pp. 73–85.

[20] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor search
using GPU,” in Proc. of the 2008 IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition Workshops, 2008, pp. 1–6.

[21] S. A. Shalom, M. Dash, and M. Tue, “Efficient k-means clustering
using accelerated graphics processors,” in Proc. 10th Int. Conf. on Data
Warehousing and Knowledge Discovery. Springer, 2008, pp. 166–175.

[22] P. Trebatický and J. Pospı́chal, “Neural network training with extended
kalman filter using graphics processing unit,” in Proc. of the 18th Int.
Conf. on Artificial Neural Networks. Springer, 2008, pp. 198–207.

[23] T. Sharp, “Implementing decision trees and forests on a GPU,” in Proc.
10th European Conf. on Computer Vision. Springer, 2008, pp. 595–608.

[24] A. Brandstetter and A. Artusi, “Radial basis function networks GPU-
based implementation,” IEEE Transactions on Neural Networks, vol. 19,
no. 12, pp. 2150–2154, 2008.

[25] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V.
Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics proces-
sors,” Neural Networks, vol. 22, no. 5-6, pp. 791–800, 2009.

[26] N. Lopes and B. Ribeiro, “GPU implementation of the multiple back-
propagation algorithm,” in Proc. of the 2009 Intelligent Data Engineer-
ing and Automated Learning. Springer, 2009, pp. 449–456.

[27] A. Guzhva, S. Dolenko, and I. Persiantsev, “Multifold acceleration of
neural network computations using GPU,” in Proc. of the 19th Int. Conf.
on Artificial Neural Networks. Springer, 2009, pp. 373–380.

[28] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proc. of the 26th Annual Int.
Conf. on Machine Learning, vol. 382. ACM, 2009, pp. 873–880.

[29] R. Quintas, “GPU implementation of RBF networks in audio steganal-
ysis,” MSc Thesis, Univ. of Coimbra, July 2010.

[30] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[Online]. Available: http://www.ics.uci.edu/∼mlearn/MLRepository.html

[31] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in NIPS. MIT Press, 2001, pp. 556–562.

232

