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Abstract.  

Computer security is defined as the protection of computing systems against threats to confidentiality, integrity, and 

availability. An intrusion is defined as any set of actions that attempt to compromise the integrity, confidentiality or 

availability of a resource. The process of monitoring the events occurring in a computer system or network and 

analyzing them for sign of intrusions is known as Intrusion Detection System (IDS). A Distributed IDS (DIDS) 

consists of several IDS over a large network (s), all of which communicate with each other, or with a central server 

that facilitates advanced network monitoring. In a distributed environment, DIDS are implemented using co-

operative intelligent agents distributed across the network(s). This chapter presents a framework for a distributed 

intrusion detection system comprising of a multi-agent framework with computational intelligent techniques to 

reduce the data features to create lightweight detection systems and a hybrid intelligent system approach to improve 

the detection accuracy. 

1. Introduction  

 
The traditional prevention techniques such as user authentication, data encryption, avoiding 

programming errors and firewalls are used as the first line of defense for computer security. If a 

password is weak and is compromised, user authentication cannot prevent unauthorized use, 

firewalls are vulnerable to errors in configuration and ambiguous or undefined security policies. 

They are generally unable to protect against malicious mobile code, insider attacks and 

unsecured modems. Programming errors cannot be avoided as the complexity of the system and 
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application software is changing rapidly leaving behind some exploitable weaknesses. Intrusion detection therefore 

becomes a necessity as an additional wall for protecting systems despite the prevention techniques. Recently, 

Intrusion Detection Systems (IDS) have been used in monitoring attempts to break security, which provides 

important information for timely countermeasures. Intrusion detection is classified into two types: misuse intrusion 

detection and anomaly intrusion detection. Misuse intrusion detection uses well-defined patterns of the attack that 

exploit weaknesses in the system and application software to identify the intrusions. These patterns are encoded in 

advance and used to match against the user behavior to detect intrusion. Anomaly intrusion detection identifies 

deviations from the normal usage behavior patterns to identify the intrusion.  

The normal usage patterns are constructed from the statistical measures of the system features, for example, the CPU 

and I/O activities by a particular user or program. The behavior of the user is observed and any deviation from the 

constructed normal behavior is detected as intrusion. In Distributed IDS (DIDS) conventional intrusion detection 

system are embedded inside intelligent agents and are deployed over a large network. In a distributed environment 

IDS agents communicate with each other, or with a central server. Distributed monitoring allows early detection of 

planned and coordinated attacks and thereby allowing the network administrators to take preventive measures. DIDS 

also helps to control the spreading of worms, improves network monitoring and incident analysis, attack tracing and 

so on. It also helps to detect new threats from unauthorized users, back-door attackers and hackers to the network 

across multiple locations, which are geographically separated. In a DIDS it is important to ensure that the individual 

IDS are light-weight and accurate.  

Intrusion detection is a critical component of homeland security. Two important agencies that are part of the Office 

of Homeland Security are the Critical Infrastructure Assurance Office (CIAO) and the National Infrastructure 

Protection Center (NIPC). Leslie Wiser of the NIPC made the following statement to House Committee on 

Government Affairs: “…intrusions into critical systems are inevitable for the foreseeable future. Thus detection of 

these viruses, worms, and other intrusions is crucial if the U.S. Government and critical infrastructure owners and 

operators are going to be able to respond effectively ” (Wiser, 2002). Clearly this applies to any nation facing the 

threat of terrorism. Information security and the protection of IT and communications infrastructure is a clear focus 

of Homeland security. Intrusion detection specifically, and intrusion management in general, will be important 
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components of that focus. Intrusion detection is fundamental to achieving secure operating environments in the 

future and is every bit as relevant to Homeland Security initiatives as it is to the commercial sector. 

This chapter presents a computational intelligence approach for DIDS with a focus on improving the performance of 

the individual IDS agents by reducing the number of input features (light weight) and engaging hybrid intelligent 

systems for improving the detection accuracy. 

2. Intrusion Detection Systems 

2.1 Anomaly Detection 

Anomaly detection assumes that an intrusion will always reflect some deviations from normal patterns. Anomaly 

detection can be divided into static and dynamic. A static anomaly detector is based on the assumption that there is a 

portion of system being monitored that should remain constant. Usually, static detectors only address the software 

portion of a system and are based on the assumption that the hardware need not be checked. The static portion of a 

system is the code for the system and the constant portion of data upon which the correct functioning of the system 

depends. Static portions of the system can be represented as a binary bit string or a set of such strings (such as files). 

If the static portion of the system ever deviates from its original form, an error has occurred or an intruder has 

altered the static portion of the system. Static anomaly detectors are meant for checking data integrity. Dynamic 

anomaly detectors require a definition of behavior to classify as normal or anomalous. Frequently, system designers 

employ the notion of event. Behavior is defined as a sequence of distinct actions that cause events that are recorded 

in audit records. Since audit records of operating system only record events of interest, then the only behavior that 

can be observed is that which results in an event in an audit record. Events may occur in a sequence. In some cases 

like distributed systems, partial ordering of events is sufficient. In other cases, the order is not directly represented; 

only cumulative information, such as cumulative processor resource used during a time interval, is maintained. In 

this case, thresholds are defined to separate normal resource consumption from anomalous resource consumption. 

2.2 Misuse Detection 

Misuse detection is based on the knowledge of system vulnerabilities and the known attack patterns. Misuse 

detection is concerned with finding intruders who are attempting to break into a system by exploiting some known 

vulnerability. Ideally, a system security administrator would be aware of all the known vulnerabilities and would 
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eliminate them. The term intrusion scenario is used as a description of a known kind of intrusion; it is a sequence of 

events that would result in an intrusion without some outside preventive intervention. An intrusion detection system 

continually compares recent activity to the intrusion scenarios to make sure that someone or combinations of people 

are not attempting to exploit known vulnerabilities. To perform this, each intrusion scenario must be described or 

modeled in some way. Generally, intrusion scenarios are quite specific. The main difference between the misuse 

techniques is in how they describe or model the bad behavior that constitutes an intrusion. Initial misuse detection 

systems used rules to describe the events indicative of intrusive actions that a security administrator looked for 

within the system. Large numbers of rules can be difficult to interpret if the if-then rules are not grouped by intrusion 

scenarios. This is because making modifications to the rule set can be difficult if the affected rules are spread out 

across the rule set. To overcome these difficulties, alternative intrusion scenario representations have been 

developed.  These new rules impose organizational techniques that include model-based rule organization and state 

transition diagrams. Better rule organization allows the intrusion scenarios to be described in a more expressive and 

understandable way for the misuse detection system user. Misuse detection systems use the rules to look for events 

that possibly fit an intrusion scenario. The events may be monitored live by monitoring system calls or later using 

audit records. Although most systems use audit records, they would be fundamentally the same if they were 

collecting live system information. 

2.3. Related Research 

Dorothy Denning (Denning, 1997) proposed the concept of intrusion detection as a solution to the problem of 

providing a sense of security in computer systems. The basic idea is that intrusion behavior involves abnormal usage 

of the system. Different techniques and approaches have been used in later developments. Some of the techniques 

used are statistical approaches, predictive pattern generation, expert systems, keystroke monitoring, state transition 

analysis, pattern matching, and data mining techniques. Figure 1 illustrates a simple network, which is protected 

using IDS. 
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Figure 1. Network protection using conventional IDS 

Statistical approaches compare the recent behavior of a user of a computer system with observed behavior and any 

significant deviation is considered as intrusion (Mukherjee, 1994). This approach requires construction of a model 

for normal user behavior. Any user behavior that deviates significantly from this normal behavior is flagged as an 

intrusion. Predictive pattern generation uses a rule base of user profiles defined as statistically weighted event 

sequences (Teng, 1990). This method of intrusion detection attempts to predict future events based on events that 

have already occurred. State transition analysis approach uses the state transitions of the system to identify the 

intrusions. State transition diagrams list only the critical events that must occur for the successful completion of the 

intrusion (Porras, 1992). Keystroke monitoring technique utilizes user’s keystrokes to determine the intrusion 

attempt (Dunigan, 1999). The main approach is to pattern match the sequence of keystrokes to some predefined 

sequences to detect the intrusion. The main problems with this approach are lack of support from operating system 

to capture the keystroke sequences and also many ways of expressing the sequence of keystrokes for same attack.  

Expert systems have played an important role to build IDS (Ilgun, 1993). The rules may recognize single auditable 

events that represent significant danger to the system by themselves, or they may recognize a sequence of events that 

represent an entire penetration scenario. The Model-based approach proposed by Garvey and Lunt (Garvey, 1991) 

attempts to model intrusions at a higher level of abstraction than audit trail records. The objective is to build 

scenario models that represent the characteristic behavior of intrusions. This technique differs from the rule-based 

expert system technique, which simply attempt to pattern match audit records to expert rules. The Pattern matching 

(Kumar, 1995) approach encodes known intrusion signatures as patterns that are then matched against the audit data. 

A Model of pattern matching is implemented using colored Petri Nets in IDIOT (Kumar, 1994). Intrusion signature 

is represented with Petri Net, the start state and final state notion is used to define matching to detect the intrusion.  
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Data mining approaches for intrusion detection was first implemented in Mining Audit Data for Automated Models 

for Intrusion Detection (Lee, 1999). Raw data is converted into ASCII network packet information, which in turn is 

converted into connection level information. These connection level records contain within connection features like 

service, duration etc. Data mining algorithms are applied to this data to create models to detect intrusions. Neural 

networks have been used both in anomaly intrusion detection as well as in misuse intrusion detection. In the first 

approach of neural networks (Debar, 1992) for intrusion detection, the system learns to predict the next command 

based on a sequence of previous commands by a user. SVMs have proven to be a good candidate for intrusion 

detection because of its training speed and scalability. Besides SVMs are relatively insensitive to the number of data 

points and the classification complexity does not depend on the dimensionality of the feature space, so they can 

potentially learn a larger set of patterns and scale better than neural networks (Mukkamala, 2003). 

Neuro-fuzzy computing is a popular framework for solving complex problems. An Adaptive neuro-fuzzy 

IDS is proposed in (Shah, 2004). Multivariate Adaptive Regression Splines (MARS) is an innovative approach that 

automates the building of accurate predictive models for continuous and binary dependent variables (Friedman, 

1991). It excels at finding optimal variable transformations and interactions, and the complex data structure that 

often hides in high-dimensional data. An IDS based on MARS technology is proposed in (Mukkamala, 2004b). 

Linear Genetic Programming (LGP) is a variant of the conventional Genetic Programming (GP) technique that acts 

on linear genomes. Its main characteristics in comparison to tree-based GP lies in fact that computer programs are 

evolved at the machine code level, using lower level representations for the individuals. This can tremendously 

hasten up the evolution process as, no matter how an individual is initially represented, finally it always has to be 

represented as a piece of machine code, as fitness evaluation requires physical execution of the individuals. LGP 

based IDS is presented in (Mukkamala, 2004a). 
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3. Distributed Intrusion Detection System (DIDS) 

A number of IDSs have been proposed for a networked or distributed environment. Early systems included ASAX 

(Mouinji, 1995), DIDS (Snapp, 1999) and NSTAT (Kemmerer, 1997). These systems require the audit data 

collected from different places to be sent to a central location for an analysis. NetSTAT (Vigna, 1999) is another 

example of such a system. In NetSTAT attack scenarios are modeled as hypergraphs and places are probed for 

network activities. Although NetSTAT also collects information in a distributed manner, it analyses them in a 

central place. The scalability of such systems is limited due to their centralized nature. To improve scalability later 

systems such as EMERALD (Porras, 1997), GriDS (Staniford, 1996) and AAFID (Spafford, 2000), deployed 

instruction detection systems at different locations and organized them into a hierarchy such that low-level IDSs 

send designated information to higher level IDSs. EMERALD uses both misuse detection and statistical anomaly 

detection techniques. This system employs a recursive framework, which allows generic components to be deployed 

in a distributed manner (Porras, 1997). To detect intruders, GriDS aggregates computer and network information 

into activity graphs which reveal the causal structure of network activity (Staniford, 1996). AAFID consists of 

agents, filters transceivers and monitors organized in a tree structure (Spafford, 2000). The hierarchical approaches 

employed by theses schemes scale better than the previous centralized approached. However, the main problem with 

such an approach is that if two or more IDSs that are far apart in the hierarchy detect a common intruder, the two 

detection cannot be correlated until the messages from the different IDSs reach a common high-level IDS. This will 

require the messages to traverse multiple IDSs resulting in communication overheads. The Common Intrusion 

Detection Framework (CIDF) (Staniford, 1998) goes one step further as it aims to enable different intrusion 

detection and response components to interoperate and share information and resources in a distributed environment. 

The intrusion detection inter-component adaptive negotiation protocol helps cooperating CIDF components to reach 

an agreement on each other’s needs and capabilities (Feiertag, 2000). MADAM ID uses CIDF to automatically get 

audit data, build models, and distribute signatures for novel attacks so that the gap between the discovery and 

detection of new attacks can be reduced (Lee, 2000). The coordinated and response system (CARDS) (Ning, 2002) 

aims at detecting distributed attacks that cannot be detected using data collected from any single location. CARDS 

decomposes global representations of distributed attacks into smaller units that correspond to the distributed events 
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indicating the attacks. It then executes and coordinates the decomposed smaller units in the places where the 

corresponding units are observed. The message transmission between component IDSs is not determined by a 

centralized or hierarchical scheme, Instead, in CARDS, one component IDS sends a message to another only when 

the message is required by the later IDS to detect certain attacks. The communication cost is therefore reduced. 

Although JiNao (Jou, 2000) has been proposed as a distributed IDS for detecting intrusions network routing 

protocols, no specific mechanisms have been provided for doing so. JiNao focuses on the Open Shortest Path First 

(OSPF) protocol. 

Software agents have been proposed as a technology for intrusion detection applications. Rationale for considering 

agents in an IDS ranges from increased adaptability for new threats to reduced communication costs. Since agents 

are independently executing entities, there is the potential that new detection capabilities can be added without 

completely halting, rebuilding, and restarting the IDS. Other potential advantages are described in (Jansen, 1999), 

(Kruegel, 2001). Kruegel and Toth (Kruegel, 2001) also identify downside tradeoffs including increased design and 

operational complexity. The Autonomous Agents for Intrusion Detection (AAFID) framework (Spafford, 2000) 

employs autonomous agents for data collection and analysis. AAFID utilizes agents hosted on network nodes, filters 

to extract pertinent data, transceivers to oversee agent operation, and monitors to receive reports from transceivers. 

These entities are organized into a hierarchical architecture with centralized control. Cooperating Security Managers 

(CSMs) (White, 1996) enable individual distributed intrusion detection packages to cooperate in performing 

network intrusion detection without relying on centralized control. Each individual CSM detects malicious activity 

on the local host. When suspicious activity is detected, each CSM will report any noteworthy activity to the CSM on 

the host from which the connection originated. The local CSM will not notify all networked systems, but rather only 

the system immediately before it in the connection chain. Other agent-based hierarchical architectures include the 

Intelligent Agents for Intrusion Detection project (Helmer, 1998) with a centralized data warehouse at the root, data 

cleaners at the leaves, and classifier agents in between. Bernardes and dos Santos Moreira (Bernardes, 2000) have 

proposed a hybrid framework with partially distributed decision making under the control of a centralized agent 

manager. Agents are deployed to observe behavior of the system and users. Agents communicate via messages to 

advise peers when an action is considered suspect. When an agent considers an activity to be suspect, an agent with 

a higher level of specialization for the suspected intrusion is activated. Agents then report their findings to a 

centralized manager. The main drawbacks with these systems, is that the use of one or more centralized repositories 
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leave at least some portion of the network exposed to malicious attacks including tampering and denial of service 

attacks. Even if an autonomous mobile decision-making agent was to detect a problem, interlocking mechanisms 

would be necessary to preclude any accidental or malicious removal, delay, or spoofing the agent. The Tethered 

Agent and Collective Hive (TACH) architecture includes a centralized Hive to keep track of agents and collected 

data and an Agent Registry (AR) to track fingerprints of agents (Lu, 2000). An Aglet-based framework for TACH 

incorporates mobile agents for virus detection and misuse detection (Kapoor, 2000). Limitations of TACH include 

the use of a centralized entity for agent control and a period communication protocol between agents with time-out 

detection used to detect status changes in the agents. If the centralized entity is disabled then the entire TACH 

system has been compromised. The distributed intrusion detection system (DIDS) (Mukherjee, 1994) used a 

combination of host and LAN monitors to observe system and network activity. A centralized director obtained 

information from the monitors to detect intrusions. The CIDF nomenclature mentioned above includes 

reconnaissance agents for data gathering, analysis agents, and decision-response agents (Staniford, 1998).  The 

Computer Immunology Project at the University of New Mexico (Forrest, 1997) explored designs of IDSs based on 

ideas gleaned by examining animal immune systems. Small, individual agents would roam a distributed system, 

identify intrusions, and resolve the intrusions. One portion of the project developed a sense of self for security- 

related computer programs by observing the normal sets of system calls executed by the programs. This sense of self 

can be used to detect intrusions by discovering when a program executes an unusual set of system calls. The JAM 

Project at Columbia University (Stolfo, 1997) uses intelligent, distributed Java agents and data mining to learn 

models of fraud and intrusive behavior that can be shared between organizations. Helmar et al. propose lightweight 

agents for intrusion detection (Helmer, 2003). Their multi-agent system includes agents that travel between 

monitored systems in a network of distributed systems, obtain information from data cleaning agents, classify and 

correlate information, and report the information to a user interface and database via mediators. Agent systems with 

lightweight agent support allow runtime addition of new capabilities to agents. DeMara et. al. (DeMara, 2004) 

propose an IDS based on mobile agents for detecting malicious activity by people with legitimate access to 

resources and services. These include attacks such as spoofing, termination, sidetracking, alteration of internal data, 

and selective deception. Their system employs techniques such as encapsulation, redundancy, scrambling, and 

mandatory obsolescence.  
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DIDS are simply a superset of the conventional IDS implemented in a distributed environment. Due to the 

distributed nature the implementation poses several challenges. IDS could be embedded inside agents and placed in 

the network to be monitored. The individual IDS may be configured to detect a single attack, or they may detect 

several types of attacks. Each network component may host one or many IDS. Since there will be a large number of 

flag generators (detection of an attack, event etc.), these must be abstracted, analyzed, and condensed by a suitable 

architecture before arriving a final conclusion. Very often there would be a centralized analyzing and control 

facility. Some of the popular architectures are depicted in Figures 2-4. The Master-slave architecture is depicted in 

Figure 2. This architecture may be suitable for small networks. In a hierarchical architecture analysis and control are 

being done at different layers mainly because of the geographical distribution or due to the size of the network. 

Attacks/event detection information is passed to analyzer/controller nodes that aggregate information from multiple 

IDS agents. It is to be noted that the event information, which is detected by the IDS agents will follow a bottom up 

approach for analysis and the various command and control flow will follow a top-down approach. The physical 

location of IDS agents will be fixed since they monitor fixed network segments. In the case of hierarchical 

architecture, the analyzer/controller nodes may exist at many locations in the network since they receive their input 

and give their output via network connections. Depending on the network environment the communication between 

the different layers could be implemented as depicted in Figure 4.  

 

IDS IDS IDS

Analyzer / Controller

 

Figure 2. DIDS master-slave architecture 
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Figure 3. DIDS hierarchical architecture 
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Figure 4. Hierarchical architecture with free communication between layers. 

In the hierarchical architecture, the Central Analyzer and Controller (CAC) is the heart and soul of the DIDS. The 

CAC usually consists of a database and Web server, which allows interactive querying by the network 

administrators for attack information/analysis and initiate precautionary measures. CAC also performs attack 

aggregation, building statistics, identify attack patterns and perform rudimentary incident analysis. The co-operative 

intelligent agent network is one of the most important components of the DIDS. Ideally these agents will be located 

on separate network segments, and very often geographically separated. Communication among the agents is done 

utilizing the TCP/IP sockets.  

Agent modules running on the host machines are capable of data analysis and to formulate adequate response action 

and are very often implemented as read only and fragile. In the event of tampering or modification the agent reports 

to the server agent and automatically ends its life. Agents residing in the individual analyzer/controllers consist of 

modules responsible for agent regeneration, dispatch, updating and maintaining intrusion signatures and so on. 
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These agents control the individual IDS agents for monitoring the network, manage all the communication and life 

cycle of the IDS agents and also updates the IDS agents with detection algorithms, response and trace mechanisms. 

4. Reducing the Data Features for Intrusion Detection Systems 

Since the amount of audit data that an IDS needs to examine is very large even for a small network, analysis is 

difficult even with computer assistance because extraneous features can make it harder to detect suspicious behavior 

patterns. Complex relationships exist between the features, which are difficult for humans to discover. IDS must 

therefore reduce the amount of data to be processed. This is very important if real-time detection is desired. 

Reduction can occur in one of several ways. Data that is not considered useful can be filtered, leaving only the 

potentially interesting data. Data can be grouped or clustered to reveal hidden patterns; by storing the characteristics 

of the clusters instead of the data, overhead can be reduced. Finally, some data sources can be eliminated using 

feature selection (Chebrolu, 2004). 

4.1. Bayesian Learning and Markov Blanket Modeling of Input Features 

The Bayesian Network (BN) is a powerful knowledge representation and reasoning algorithm under conditions of 

uncertainty. A Bayesian network B = (N, A, �) is a Directed Acyclic Graph (DAG) (N, A) where each node n ∈  �N 

represents a domain variable (e.g. a dataset attribute or variable), and each arc a �∈  A between nodes represents a 

probabilistic dependency among the variables, quantified using a conditional probability distribution (CP table) �i� ∈  

�� for each node ni. A BN can be used to compute the conditional probability of one node, given values assigned to 

the other nodes. Many Bayesian network structure-learning algorithms have been developed. These algorithms 

generally fall into two groups, search and scoring based algorithms and dependency analysis based algorithms. 

Although some of these algorithms can give good results on some benchmark data sets, there are still several 

problems such as node ordering requirement, lack of efficiency, lack of publicly available learning tools. In order to 

resolve these problems, two algorithms types of algorithms have been developed in the area of Bayesian network 

structure learning. Type 1 deals with a special case where the node ordering is given, which requires O (N2) CI tests 

and is correct given that the underlying model is DAG faithful. Type 2 deals with the general case and requires O 

(N4) CI tests and is correct given that the underlying model is monotone DAG faithful. Major advantage of Bayesian 

networks over many other types of predictive models, such as neural networks and decision trees, is that unlike 

those “black box” approaches, the Bayesian network structure represents the inter-relationships among the dataset 

attributes. Human experts can easily understand the network structures and if necessary can easily modify them to 

obtain better predictive models. By adding decision nodes and utility nodes, BN models can also be extended to 

decision networks for decision analysis. Several other advantages of Bayesian networks are explicit uncertainty 

characterization, fast and efficient computation, and quick training. They are highly adaptive and easy to build, and 

provide explicit representation of domain specific knowledge in human reasoning framework. Also Bayes networks 

offer good generalization with limited training data, easy maintenance when adding new features or new training 

data. 
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Markov Blanket (MB) of the output variable T, is a novel idea for significant feature selection in large data 

sets (Tsamardinos, 2003). MB (T) is defined as the set of input variables such that all other variables are 

probabilistically independent of T. A general BN classifier learning is that we can get a set of features that are on the 

Markov blanket of the class node. The Markov blanket of a node n is the union of n’s parents, n’s children and the 

parents of n’s. This subset of nodes shields n from being affected by any node outside the blanket. When using a BN 

classifier on complete data, the Markov blanket of the class node forms feature selection and all features outside the 

Markov blanket are deleted from the BN.  

4.2. Decision Tree Approach for Data Reduction  

The Classification and Regression Trees (CART) methodology is technically called as binary recursive partitioning 

(Breiman, 1984). The process is binary because parent nodes are always split into exactly two child nodes and 

recursive because the process is repeated by treating each child node as a parent. The key elements of CART 

analysis are a set of rules for splitting each node in a tree; deciding when tree is complete and assigning a class 

outcome to each terminal node. As an example, for the DARPA intrusion data set (KDD, 1999) with 5092 cases and 

41 variables, CART considers up to 5,092 times 41 splits for a total of 208,772 possible splits. For splitting, Gini 

rule is used which essentially is a measure of how well the splitting rule separates the classes contained in the parent 

node. Splitting is impossible if only one case remains in a particular node or if all the cases in that node are exact 

copies of each other or if a node has too few cases. Instead of attempting to decide whether a given node is terminal 

or not, the algorithm proceeds by growing trees until it is not possible to grow them any further. Once the algorithm 

has generated a maximal tree, it examines smaller trees obtained by pruning away branches of the maximal tree. 

Instead of attempting to decide whether a given node is terminal or not, CART proceeds by growing trees until it is 

not possible to grow them any further. Once CART has generated a maximal tree, it examines smaller trees obtained 

by pruning away branches of the maximal tree. Unlike other methods, CART does not stop in the middle of the tree-

growing process, because there might still be important information to be discovered by drilling down several more 

levels. Once the maximal tree is grown and a set of sub-trees is derived from it, CART determines the best tree by 

testing for error rates or costs. The misclassification error rate is calculated for the largest tree and also for every 

sub-tree. The best sub-tree is the one with the lowest or near-lowest cost, which may be a relatively small tree. 

Feature selection is done based on the contribution the input variables made to the construction of the decision 

tree. Feature importance is determined by the role of each input variable either as a main splitter or as a surrogate. 

Surrogate splitters are defined as back-up rules that closely mimic the action of primary splitting rules.  Suppose 

that, in a given model, the algorithm splits data according to variable ‘protocol_type’ and if a value for 

‘protocol_type’ is not available, the algorithm might substitute ‘service’ as a good surrogate. Variable importance, 

for a particular variable is the sum across all nodes in the tree of the improvement scores that the predictor has when 

it acts as a primary or surrogate (but not competitor) splitter. Example, for node i, if the predictor appears as the 

primary splitter then its contribution towards importance could be given as iimportance. But if the variable appears as 

the nth surrogate instead of the primary variable, then the importance becomes iimportance =  (pn) * iimprovement in which p 

is the ‘surrogate improvement weight’ which is a user controlled parameter set between (0-1). 
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4.3. Experiment Setup and Results 

The data for our experiments was prepared by the 1998 DARPA intrusion detection evaluation program by MIT 

Lincoln Labs (KDD, 1999). The data set contains 24 attack types that could be classified into four main categories 

namely Denial of Service (DOS), Remote to User (R2L), User to Root (U2R) and Probing. The original data contains 

744 MB data with 4,940,000 records. The data set contains 24 attack types. All these attacks fall into four main 

categories (KDD, 1999).  

1. Denial of Service (DOS): In this type of attacks an attacker makes some computing or memory resources too 

busy or too full to handle legitimate requests, or denies legitimate users access to a machine. Examples are 

Apache2, Back, Land, Mailbomb, SYN Flood, Ping of death, Process table, Smurf, Teardrop. 

2. Remote to User (R2L): In this type of attacks an attacker who does not have an account on remote machine 

sends packets to that machine over a network and exploits some vulnerability to gain local access as a user of 

that machine. Examples are Dictionary, Ftp_write, Guest, Imap, Named, Phf, Sendmail, Xlock.   

3. User to Root (U2R): In this type of attacks an attacker starts out with access to a normal user account on the 

system and is able to exploit vulnerability to gain root access to the system. Examples are Eject, Loadmodule, 

Ps, Xterm, Perl, Fdformat. 

4. Probing: In this type of attacks an attacker scans a network of computers to gather information or find known 

vulnerabilities. An attacker with a map of machines and services that available on a network can use this 

information to look for exploits. Examples are Ipsweep, Mscan, Saint, Satan, Nmap.  

The data set has 41 attributes for each connection record plus one class label. Some features are derived features, 

which are useful in distinguishing normal connection from attacks. These features are either nominal or numeric. 

Some features examine only the connections in the past two seconds that have the same destination host as the 

current connection, and calculate statistics related to protocol behavior, service, etc. These are called same host 

features. Some features examine only the connections in the past two seconds that have the same service as the 

current connection and are called same service features. Some other connection records were also sorted by 

destination host, and features were constructed using a window of 100 connections to the same host instead of a time 

window. These are called host-based traffic features. R2L and U2R attacks don’t have any sequential patterns like 

DOS and Probe because the former attacks have the attacks embedded in the data packets whereas the later attacks 

have many connections in a short amount of time. So some features that look for suspicious behavior in the data 

packets like number of failed logins are constructed and these are called content features. Our experiments have 

three phases namely data reduction, training phase and testing phase. In the data reduction phase, important 

variables for real-time intrusion detection are selected by feature selection. In the training phase, the Bayesian neural 

network and classification and regression trees constructs a model using the training data to give maximum 

generalization accuracy on the unseen data. The test data is then passed through the saved trained model to detect 

intrusions in the testing phase. The data set for our experiments contains randomly generated 11982 records having 

41 features (KDD, 1999). The 41 features are labeled in order as A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, 
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S, T, U, V, W, X, Y, Z, AA, AB, AC, AD, AF, AG, AH, AI, AJ, AK, AL, AM, AN, AO and the class label is named as 

AP.  This data set has five different classes namely Normal, DOS, R2L, U2R and Probes. The training and test 

comprises of 5092 and 6890 records respectively. All the IDS models are trained and tested with the same set of 

data. As the data set has five different classes we perform a 5-class binary classification. The Normal data belongs to 

class 1, Probe belongs to class 2, DOS belongs to class 3, U2R belongs to class 4 and R2L belongs to class 5. All 

experiments were performed using an AMD Athlon 1.67 GHz processor with 992 MB of RAM. We selected the 

important features using the Markov blanket model and found out that 17 variables of the data set forms the Markov 

blanket of the class node as explained in Section 5.1. These 17 variables are A, B, C, E, G, H, K, L, N, Q, V, W, X, Y, 

Z, AD and AF.  

4.3.1.  Modeling IDS Using Bayesian Classifier 

Furthermore, Bayesian network classifier is constructed using the training data and then the classifier is used on the 

test data set to classify the data as an attack or normal. Table 1 depicts the performance of Bayesian belief network 

by using the original 41 variable data set and the 17 variables reduced data set. The training and testing times for 

each classifier are decreased when 17 variable data set is used. Using the 17 variable data set there is a slight 

increase in the performance accuracy for Normal class compared to the 41 variable data set. 

Table 1. Performance of Bayesian Belief Network 

41 variables 17 variables Attack 
Class Train 

(sec) 
Test 
(sec) 

Accuracy 
(%) 

Train 
(sec) 

Test 
(sec) 

Accuracy 
(%) 

Normal 42.14 19.02 99.57 23.29 11.16 99.64 

Probe 49.15 21.04 99.43 25.07 13.04 98.57 

DOS 54.52 23.02 99.69 28.49 14.14 98.16 

U2R 30.02 15.23 64.00 14.13 7.49 60.00 

R2L 47.28 12.11 99.11 21.13 13.57 98.93 

4.3.2.  Modeling IDS Using Decision Trees 

We decided the important variables depending on the contribution of the variables for the construction of the 

decision tree. Variable rankings were generated in terms of percentages. We eliminated the variables that have 

0.00% rankings and considered only the primary splitters or surrogates as explained in Section 4.1. This resulted in a 

reduced 12 variable data set with C, E, F, L, W, X, Y, AB, AE, AF, AG and AI as variables.  

Table 2. Performance of classification and regression trees 
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41 variable data set 12 variable data set Attack 
Class  Train 

(sec) 
Test 
(sec) 

Accuracy 
(%) 

Train 
(sec) 

Test 
(sec) 

Accuracy 
(%) 

Normal 1.15 0.18 99.64 0.80 0.02 100.00 

Probe 1.25 0.03 97.85 0.85 0.05 97.71 

DOS 2.32 0.05 99.47 0.97 0.07 85.34 

U2R 1.10 0.02 48.00 0.45 0.03 64.00 

R2L 1.56 0.03 90.58 0.79 0.02 95.56 

Further the classifier is constructed using the training data and then the test data is passed through the saved trained 

model. Table 2 compares the performance of CART using the 41 variable original data set and the 12 variable 

reduced data set. Normal class is classified 100 percent correctly. Furthermore, the accuracies of classes U2R and 

R2L have increased by using the 12 variable reduced data set. It is also found that CART could classify accurately 

on smaller data sets. 

4.3.3.  Modeling IDS Using Bayesian Networks and Decision Trees with Reduced Dataset 

Further, we used the Bayesian reduced 17 variable data set to train CART and the CART reduced 12 variable dataset 

to train Bayesian network. As illustrated in Table 3 except R2L all other classes were classified well by the CART 

algorithm. Moreover, training and testing time for each class are greater for Bayesian network classifier compared to 

CART algorithm.  

Table 3. Performance of Bayesian and CART using reduced datasets 

Bayesian with 12 variables CART with 17 variables Attack 
Class 

 Train 
(sec) 

Test 
(sec) 

Accuracy 
(%) 

Train 
(sec) 

Test 
(sec) 

Accuracy 
(%) 

Normal 20.10 10.13 98.78 1.03 0.04 99.64 

Probe 23.15 11.17 99.57 1.15 0.13 100.00 

DOS 25.19 12.10 98.95 0.96 0.11 99.97 

U2R 11.03 5.01 48.00 0.59 0.02 72.00 

R2L 19.05 12.13 98.93 0.93 0.10 96.62 
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4.3.4.  Ensemble Approach Using Reduced Data Sets 

Empirical observations show that different classifiers provide complementary information about the patterns to be 

classified. Although for a particular problem one classifier works better than the other, a set of misclassified patterns 

would not necessarily overlap. This different information combined together yields better performance than 

individual classifiers. The idea is not to rely on single classifier for decision, instead different classifiers individual 

information is combined to take the final decision, which is popularly known as the ensemble approach. The 

effectiveness of the ensemble approach depends on the accuracy and diversity of the base classifiers. Various 

techniques are developed for the ensemble approach. One technique is to use different training models for different 

base classifiers and then combine their outputs, another one uses different subset of features for different base 

classifiers and combines their outputs. In this approach we use the same data set as well as feature set for all the base 

classifiers and combine them to give the final output of the ensemble approach. We first construct the Bayesian 

network classifier and CART models individually to obtain a very good generalization performance. In the ensemble 

approach, the final outputs were decided as follows: Each classifier’s output is given a weight (0-1 scale) depending 

on the generalization accuracy obtained for the individual classifiers. If both classifiers agree then the output is 

decided accordingly. If there is a conflict then the decision given by the classifier with the highest weight is taken 

into account. When the highest scored class fails, then the next highest scored class is given preference. Table 5 

illustrates the ensemble results using the different data sets. From the results, we can conclude that ensemble 

approach gives better performance than the two individual separately used models. The ensemble approach basically 

exploits the differences in misclassification (by individual models) and improves the overall performance. Figure 5 

illustrates the developed hybrid IDS model to detect the different attacks after summarizing all the empirical results. 

By using the hybrid model Normal, Probe and DOS could be detected with 100% accuracy and U2R and R2L with 

80% and 99.47% accuracies respectively. 
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Figure 5. Developed ensemble IDS model for different attack classes 

Table 5. Performance of ensemble approach using different data sets 

Class 12 variables 17 variables 41 variables 

Normal 100.00 99.64 99.71 

Probe 99.86 100.00 99.85 

DOS 99.98 100.00 99.93 

U2R 80.00 72.00 72.00 

R2L 99.47 99.29 99.47 

5. Improving the Performance (Accuracy) of Intrusion Detection Systems 

5.1. Hybrid Support Vector Machines (SVM) – Decision Trees (DT) Approach 

A SVM maps input (real-valued) feature vectors into a higher dimensional feature space through some nonlinear 

mapping. SVMs are developed on the principle of structural risk minimization (Vapnik, 1995). Structural risk 

minimization seeks to find a hypothesis h for which one can find lowest probability of error whereas the traditional 

learning techniques for pattern recognition are based on the minimization of the empirical risk, which attempt to 

optimize the performance of the learning set. Computing the hyper plane to separate the data points i.e. training a 

SVM leads to quadratic optimization problem. SVM uses a linear separating hyper plane to create a classifier but all 

the problems cannot be separated linearly in the original input space. SVM uses a feature called kernel to solve this 

problem. Kernel transforms linear algorithms into nonlinear ones via a map into feature spaces. SVMs classify data 
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by using these support vectors, which are members of the set of training inputs that outline a hyper plane in feature 

space.  

Decision Trees (DT) induction is one of the classification algorithms in the data mining. The inductively learned 

model of classification algorithm is known as classifier. Classifier may be viewed as mapping from a set of 

attributes to a particular class.  Data items are defined by the values of their attributes and X is the vector of their 

values {x1, x2 ….xn}, where the value is either numeric or nominal.  Attribute space is defined as the set containing 

all possible attribute vectors and is denoted by Z. Thus X∈Z. Set of all classes is denoted by C = {c1, c2,...,cn}. A 

classifier assigns a class c ∈ C to every attribute of the vector X∈Z. The classifier can be considered as a mapping f, 

where f: X � C. This classifier is used to classify the unseen data with a class label. Decision tree classifies the 

given data item using the values of its attributes. The decision tree is initially constructed from a set of pre-classified 

data. Each data item is defined by values of the attributes. The main approach is to select the attributes, which best 

divides the data items into their classes. According to the values of these attributes the data items are partitioned. 

This process is recursively applied to each partitioned subset of the data items. The process terminates when all the 

data items in current subset belongs to the same class. A decision tree consists of nodes, leaves and edges. A node of 

a decision tree specifies an attribute by which the data is to be partitioned. Each node has a number of edges, which 

are labeled according to a possible value of edges, which are labeled according to a possible value of the attribute in 

the parent node. An edge connects either two nodes or a node and a leaf. Leaves are labeled with a decision value 

for categorization of the data. Induction of the decision tree uses the training data, which is described in terms of the 

attributes.  

A hybrid intelligent system uses the approach of integrating different learning or decision-making models. Each 

learning model works in a different manner and exploits different set of features. Integrating different learning 

models gives better performance than the individual learning or decision-making models by reducing their 

individual limitations and exploiting their different mechanisms. In a hierarchical hybrid intelligent system each 

layer provides some new information to the higher level (Abraham, 2003). The overall functioning of the system 

depends on the correct functionality of all the layers. Figure 5 shows the architecture of the hybrid intelligent system 

with decision tree and SVM. 



 20 

 

Figure 6. Hybrid decision tree-SVM model 

 

Figure 7. Decision tree output structure showing the terminal nodes 

The data set is first passed through decision tree and node information is generated. Node information is determined 

according to the rules generated by the decision tree. Terminal nodes are numbered left to right starting with 1 as 

shown in the Figure 7. All the data set records are assigned to one of the terminal nodes, which represent the 

particular class or subset. This node information (as an additional attribute) along with the original set of attributes is 

passed through the SVM to obtain the final output. The key idea here is to investigate whether the node information 

provided by DT could improve the performance of SVM (Peddabachigari, 2004). 
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5.2. Ensemble Approach 

We used the highest scored class as the final output among the base classifier outputs (DT, SVM and DT-SVM). 

According to the performance on the training data each classifier is assigned different weights. Using these weights 

and output of the classifier scores were calculated. Example, for class 1 if the DT works best, followed by the DT-

SVM and SVM model, the decision tree is assigned highest weight, followed by the hybrid decision tree-SVM 

model and SVM is assigned the lowest weight. For five different classes each classifier has different weights 

depending on their performance on the training data. So for a particular data record if all of them have different 

opinions, their scores are considered and the highest score one is declared the winner and is the actual output of the 

ensemble approach. The architecture of the ensemble approach is depicted in Figure 8. 

 

Figure 8. Architecture of ensemble approach 

5.3. Experiment Setup and Performance Evaluation 

The same data set used for the data reduction phase is used in our experiments but all the 41 features were used for 

the experiments. Experiments have two phases namely training and a testing phase. In the training phase the system 

constructs a model using the training data to give maximum generalization accuracy (accuracy on unseen data). The 

test data is passed through the constructed model to detect the intrusion in the testing phase. Experiments were 

performed using an AMD Athlon, 1.67 GHz processor with 992 MB of RAM. 

5.3.1. Support Vector Machines  

Kernel option defines the feature space in which the training set examples will be classified. The polynomial kernel 

was used for our experiments. We observed that for different class of data, different polynomial degrees gives 

different performance and the results are presented in the Table 6. 
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Table 6. Classification accuracy of different polynomial kernel degrees 

Polynomial Degree 
Attack type 

1 2 3 

Normal 99.64 99.64 99.64 

Probe 98.57 64.85 61.72 

DOS 70.99 99.92 99.78 

U2R 40.00 40.00 40.00 

R2L 33.92 31.44 28.06 

5.3.2. Hybrid Decision Tree-SVM 

A Hybrid decision tree-SVM model has two steps for constructing the classifier. The data sets were first passed 

through the decision tree and the node information was generated. Training and test data along with the node 

information is given to the SVM. SVM gives the final output of the hybrid decision tree-SVM. Performance of 

hybrid decision tree-SVM is illustrated in Table 7. Hybrid decision tree-SVM works better than both decision tree 

and SVM for normal class. For U2R and R2L classes it performed better than a direct SVM approach. From the 

above results we can conclude that although the node information generated by the decision tree enhances the 

performance of SVM but on the whole the hybrid decision tree-SVM model did not give the expected performance. 

5.3.3. Ensemble Approach 

In this approach first we construct decision tree, SVM and hybrid decision tree-SVM classifiers individually to 

obtain a good generalization performance (Optimizing the model for performance on unseen data rather than the 

training data). Test data is passed through each individual model and the corresponding outputs are used to decide 

the final output. The performance of the ensemble approach is presented in Table 7. Empirical results depict that the 

proposed ensemble approach gives better performance for detecting probes and U2R attacks than all the three 

individual models. 
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Table 7. Performance of ensemble approach 

Accuracy (%) 
Attack type 

 Decision Trees SVM 
Hybrid Decision tree-

SVM  
Ensemble Approach 

Normal 99.64 99.64 99.70 99.70 

Probe 97.85 98.57 98.57 100.00 

DOS 99.47 99.92 99.92 99.92 

U2R 48.00 40.00 48.00 68.00 

R2L 90.58 33.92 37.80 97.16 

The Ensemble approach classifies most of them correctly by picking up all the classes, which are correctly classified 

by all the three classifiers. As expected the ensemble approach basically exploits the differences in misclassification 

and improves the overall performance. To minimize the computational load we further propose an IDS model as 

depicted in Figure 9. The hybrid IDS model makes uses of individual, hybrid and ensemble approaches to maximize 

the computational efficiency and detection accuracy. 

Input data

DT

SVM

EnsembleHybrid
DT-SVM

DoS

R2L

Probe

NormalU2R

 

Figure 9. IDS based on a hierarchical intelligent system  
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6. Conclusions 

Effective intrusion detection and management systems are critical components of homeland security as they are in 

the forefront of the battle again cyber-terrorism. In this chapter we presented a framework for Distributed Intrusion 

Detection Systems (DIDS) with a focus on improving the intrusion detection performance by reducing the input 

features and hybrid approaches for combining base classifiers. We used the feature selection method using Markov 

blanket model and decision tree analysis. Following this, we explored general Bayesian Network (BN) classifier and 

Classification and Regression Trees (CART) as intrusion detection models. We have also demonstrated performance 

comparisons using different reduced data sets. The proposed ensemble of BN and CART combines the 

complementary features of the base classifiers. Finally, we propose a hybrid architecture involving ensemble and 

base classifiers for intrusion detection. 

 

In the next phase we illustrated the importance of hybrid approaches by designing a hybrid DT-SVM model and an 

ensemble approach with decision tree, SVM and DT-SVM models as base classifiers. Empirical results reveal that 

the hybrid decision tree-SVM approach improves or delivers equal performance for all the classes when compared 

to a direct SVM approach. The Ensemble approach gave the best performance for Probe and U2R and R2L classes. 

The ensemble approach gave 100% accuracy for Probe class, and this suggests that if proper base classifiers are 

chosen 100% accuracy might be possible for other classes too. Finally we propose the hybrid IDS model to make 

use of the best performances delivered by the individual base classifiers and the ensemble approach. 

With the increasing incidents of cyber attacks, building an effective intrusion detection models with good 

accuracy and real-time performance are essential. This field is developing continuously. More data mining 

techniques should be investigated and their efficiency should be evaluated as intrusion detection models. 
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