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Abstract—In this paper, we discuss the need for efficient
approximate string matching. We present the well-known Aho-
Corasick automaton for locating multiple patterns and discuss
an approach for fuzzification of this automaton. Along with
some motivational examples, we propose and illustrate a novel
algorithm for automaton construction.

I. INTRODUCTION

When constructing search algorithms, we often need to
solve the problem of approximate searching. These construc-
tions can also be extended by a weighted function, as described
by Muthukrishnan [7].

Approximate string matching and search is not a new
problem and has been solved many times. It is usually based
on Aho-Corasick automata and trellis constructions, and is
often used when working with text documents or databases,
or antivirus software.

We begin our paper with some motivational examples,
showing that there are several situations, which would use
this kind of search procedures. Then we define a fuzzy
automaton, and some basic constructions. We continue with
the construction of Fuzzy Aho-Corasick automaton and further
present a detailed construction algorithm and an example of
the constructed automaton.

II. MOTIVATIONAL EXAMPLES

A. DNA Strings

We can understand the DNA as a string in alphabet Σ =
{A,C,G, T}. Bases A and G are called purine, and bases C
and T are called pyrimidine.

Kurtz [5] writes: “The transversion/transition weight func-
tion reflect the biological fact that a purine→purine and
pyrimidine→pyrimidine replacement is much more likely to
occur than a purine�pyrimidine replacement. Moreover, it
takes into account that a deletion or insertion of a base occurs
more seldom.”

In the other words, we have to take into account that
the level of similarity or difference of two particular DNA
strings cannot be simply expressed as the number of different
symbols in them. We need to look at the particular symbol
pairs. Obviously, the classical algorithm of approximate string
searching does not cover this situation. Our previous research
in this field is illustrated in [9] and [10].

B. Spell checker

A spell checker based on a dictionary of correct words and
abbreviations is a common way of doing a basic check of a text
document. We go through the document and search each word
in our dictionary. The words not found in there are highlighted
and a correction is suggested. The suggested words are those
ones, which are present in the dictionary and are the most
similar to the unknown one is sense of addition, deletion and
replacement of symbols.

This common model is simple to implement, but it does
not cover the fact that some pairs of symbols are more similar
than others. This is also very language–specific. For example in
Latin alphabet ‘a’ and ‘e’ or ‘i’ and ‘y’ are somewhat related
hence more similar than for example ‘w’ and ‘b’. In many
European languages we can found some letters of extended
Latin alphabet, whose similarity solely depends on the nature
of a national language, e.g. in some languages ‘ä’ is similar
or even identical to ‘ae’ so their exchange should be favored
over other string operations. The primary problem here is that
it cannot be simply implemented by standard string search
models.

C. Summary

A fuzzy automaton allows us to define individual levels
of similarity for particular pairs of symbols or sequences of
symbols, so it can be used as a base for a better string search in
the sense of presented examples. There are extensive research
materials discussing fuzzy automata [2].

III. FUZZY AUTOMATA

A. Fuzzy set

For completeness, we start with a very short definition of
a fuzzy set. We define set L as the interval L = [0, 1],

∨
L =

supL = 1,
∧
L = inf L = 0. Let B is a finite set. Then

function A : B → L is called fuzzy set A of B.

Whenever A ⊆ B, we can also take A as a fuzzy set A : B →
L.

∀b ∈ B : A(b) =
{ ∨

L if b ∈ A∧
L if b /∈ A

Note: Definition of L and related stuff can also be more
generalized. The reader may consult Nguyen & Walker [8]
or Bělohlávek [3] for more details. Also, an infinite B could



possibly be a base of an infinite fuzzy set, but we do not require
this kind of generalization.

B. Fuzzy automaton

Fuzzy automata are generalization of nondeterministic finite
automata (see Gruska [4]) in that they can be in each of its
states with a degree within the range L.

Fuzzy automaton is a system

M = (Σ, Q, δ, S, F )

where
Σ is a finite input alphabet
Q is a finite set of states
S ⊆ Q is the set of start states
F ⊆ Q is the set of final (accepting) states
δ = {δa : a ∈ Σ} is a fuzzy transition function
δa : Q×Q→ L is a fuzzy transition matrix of order |Q|, i.e.
a fuzzy relation

Note: Fuzzy Automaton recognizes (accepts) a fuzzy language,
i.e. language to which words belong in membership/truth
degrees not necessarily equal to 0 or 1. Instead, each state
of fuzzy automaton is a vector of values in range [0, 1] (i.e.
each state maps Q→ L).

C. The transition function

Fuzzy transition function δ is actually the set of fuzzy
relation matrices mentioned above, i.e. a fuzzy set of Q×Σ×Q.

δ : Q× Σ×Q→ L

For a given s, t ∈ Q and a ∈ Σ, value of δ(s, a, t) = δa(s, t) is
the degree of transition from state s to state t for input symbol
a.

Every fuzzy set A of Q is called a fuzzy state of automaton
M . If an input a ∈ Σ is accepted by M , the present fuzzy
state A will be changed to the state B = A ◦ δa, where ◦ is a
composition rule of fuzzy relations (e.g. minimax product).

Note: This definition is very similar to the one of the proba-
bilistic finite automaton, including the set of transition matrices
(see Gruska [4]). Even though the notation is similar, we
must be aware that the principles of fuzzy automata are quite
different and more generic compared to the quite old-fashioned
probabilistic automata.

D. Minimax product

Minimax product is defined as follows:
Let P = [pij ], Q = [qjk] and R = [rik] be matrix
representations of fuzzy relations for which P ◦Q = R. Then,
by using matrix notation, we can write [pij ] ◦ [qjk] = [rik],
where

rik =
∨
∀j

(pij ∧ qjk)

Note: This is equivalent to the classic matrix multiplication
with operators ∨ (join) and ∧ (meet) used as a substitute

for classic operators + (plus) and · (times) respectively. We
express this analogy since it can be useful when implementing
the fuzzy automata on a computer.

E. Extension to words

The fuzzy transition function δ can be extended to the word-
based extended fuzzy transition function δ∗.

δ∗ : Q× Σ∗ ×Q→ L

For w = a1a2 . . . an ∈ Σ∗ the fuzzy transition matrix is
defined as a composition of fuzzy relations: δ∗(w) = δa1 ◦
δa2 ◦ · · · ◦ δan (from left to right).

For empty word ε we define

δ∗(q1, ε, q2) =
{ ∨

L if q1 = q2∧
L if q1 6= q2

Note that if L = [0, 1], then
∨
L = 1 and

∧
L = 0.

F. Final (accepting) states

Function fM is the membership degree of word w =
a1 . . . an to the fuzzy set F of final states.

fM : Σ∗ → L

fM (w) = fM (a1 . . . an) = S ◦ δa1 ◦ . . . ◦ δan ◦ F

Note that fM is a fuzzy set of Σ∗, but we don’t use this ter-
minology here. Instead, we use fM to determine membership
degree of a particular word w.

G. Epsilon transitions

In section III-E we defined ε-transitions for extended fuzzy
transition function. We can generalize that definition to generic
ε-transitions, i.e. we define a fuzzy relation δε.

δε : Q×Q→ L

δε(q1, q2) = δ∗(q1, ε, q2)

IV. MINIMIZATION OF FUZZY AUTOMATA

A. The minimization of an automaton

One of the most important problems is the minimization of
a given fuzzy automaton, i.e. how to decrease the number of
states without the loss of the automaton functionality.

For a given λ ∈ L, let’s have a partition (factor set) Qλ =
{q̄1, . . . , q̄n} of set Q, such that ∀ q̄i ∈ Qλ, qr, qt ∈ q̄i, q ∈ Q,
and a ∈ Σ holds

|δa(qr, q)− δa(qt, q)| < λ
|δa(q, qr)− δa(q, qt)| < λ
|S(qr)− S(qt)| < λ

(1)

q̄i ⊆ F or q̄i ∩ F = ∅ (2)

We construct fuzzy automaton Mλ = (Σ, Qλ, δλ, Sλ, Fλ)
where



δλ(q̄, u, r̄) = δλu(q̄, r̄) =

∑
qi∈q̄

∑
rj∈r̄

δu(qi, rj)

|q̄| · |r̄|

Sλ(q) =

∑
qj∈q̄

S(qj)

|q̄|

Fλ = {q̄ : q̄ ⊆ F}

and q̄, r̄ ∈ Qλ

Theorem 1. Let w = a1a2 . . . am. Then |fM (w) −
fMλ

(w)| < λ(m+ 2).

P r o o f. See Močkoř [6].

Let us describe how to use these equations: We must define
the maximum word length m0, and the maximum acceptable
difference λ0 for the words of this maximum size. Then we
can compute λ as follows:

λ =
λ0

m0 + 2
(3)

Having the λ value, we can perform desired automaton mini-
mization.

B. An example

Let’s have fuzzy automaton M = (Σ, Q, δ, S, F ).
Σ = {0, 1}
Q = {q1, q2, q3, q4, q5}

δ0 =


0.45 0.50 0.80 0.31 0.35
0.47 0.46 0.78 0.34 0.30
0.10 0.15 0.51 0.83 0.78
0.70 0.67 0.42 1.00 0.94
0.71 0.68 0.37 0.95 1.00



δ1 =


0.78 0.74 1.00 1.00 0.96
0.73 0.77 0.96 0.96 0.96
1.00 0.96 0.00 0.00 0.05
0.10 0.12 0.80 1.00 0.97
0.14 0.12 0.76 0.99 0.95


S =

(
1.00 0.15 1.00 0.85 0.90

)
F = {q3}

We want to minimize this fuzzy automaton in such way that
the outgoing transition function will differ by less than 0.25
for words long 2 symbols at most.

According to (3), λ0 = 0.25, m0 = 2, so we compute λ =
0.25
2+2 = 0.0625.

Now we make the fuzzy automaton Mλ from this analysis
according to formulas (1) and (2):
Qλ = {q̄1, q̄2, q̄3}
q̄1 = {q1, q2}, q̄2 = {q3}, q̄3 = {q4, q5}
Sλ =

(
0.125 1.000 0.875

)

Then, for example, we get

δλ0(q̄1, q̄1) = δλ(q̄1, 0, q̄1) =
1
4

(0.45+0.50+0.47+0.46) = 0.47

fM (01) = S ◦ δ0 ◦ δ1 ◦ F = 0.8

fMλ
(01) = Sλ ◦ δλ0 ◦ δλ1 ◦ Fλ = 0.8

As evident from the example, we reduced the number of states
from 5 to 3, and still fM (01) = fMλ

(01). Generally, according
to the above formulas, |fM (w)− fMλ

(w)| < 0.25.

V. AHO-CORASICK SEARCH AUTOMATON

A. Classical variant

Aho-Corasick search automaton (see [1]) is well grounded
and widely used method for locating patterns in source data.
It differs from trivial search methods, because this methods
locates multiple patterns at once. Time complexity of such
search is linear in the length of source data plus the length of
patterns.

Roughly speaking, the automaton is based on a trie con-
structed from the dictionary of search patterns. Trie is extended
using so-called fail function, which allows efficient string
matching.

B. Fuzzified variant

The following section is based on a work of one of Vaclav
Snasel’s Msc. students (see [11]). Contrary to the classical
deterministic Aho-Corasick search automata, the fuzzified vari-
ant has to be (according to the previous definition of fuzzy
automaton) non-deterministic.

Definition 1.Fuzzy Aho-Corasick search automaton is finite
fuzzy automaton G constructed using alphabet Σ and dictio-
nary X ⊆ Σ∗. This automaton recognizes fuzzy language of
all strings from Σ∗ containing a word from dictionary X as
a suffix. Automaton recognizes fuzzy language L, such that
L(l) = X(x) for l = Σ∗x.

If we select Boolean lattice as our basic structure, we
want our Fuzzy Aho-Corasick automaton to accept the same
language as the classical one.

The construction of fuzzified Aho-Corasick automaton can
be – divided into three separate phases. In the first phase,
we create a fuzzy trie from the fuzzy dictionary of words.
The second phase constructs a fail function. In the last phase
we transform fuzzy trie and fail function into fuzzy transition
function of constructed automaton.

C. Fuzzy trie construction

Fuzzy trie may be seen as a classical trie, where each
state is enhanced with a fuzzy degree. In the construc-
tion process we will also need so-called prefix mem-
bership function PMF(weight, wordLength, prefixLength)
(PMF : L × N × N → L), which returns the mem-
bership degree of current trie state with respect to the
fuzzy dictionary. It must hold, that the PMF function is
non-increasing with respect to the prefix length. Techni-
cally speaking, for weight ∈ L,wordLength, p1, p2 ∈



L, p1 < p2 it must hold PMF (weight, wordLength, p1) ≥
PMF (weight, wordLength, p2).

Input: fuzzy dictionary of words X
Output: relation parent : Q→ Q, relation symbol : Q→ Σ, transition

function δ
Data: set of states Q, fuzzy set of final states F
F = ∅1
Q = {q0}2
w(q0) = 03
δ(q, q′, c) = 0, ∀q, q′ ∈ Q, c ∈ Σ4
foreach word x ∈ X do5

q = q06
w(q0) = sup(w(q0), X(x))7
for j = 1 . . . |x|8
do9

if ∀q′ : δ(q, q′, xj) = 0 then10
Q = Q ∪ qnew11
δ(q, qnew, xj) = 112
w(qnew) = 013
symbol(qnew) = xj14
parent(qnew) = q15

q = q′ | δ(q, q′, xj) = 116
w(q) = sup(w(q), PMF(X(x), |x|, j))17

end18
F (q) = sup(F (q), X(x))19

end20

The algorithm is initiated on lines 1–4, lines 6–19 iterates
through the whole dictionary and for each of its words creates
new trie states (lines 11–15).

D. Fail function construction

This part of algorithm is very similar to the original Aho-
Corasick construction.

Input: function δ and relation parent from the previous step, function depth
returning depth of given state in the trie

Output: function fail : Q→ Q
fail(q0) = fail1
foreach q′ | parent(q′) = q0 do2

fail(q′) = q03
end4
foreach q′ | depth(q′) > 1, in the BFS order do5

q = parent(q′)6
select c ∈ Σ, such that δ(q, q′, c) 6= 07
r = fail(q)8
while (r 6= fail) AND (∀r′ : δ(r, r′, c) = 0) do9

r = fail(r)10
end11
if r = fail then12

fail(q′) = temp | δ(q0, temp, c) 6= 013
else14

fail(q′) = temp | δ(r, temp, c) 6= 015
if F (q′) 6= sup(F (q′), F (fail(q′)) then16

F (q′) = sup(F (q′), F (fail(q′))17
dst = q′18
src = fail(q′)19
while src 6= q0 do20

w(dst) = sup(w(dst),w(src))21
src = parent(src)22
dst = parent(dst)23

end24
25
26

end27

The fail function is initiated for the starting symbol q0

on lines 1–4. The algorithm than iterates over the trie in
the breadth-first search (lines 6–24) and modifies the weight
function of individual states.

E. Transition function completion

In this phase, we merge the constructed functions and create
Fuzzy Aho-Corasick automaton.

Input: functions δ, fail and relation parent, symbol from previous steps and
weight function w

foreach q ∈ Q in the BFS order do1
foreach c ∈ Σ do2

if δ(q, q′, c) = 0, ∀q′ then3
symbol = c4
dst = fail(q)5
while (dst 6= fail) AND (∀q′ : δ(dst, q′, symbol) = 0)6
do

dst = fail(dst)7
end8
if dst = fail then9

dst = q010
else11

dst = temp | δ(dst, temp, symbol) 6= 012
dstWeight = w(dst)13
src = q14
if w(src) = dstWeight then15

dstWeight = 116
else17

while (src 6= q0) AND (dst 6= q0) AND (w(src) <18
dstWeight) do

symbol = symbol(src)19
src = parent(src)20
dst = parent(dst)21
dstWeight = w(dst)22

end23
δ(src, dst, symbol) = dstWeight24

else25
foreach q′ | δ(q, q′, c) 6= 0 do26

δ(q, q′, c) = w(q′)27
end28

29
end30
if F (q) = w(q) then31

F (q) = 132
33

end34

This part of algorithm explores all nodes of fuzzy trie in
the BFS order and integrates transitions from fail function for
all q ∈ Q. Line 3 checks, whether the relation δ is for state q
and alphabet symbol c defined. If yes, only calculated weights
are incorporated into the transition function δ (lines 26–28).
If not, on lines 4–24 the transitions based on fail function are
added.

Fig. 1. Example of fuzzy Aho-Corasick automaton

Figure 1 illustrates the fuzzy Aho-Corasick automaton
constructed for dictionary X = {ab0.4, babb0.2, bb0.1}. Black
transitions comes from the original trie, gray transitions comes
from fail function. Double bordered nodes represent final
states.



VI. CONCLUSIONS

We described the proposed approach for the construction
of a fuzzy Aho-Corasick automaton for string matching and
searching for patterns in strings.

In the future we wish to focus on the implementation of
the presented algorithms in a parallel computing environment
using GPUs (such as NVIDIA CUDA, OpenCl or Microsoft’s
DirectCompute) and complexity aspects of this automaton.
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