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Abstract—Attacks on the computer infrastructures are be-
coming an increasingly serious problem. Whether it is bank-
ing, e-commerce businesses, health care, law enforcement, air
transportation, or education, we are all becoming increasingly
reliant upon the networked computers. The possibilities and
opportunities are limitless; unfortunately, so too are the risks
and chances of malicious intrusions. Intrusion detection is
required as an additional wall for protecting systems despite of
prevention techniques and is useful not only in detecting suc-
cessful intrusions, but also in monitoring attempts to security,
which provides important information for timely countermea-
sures. This paper presents some improvements to some of our
previous approaches using a Non-negative Matrix factorization
approach. To improve the performance (detection accuracy)
and computational speed (scaling) a GPU implementation is
detailed. Empirical results indicate that the speedup was up to
500× for the training phase and up to 190× for the testing
phase.

Keywords-non-negative matrix factorization, intrusion detec-
tion, GPU computing

I. INTRODUCTION

Intrusion Detection Systems (IDS) were proposed to
complement the prevention-based security measures. An
intrusion is defined to be a violation of the security policy of
the system; intrusion detection thus refers to the mechanisms
that are developed to detect the violation of the system se-
curity policy. Intrusion detection is not introduced to replace
the prevention-based techniques such as authentication and
access control; instead, it is intended to be used along with
the existing security measures and detect the actions that
bypass the security control of the system. Thus, intrusion
detection is usually considered as a second line of defense
for computer and network systems.

Intrusion detection is defined to be the problem of identi-
fying users or hosts or programs that are using a computer
system without authorization and those who have legitimate
access to the system but are abusing their privileges. Several
types of intrusion detection systems are in use [1], [2], [3],
[4], [5], [6]. Configuring IDS to detect internal attacks can
be difficult. Part of the IDS challenge lies in creating a good
recognition engines. The reason the recognition engine needs

to be different is due to the fact that different network users
require a different amount of access to different services,
servers, and systems for their work. Once any attack pat-
terns/behavior is identified, the system administrators will
be able to identify any network users who pose a threat to
network or system security.

Rest of the paper is organized as follows. In Section
II, we present some theoretical background of non-negative
matrix factorization approach. Section III and Section IV
contains the summary of GPU computing and details of
implementation of NMF on GPU. Experimental data are
described in Section V and results are provided in Section
VI followed by conclusions in the last Section.

II. NON-NEGATIVE MATRIX FACTORIZATION (NMF)

The amount of audit data is huge even for small network
but the IDS needs to evaluate them as quick as possible.
The data may contain simple and complex relationships
between features, which are difficult for humans to discover.
Moreover, data may contain uncertainties and insignificant
features. All these properties with usually high dimension-
ality of the data complicate the detection process.

This may be solved using several approaches. Data may
be filtered and all uncertainties may be removed. Also,
insignificant features may be removed too. Data can be
grouped or clustered to reveal hidden patterns; by storing the
characteristics of the clusters instead of the data, overhead
can be reduced. All previously mentioned approaches may
be done using dimension reduction techniques. Dimension
reduction or matrix factorization or factor analysis is an
important task helpful in the analysis of high dimensional
real world data.

The group of dimension reduction techniques contains
several methods. The most well known are Singular Value
Decomposition (SVD) [7], [8], [9], [10], [11], [12], Semi-
Discrete Decomposition (SDD), Principal Component Anal-
ysis (PCA) [13], [14] etc. Lars Eldén in the book [15]
described methods for dimension reduction and theirs appli-
cation to various problems such as Text Mining, Classifica-
tion of Handwritten Digits, etc. Methods for dimensionality



reduction have already been successfully used to various
problems many times. Application of dimension reduction
techniques for designing of IDS is described in [1], [6], [16].

Non-negative matrix factorization [17], [18] is a class of
decomposition, whose members are not necessarily closely
related to each other [15], [19]. It was designed for data
sets in which attribute values are not negative. A side-
effect of this feature is that the mixing of components in
decompositions can be additive only. A set of data S can be
expressed as a m× n matrix A, where m is the number of
attributes and n is the number of records in S. Each column
Aj of A is an encoding of a particular record in S and every
entry aij of vector Aj is the value of i-th term with regard
to the semantics of Aj , where i ranges across attributes.

The NMF problem is defined as a search for an approxi-
mation of the matrix A with respect to some metric (e.g., the
norm) by factoring A into the product W×H of two reduced
matrices W and H . Each column of W is a basis vector
which contains an encoding of a semantic space or concept
from A and each column of H contains an encoding of the
linear combination of the basis vectors that approximates
corresponding column of A. Dimensions of W and H are
m × k and k × n, where k is the reduced rank. Usually,
k is much smaller than n. Finding an appropriate value of
k depends on application and it is also influenced by the
nature of the collection itself. Common approaches to NMF
obtain an approximation of A by computing a (W,H) pair to
minimize the Frobenius norm of the difference A−WH . The
matrices W and H are not unique. Usually H is initialized
to zero and W to a randomly generated matrix where each
Wij > 0 and these initial values are improved with iterations
of the algorithm.

NMF is computed in an iterative process. Minimization
rules are applied in every iteration to minimize the difference
between W×H and original matrix A. The first approach to
solve this problem was based on multiplicative rules defined
be Lee and Seung [18] and it can be described by the
following steps:

1) Initialize matrix W and H with random numbers
2) For each iteration compute

a) H = H ∗ WTA
WTWH+ε

b) W = W ∗ AHT

WHHT +ε

where the ε constant is set to 10−9, WT and HT

represents the transposition of matrix W and H , symbol
∗ represents per element matrix multiplication and division
(the fraction) is per element as well.

The NMF is a dimension reduction technique. To achieve
decision making ability, another method must be used. In our
previous works [16], [9], [20], we used the same and very
simple technique. When the decomposition is processed, we
take vectors of weights from matrix H and split them in two
groups - clusters according their label, i.e. the first group
contains all vectors which correspond to the normal traffic

and the second group contains all vector which correspond
to the attack. A center is computed in each group as an
arithmetic mean of all vectors. These two center vectors and
the basis vectors from matrix W are the knowledge extracted
from the test data. When the testing phase is processed, each
input vector is reduced into weight vector. Then its distance
from two center vectors is computed and the closer one is
selected as a winner. If the winner is the center of the first
group, input vector is labeled as normal traffic; otherwise it
is labeled as an attack.

III. GPU COMPUTING

Modern graphics hardware plays an important role in
the area of parallel computing. Graphics cards have been
used to accelerate gaming and 3D graphics applications,
but now, they are used to accelerate computations with
relatively distant topics, e.g. remote sensing, environmental
monitoring, business forecasting, medical applications or
physical simulations etc. Architecture of GPUs (Graphics
Processing Unit) is suitable for vector and matrix algebra
operations, which lead to the wide usage of GPUs in the
area of information retrieval, data mining, image processing,
data compression, etc. Nowadays, one does not need to be an
expert in graphics hardware because of existence of various
APIs (Application Programming Interface), which help pro-
grammers to implement their software faster. Nevertheless,
it will be always necessary to follow basic rules of GPU
programming to write more effective codes.

The four main APIs exists today. The first two are
vendor specific, e.g. they were developed by two main GPU
producers - AMD/ATI and nVidia. The API developed by
AMD/ATI is called ATI Stream and the API developed by
nVidia is called nVidia CUDA (Compute Unified Device
Architecture). Both APIs are similar. The rest two APIs are
universal. The first one was designed by Khronos Group and
it is called OpenCL (Open Computing Language) and the
second was designed by Microsoft as a part of DirectX and
it is called Direct Compute. All APIs are a general purpose
parallel computing architectures that leverages the parallel
compute engine in graphics processing units.

The main advantage of GPU is its structure. Standard
CPUs (central processing units) contain usually 1-4 complex
computational cores, registers and large cache memory.
GPUs contain op to several hundreds of simplified exe-
cution cores grouped into so-called multiprocessors. Each
SIMD (Single Instruction Multiple Data) multiprocessor
drives eight arithmetic logic units (ALU) which process
the data, thus each ALU of a multiprocessor executes the
same operations on different data, lying in the registers. In
contrast to standard CPUs which can reschedule operations
(out-of-order execution), the selected GPU is an in-order
architecture. This drawback is overcome by using multiple
threads as described by Wellein et al. [21]. Current general
purposes CPUs with clock rates of 3 GHz outrun a single



ALU of the multiprocessors with its rather slow 1.3 GHz.
The huge number of parallel processors on a single chip
compensates this drawback.

The GPU computing was used in many areas. Andrecut
[22] described computing based on CUDA on two variants of
Principal Component Analysis (PCA). The usage of parallel
computing improved efficiency of the algorithm more than
12 times in comparison with CPU. Preis et al. [23] applied
GPU on methods of fluctuation analysis, which includes
determination of scaling behavior of a particular stochastic
process and equilibrium autocorrelation function in financial
markets. The speed up was more than 80 times than the
previous version running on CPU. Patnaik et al. [24] used
GPU in the area of temporal data mining in neuroscience.
They analyzed spike train data with the aid of a novel
frequent episode discovery algorithm. Achievement of more
than 430x speedup is described in mentioned paper.

IV. COMPUTATION OF NMF ON GPU

The utilization of GPU in NMF is not so difficult,
especially in case of basic version of NMF with multi-
plicative rules, because these rules are defined as the series
of matrix multiplication and per element division. Matrix
multiplication represents the task, for which GPUs were
optimized since their creation. Per element operations are
also often used in graphics rendering, because they are used
for post processing effects such as motion-blur, bloom, heat-
shimmering, etc.

Our algorithm was implemented using nVidia CUDA
technology. The realization of matrix multiplication was
simplified, because nVIDIA CUDA contains specially op-
timized implementation of BLAS library. This library con-
tains functions for Vector-Vector, Vector-Matrix, and finally
Matrix-Matrix operations. Our implementation use only
Sgemm operation for matrix multiplication. This operation
is able not only multiply matrices but is able to transpose
first, second or both matrices. Other necessary functions,
especially per element division and Frobienus norm were
implemented manually in C for CUDA. Because of the
fact, that CUDA is extension to standard C programming
language, reimplementing of methods is simple. The im-
plementation of per-element division was made in simple
way. We store matrices in column-major form as a one-
dimensional array. This format is necessary for BLAS oper-
ations. The per-element division was very simple - we write
a method which take exactly one element from this array for
both input matrices and store its division into third matrix.
The computation of Frobenius norm is also per-element
operation, but its implementation was more complicated that
the per-element division. In the first step, the difference
between both matrices is computed. In the second step,
the squares of the differences is calculated. In third step, a
parallel reduction technique is used for computation of the
sum of all differences. Finally the square root is computed

from the final value. The calculation of Frobenius norm is
not called so often as the per-element division.

For comparison purposes, CPU based NMF computation
was also implemented. This implementation was written in
C++ and it was optimized for maximal performance.

V. EXPERIMENTAL DATA

The data for the experiments was prepared by the 1998
DARPA intrusion detection evaluation program by MIT
Lincoln Labs [25]. The original data contains 744 MB data
with 4,940,000 records. The data set has 41 attributes for
each connection record plus one class label. Some features
are derived features, which are useful in distinguishing
normal connection from attacks. These features are either
nominal or numeric. Description of these data may be found
in [6], [16], [25], [26]. For our experiments, the 10% sample
of these data is used [26].

The data was preprocessed; all nominal values were
converted to the numeric representation and all features were
normalized. The data was divided into 4 classes, according
the attack classes defined in [26]. Each class contains all
records signed as normal activity and all records which
belong to specified attack class. For each class, a division
into two collections - training data and testing data was
performed. The training data contains 40% of randomly
selected data and the testing data contains the rest of them.
Finally, another one class was defined - this class contains
all records from all 4 attack classes and the normal activity
records. This class represented the main functionality of the
IDS - distinguish attacks from the normal activity.

The data collections are called according the name of the
attack class, which it contains. The five used collection are
called DoS (Denial of Services), U2R (User to Root), R2L
(Remote to User), Probe (Probing) and the last one which
contains all records is called Attack, because its purpose is
to test algorithm to distinguish any attack.

The statistics of the data collection is shown in Table I.
As may be seen, the number of records differs in each
collection. The class DoS contains the largest amount of
records and the class U2R contains the lowest number of
records. The amount of records, which belongs to the normal
traffic is the same in each collection - approximately 90 000.
This will compare the efficiency of the proposed algorithm
in detecting events, which are rare (U2R) and events which
are very frequent in the data (DoS).

Table I
STATISTICS OF THE DATA COLLECTIONS

Collection training records Testing records Total records
DoS 195 494 293 242 488 736
U2R 38 931 58 399 97 330
R2L 39 361 59 043 98 404

Probe 40 553 60 832 101 385
Attack 197 608 296 413 494 021



Table II
ACCURACY FOR CLASS 1 (DOS) [%]

Iters. 10 50 100 500
K Teach Test Teach Test Teach Test Teach Test
5 94.53 97.44 98.13 97.54 98.55 98.22 97.88 97.69
12 97.95 98.44 97.56 97.22 98.03 97.94 98.63 98.45
17 96.22 96.34 98.27 98.11 98.30 98.09 98.15 97.57
25 98.53 98.85 98.29 97.67 98.26 98.20 98.47 98.28
33 98.39 98.66 98.23 98.18 98.46 98.31 98.74 98.25
41 98.00 98.49 98.19 98.14 98.40 98.33 98.39 98.31

Table III
ACCURACY FOR CLASS 2 (U2R) [%]

Iters. 10 50 100 500
K Teach Test Teach Test Teach Test Teach Test
5 77.69 74.46 78.93 81.31 78.78 84.37 81.67 83.44
12 87.46 82.41 87.98 90.93 92.58 95.74 95.09 97.16
17 87.86 82.35 92.34 95.65 94.30 96.69 96.06 98.10
25 92.29 89.20 96.68 98.82 97.08 98.54 96.07 99.02
33 91.21 87.27 97.29 99.18 96.51 98.88 98.24 99.57
41 92.51 89.58 97.54 99.28 97.50 99.73 98.55 99.87

Table IV
ACCURACY FOR CLASS 3 (R2L) [%]

Iters. 10 50 100 500
K Teach Test Teach Test Teach Test Teach Test
5 74.88 75.38 76.71 78.18 77.17 79.36 78.93 78.71
12 81.36 79.27 90.01 92.37 88.15 90.31 92.77 95.31
17 84.23 79.89 89.35 90.80 90.92 92.84 97.05 98.29
25 86.49 85.19 96.10 98.14 97.13 98.33 98.81 98.80
33 86.36 84.16 96.05 97.69 98.17 98.78 98.90 98.80
41 86.72 83.66 97.38 98.54 98.57 98.93 98.82 98.80

Table V
ACCURACY FOR CLASS 4 (PROBE) [%]

Iters. 10 50 100 500
K Teach Test Teach Test Teach Test Teach Test
5 85.31 84.61 88.10 88.08 90.27 90.67 87.94 87.88
12 90.57 89.99 88.60 88.79 92.66 92.03 93.70 93.79
17 90.84 90.13 90.44 90.77 90.22 90.24 94.72 93.36
25 88.91 88.33 98.13 96.97 94.93 94.96 95.67 95.33
33 91.45 90.93 96.15 95.72 95.64 94.57 97.30 96.76
41 92.85 94.00 97.16 95.06 95.61 94.83 98.05 98.05

VI. EXPERIMENTAL RESULTS

The experiment has two phases. In the first phase we
present the efficiency of the NMF method as IDS for large
data. In the second phase, comparison of the speed of CPU
and GPU implementation of IDS will be presented. The
main task in using of dimension reduction techniques is the
setting of the reduction coefficient k. In our experiments, this
coefficient was set to 5, 12, 17, 25, 33 and 41. The number of
iteration used in training phase was set to 10, 50, 100 and
500. The number of iteration in testing phase was always
10. This is because the basis vectors must be computed as
precise as possible in training phase, but computing weights
from existing basis vectors is much simpler in testing phase.
Since the matrices W and H were randomly initialized all
experiments were repeated 3 times.

Table VI
ACCURACY FOR ATTACK COLLECTION [%]

Iters. 10 50 100 500
K Teach Test Teach Test Teach Test Teach Test
5 92.88 90.96 95.98 95.80 97.44 97.31 97.76 97.31
12 97.13 97.41 96.90 96.68 97.91 97.94 97.69 97.76
17 97.47 97.64 97.18 96.91 98.12 98.00 98.06 97.89
25 97.24 97.58 98.24 98.05 97.68 97.43 97.95 97.71
33 97.59 97.88 98.19 98.03 97.83 97.60 98.12 97.57
41 97.64 98.05 98.23 98.06 98.24 98.18 98.08 97.57

Table VII
TIME CONSUMPTION FOR CLASS 2 [S]

Iters. 50 100
K Teach Test Teach Test

CPU GPU CPU GPU CPU GPU CPU GPU
5 18.4 0.9 3.0 0.1 38.0 1.6 3.2 0.1

12 49.0 1.1 7.9 0.1 99.8 1.9 8.0 0.1
17 72.6 1.2 12.2 0.1 173.3 2.2 12.1 0.1
25 124.1 1.4 21.1 0.2 267.6 2.5 20.7 0.2
33 205.3 1.6 32.8 0.2 417.5 2.9 31.9 0.2
41 285.7 1.6 43.1 0.3 526.8 3.0 43.4 0.3

Table VIII
TIME CONSUMPTION FOR ATTACK COLLECTION [S]

Iters. 50 100
K Teach Test Teach Test

CPU GPU CPU GPU CPU GPU CPU GPU
5 206.6 3.8 16.1 0.3 425.5 7.3 16.7 0.3
12 526.0 4.8 42.8 0.5 1 073.2 9.2 41.9 0.5
17 784.8 5.6 67.2 0.6 1 583.2 10.7 62.9 0.6
25 1 299.9 6.4 109.4 0.8 2 682.7 12.1 107.7 0.8
33 2 404.1 7.5 172.0 1.1 4 890.1 14.1 165.0 1.0
41 3 298.5 7.7 227.5 1.3 6 605.8 14.4 218.6 1.3

The basic results of the experiments for all five data
collections are shown in Tables II-VI. As evident, the worst
results were achieved for k = 5 and 10 training iterations.
The algorithm is not able to calculate basis vectors precise
enough. The accuracy of results increases with increasing
values of k and/or number of iterations. The results achieved
for k ≥ 25 and number of iterations 50, 100 or 500 are very
similar and are very good for all collections. The accuracy
is higher than 95% for all collections and mostly it is
higher than 97%. When we compare the results for Class
1 and Attack collection, which contain more attack records
than normal traffic, with other collections, where the ratio
between attack and normal traffic is contrary, then we sees
that the results are very good for both types of collection.
The NMF method works well without dependency on the
ratio between event frequencies.

The second phase, time consumption of the CPU and GPU
was compared. The results will be shown only for smallest
and largest collections. Because of the change of parameter
k, time consumption of the algorithm will be shown for both
- small and large data. The results for 50 and 100 iterations
are shown in Tables VII and VIII.

As evident, the testing times are almost equal, because



Figure 1. SpeedUp for the Class 2

Figure 2. SpeedUp for the Attack Collection

only 10 iterations are used in any testing phase. The differ-
ences in time consumption increase with the size of the data.
In practice, the most important aspect is the testing time,
because the training phase must be done only once per time
period, but the decision-making process must be applied
on each record. But, because of the very good speed of
the training process using GPU implementation, the training
phase may be used more often than other methods. The
testing times from Table VIII illustrate that the NMF based
decision method is able to process almost 300 000 records
in less than one second which is more than 100× better than
using conventional CPU implementation.

The speed up of the GPU version is depicted in Figures 1
and 2. As evident, the speed up of training phase depend
on the size of the data (number of records and parameter k)
and it is between 20× and 230× for Class 2 collections and
between 40× and 500× for Attack Collection. The speed
up in testing phase is different, because only 10 iterations
are used. The results are between 50× and 190× for both
collections.

As ideal setting may be choose 100 iterations and number
of basis vectors equal to the 25. With this setting, the ideal
ration between time consumption and accuracy is achieved.

VII. CONCLUSIONS

This paper presented a Non-negative Matrix factorization
approach to detect different types of network intrusions.
Moreover, a GPU implementation of this approach was
described. The using of GPU in computational expensive
tasks like NMF is very useful. The speedup was up to 500×
in training phase and up to 190× in testing phase. This
illustrate that the specific hardware used in IDS systems
may be substituted by GPUs with preservation of open
architecture and simple adaptability.
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