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Abstract—Fuzzy classifiers and fuzzy rules are powerful tools
in data mining and knowledge discovery. In this work, intrusion
detection is approached as a data mining task and genetic
programming is deployed to evolve fuzzy classifiers for detection
of intrusion and security problems. We train the fuzzy classifier
on a data set modeled as a fuzzy information retrieval collection
and investigate its ability to detect illegitimate actions. Proposed
approach is experimentally evaluated on the popular KDD Cup
intrusion detection data set.

I. INTRODUCTION

Genetic programming is a powerful machine learning tech-
nique from the wide family of evolutionary algorithms. In
contrast to traditional evolutionary algorithms, it can be used
to evolve tree structures and symbolic expressions. It has been
used to evolve Lisp S-expressions, mathematical functions,
symbolic expressions, decision trees and recently to infer
search queries describing relevance ranked documents in an
fuzzy information retrieval system.

The last application seems to be interesting for general
data mining and applications since it can be directly applied
to data mining problems. Extended Boolean queries (e.g.
fuzzy queries) from information retrieval can be interpreted as
flexible fuzzy classifiers that describe a fuzzy subset of data by
means of its features. Fuzzy classifiers evolved over a training
data set can be subsequently used to classify incoming data
samples and hence they can serve e.g. as a part of an intrusion
detection system to detect security threats and intrusions.

Intrusion detection systems (IDS) were proposed to prevent
security violations in computer systems and networks [2], [11].
They are intended to reinforce basic security measures such
as authentication and access control and detect actions that
aim to break security policies in protected computer system.
Intrusion detection can be defined as an identification of
users, hosts, or programs that are using a system resources
without authorization. Moreover, authorized system users that
are abusing their privileges are subject to intrusion detection
as well. In the rest of this paper, we introduce and investigate
an intrusion detection approach based on information retrieval
and utilizing genetic programming. In section II, information
retrieval, genetic programming, and the concept of evolution-
ary query optimization is briefly introduced. In section III, we
describe the evolution of an classifier for intrusion detection

and its experimental evaluation.

II. PRELIMINARIES

The evolution of fuzzy classifiers for intrusion detection is
implemented in the framework for search query optimization.
Data samples are interpreted as documents, and features are
mapped to index terms. We briefly introduce basic concepts of
fuzzy information retrieval. Next, we provide short description
of the genetic programming.

A. Fuzzy information retrieval

The area of information retrieval (IR) is a branch of com-
puter science dealing with storage, maintenance, and searching
in large amounts of data. The data could be in different formats,
e.g. textual, visual, audio, or multimedia documents [3].

An information retrieval system (IRS) is a software tool
serving for data representation, storage and subsequent infor-
mation searching. The amount of documents contained in data
collections managed by an IRS is usually very large and the
task of easy, efficient, and accurate information searching is
especially challenging.

An IR model is a formal background defining the internal
document representation, query language, and a document –
query matching mechanism. Consequently, the model deter-
mines the document indexing procedure, result ordering, and
other aspects of a particular information retrieval system. In
this study, we have implemented extended Boolean IR model.

The extended Boolean model of IR is based on fuzzy set
theory and fuzzy logic [3], [7]. Documents are interpreted as
fuzzy sets of indexed terms, assigning to every term contained
in the document a particular weight from the range [0, 1]
expressing the degree of significance of the term for document
representation. A formal collection description in the extended
Boolean IR model is shown in eq. (1) and eq. (2), where di
represents i−th document and tij j−th term in i−th document.
An index matrix of the entire document collection is denoted
D.



di = (ti1, ti2, . . . , tim), ∀ tij ∈ [0, 1] (1)

D =


t11 t12 · · · t1m
t21 t22 · · · t2m
...

...
. . .

...
tn1 tn2 · · · tnm

 (2)

Appropriate indexing procedure is essential for the exploita-
tion of the benefits of the extended Boolean IR model. The
internal documentary collection model should be an accurate
snapshot of the collection of text documents in natural lan-
guage and at the same time a basis for an efficient and practical
search. In [7] Kraft proposed the usage of Salton’s tf · idft
indexing formula introduced for the vector space model of IRS
as a document indexing mechanism in the extended Boolean
IR model

The query language in the extended Boolean model of IR
is upgraded by the possibility of weighting query terms in
order to attribute different levels of importance to those in a
search request and by weighting (parameterizing) aggregation
operators to soften or blur their impact on query evaluation [3],
[7]. Consider Q to be the set of user queries over a collection;
then the weight of term t in query q is denoted as a(q, t)
satisfying a : Q × T → [0, 1]. To evaluate the atomic query
of one term, therefore stating only one search criterion, the
function g : [0, 1] × [0, 1] → [0, 1] will be used. The value
of g(F (d, t), a) is called he retrieval status value (RSV). For
RSV enumeration the interpretation of the query term weight
a is crucial. The most commonly used interpretations see the
query term weight as the importance weight, threshold or ideal
document description [3], [7].

In this study, we adopt the threshold interpretation defined
in eq. (3) and illustrated in fig. 1. The functions P (a) and
Q(a) are coefficients used for tuning the threshold curve. An
example of P (a) and Q(a) could be as follows: P (a) = 1+a

2

and Q(a) = 1−a2

4 . Acording to the threshold interpretation, an
atomic query containing term t of the weight a is a request to
retrieve documents having F (d, t) equal or greater to a. For
documents satisfying this condition will be rated with high
RSV and contrariwise documents having F (d, t) smaller than
a will be rated with small RSV.

g(F (d, t), a) =

{
P (a)

F (d,t)
a

for F (d, t) < a

P (a) +Q(a)
F (d,t)−a

1−a
for F (d, t) ≥ a

(3)

Precision P and recall R are among the most used IR
effectiveness measures. They are defined in eq. (4), where
REL stands for the set of all relevant documents and RET
for the set of all retrieved documents. Precision can be then
understood as the probability of retrieved document to be
relevant and recall can be seen as the probability of retrieving
relevant document.

P =
|REL

⋂
RET |

|RET |
R =

|REL
⋂
RET |

|REL|
(4)

Fig. 1: g(F (d, t), a) according to (3).

Precision and recall in the extended Boolean IR model can
be defined using sigma count ‖A‖ [8]:

ρ(X|Y ) =

{
‖X∩Y ‖
‖Y ‖ ‖Y ‖ 6= 0

1 ‖Y ‖ = 0
(5)

P = ρ(REL|RET ) R = ρ(RET |REL) (6)

For easier IR effectiveness evaluation were developed mea-
sures combining precision and recall into one scalar value.
F-score F [9] is among the most used scalar combinations of
P and R.

F =
(1 + β2)PR

(β2P +R)
(7)

In the F-score as defined in eq. (7) (according to van
Rijsbergen), β allows to prioritize P or R.

B. Genetic algorithms and genetic programming

Genetic algorithms are a popular member of the wide
chapter of evolutionary algorithms. They are based on the
programmatical implementation of genetic evolution and they
emphasize selection and crossover as the most important
operations in the evolutionary optimization process [5], [10].

Genetic algorithms evolve a population of chromosomes
representing potential problem solutions encoded into suitable
data structures. The evolution is performed by genetic op-
erators modifying the chromosomes, i.e. the encoded forms
of problem solutions. Proper encoding is vital for the effec-
tiveness of the evolutionary searches. It defines the genotype,
the space of all encoded problem solutions, which is different
from the phenotype, the space of all problem solutions. Ge-
netic algorithms explore the genotype of the problem being
investigated and the size and shape of the problem genotype
define its fitness landscape.

Genetic programming is an extension to genetic algorithms,
allowing work with hierarchical, often tree-like, chromosomes
with an unlimited length [5], [6].

Genetic programming was introduced as a tool to evolve
whole computer programs and represented a step towards
adaptable computers that could solve problems without being
programmed explicitly [1]. This is an important ability because
solutions to most problems can be formulated by the means



1 Define objective (fitness) function and problem encoding
2 Encode initial population P of possible solutions as fixed length strings
3 Evaluate chromosomes in initial population using objective function
4 while Termination criteria not satisfied do
5 Apply selection operator to select parent chromosomes for

reproduction: sel(Pi)→ parent1, sel(Pi)→ parent2

6 Apply crossover operator on parents with respect to crossover
probability PC to produce new chromosomes:
cross(PC , parent1, parent2)→ {offspring1, offspring2}

7 Apply mutation operator on offspring chromosomes with respect to
mutation probability PM :
mut(PM , offspring1)→ offspring1,
mut(PM , offspring2)→ offspring2

8 Evaluate offspring chromosomes:
fit(offspring1)→ offspringfit1 ,
fit(offspring2)→ offspringfit2

9 Create new population from current population and offspring
chromosomes: migrate(offspring1, offsprig2, Pi)→ Pi+1

10 end

Algorithm 1: A summary of genetic algorithm

of computer programs. Moreover, genetic programming can
be used to develop solutions in the field of machine learning,
symbolic processing, or any other domain that can formulate its
solutions by means of parseable symbolic expression. Genetic
programming allows the efficient evolution of such symbolic
expressions with well-defined syntax and grammar.

The birth of modern genetic programming is attributed to
John Koza [5]. The introduction of genetic programming was
followed by extensive theoretical work, studying why genetic
programming actually works, and by a number of success
stories that attracted attention to this sort of evolutionary
algorithms [1].

In GP the chromosomes take the form of hierarchical
variably-sized expressions, point-labeled structure trees. The
trees are constructed from nodes of two types, terminals and
functions. More formally, a GP chromosome is a symbolic
expression created from terminals t from the set of all terminals
T and functions f from the set of all functions F satisfying
the recursive definition [1]:

1) ∀t ∈ T : t is the correct expression
2) ∀f ∈ F : f(e1, e2, . . . , en) is the correct expression if

f ∈ F and e + 1, . . . , en are correct expressions. The
function arity(f) represents the arity of f .

3) there are no other correct expressions
GP chromosomes are evaluated by the recursive execution

of instructions corresponding to tree nodes [1]. Terminal nodes
are evaluated directly (e.g. by reading an input variable) and
functions are evaluated after left-to-right depth-first evaluation
of their parameters.

Genetic operators are applied to the nodes in tree-shaped
chromosomes. A crossover operator is implemented as the
mutual exchange of randomly selected subtrees of the parent
chromosomes. For an example see fig. 2. Mutation has to
modify the chromosomes by pseudorandom arbitrary changes
in order to prevent premature convergence and broaden the
coverage of the fitness landscape. Mutation could be imple-
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Fig. 2: Crossover in genetic programming.

mented as:
• removal of a subtree at a randomly chosen node
• replacement of a randomly chosen node by a newly

generated subtree
• replacement of node instruction by a compatible node

instruction (i.e. a terminal can be replaced by another
terminal, a function can be replaced by another function
of the same arity)

• a combination of the above
Genetic programming facilitates the efficient evolution of

symbolic expressions, even whole computer programs. In
this work, we use genetic programming for fuzzy classifier
optimization.

C. Evolutionary query optimization

Genetic programming has been recently used for the opti-
mization of extended Boolean queries [4], [12]. It was shown
that genetic programming was able to optimize search queries
so that they described a set of relevant documents. In the fuzzy
information retrieval model, the relevant documents formed
a fuzzy subset of the set of all documents and the extended
Boolean queries were evolved to describe them.

An information retrieval system based on the extended
Boolean IR model was implemented to validate evolutionary
query optimization. The tf · idft term statistics were used for
document indexing and query weights (RSV) were evaluated
using eq. (3). The query language in the IRS supported the
standard Boolean operators AND, OR, and NOT.

The information retrieval system served as a test bed for
evolutionary query optimization and allowed genetic program-
ming over extended Boolean queries. The GP evolved tree
representations of search queries with Boolean operators as
function nodes and terms as leaves. Both operator nodes and
term nodes were weighted. In order to generate a random
initial population for the GP, the system was able to generate
random queries. The particular settings of the random query
generator showing the probabilities of generating a particular
query node are summarized in table Ia. An example of three
random queries generated by the system is shown in fig. 3.

We have seen in section II-B that the implementation
of a crossover operator for GP is straightforward. In the
experimental information retrieval system, it was implemented



as a mutual exchange of two randomly selected branches of
parent tree chromosomes. The mutation operator in query GP
aims to perturb the content and structure of the chromosomes
randomly. In our implementation, it selects a node from the
processed chromosome at random and performs one of the
mutation operations summarized in table Ib.

TABLE I: Random query generation an mutation probabilities.

(a) Probabilities of generating random query nodes.

Event Probability
Generate term 0.5
Generate operator AND 0.24
Generate operator OR 0.24
Generate operator NOT 0.02

(b) Probabilities of mutation operations.

Event Probability
Mutate node weight 0.5
Insert or delete NOT node 0.1
Replace with another node or
delete NOT node

0.32

Replace with random branch 0.08

AND:0.45

potteri:0.3 OR:0.73

technician:1 NOT:0.21

harpoon:0.23

(a) Query potteri:0.3
AND:0.45 (technician
OR:0.73 NOT:0.21
harpoon:0.23).

NOT:0.2

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

(b) Query
NOT:0.2
(( NOT:0.2
april ) AND
novemb:0.3).

OR:0.33

AND:0.25 AND:0.22

prisma:0.6 antarctica:0.3 sharp:0.1orlov:0.3

(c) Query (prisma:0.6
AND:0.25 antarctica:0.3)
OR:0.33 (orlov:0.3 AND:0.22
sharp:0.1).

Fig. 3: Example of random queries.

The query mutation types that were implemented included:

• change of selected node weight. This mutation type is
shown in fig. 4a

• replacement of selected node type by a compatible node
type (i.e. operator OR replace by operator AND, term
replaced by another term). This mutation type is shown
in fig. 4b.

• insertion of NOT operator before selected node (fig. 4c).
• removal of NOT operator if selected (fig. 4d).
• replacement of selected node by a randomly generated

branch (fig. 4d).

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:0.3

NOT:0.2

april:1.0

novemb:0.3

(a) Node weight mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

NOT:0.2

april:1.0

mondrian:0.3

(b) Node mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

NOT:0.2

(c) Insert NOT node mutation.

AND:1.0

april:1.0 novemb:0.3

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

(d) Delete NOT node mutation.

AND:1.0

NOT:0.2

april:1.0

novemb:0.3

AND:1.0

AND:0.25

prisma:0.6 antarctica:0.3

novemb:0.3

(e) Replace node by branch mu-
tation.

Fig. 4: Query mutation types.

The well-known IR measure F-Score was used as a fitness
function.

The extended queries evolved by the algorithm can be seen
as fuzzy classifiers describing the fuzzy set of relevant docu-
ments. The fuzzy classifier evolved over a training collection
of documents, or more general data records, can be used to
classify new documents (data samples).

III. GENETIC EVOLUTION OF FUZZY CLASSIFIER FOR
INTRUSION DETECTION

The algorithm for evolutionary query optimization was
applied to the evolution of a symbolic fuzzy classifier. In this
study, we have implemented an evolution of fuzzy classifier
for intrusion detection.

A. KDD Cup 1999 data set

To investigate the ability of discussed algorithm to find
useful classifiers, a test sytsem implementing evolution of
fuzzy expressions was implemented. The 10% sample of
the KDD Cup 1999 intrusion detection dataset1 was used
to evolve classifiers and test their ability to detect illegal
actions. It contains 10% of the large intrusion detection data set
created in 1998 by the DARPA intrusion detection evaluation
program at MIT. The full data set contains 744 MB data with
4,940,000 records with 41 nominal and numerical features. For
our experiments, all features were converted to numeric and
subsequetly normalized.

The data describes normal traffic and 4 attack classes called
DoS (Denial of Services), U2R (User to Root), R2L (Remote
to User), and Probe (Probing). The records for each class are
divided into training (40%) and testing (60%) data set. For
each class, the training data set was used to evolve the fuzzy
classifier and testing data set was used to evaluate the detection
capabilities of the classifier. The attack classes contained

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



following number of records: DoS contained 195,494 training
and 293,242 testing records, U2R consisted of 38,931 training
and 58,399 testing records, R2L included 39,361 training and
59,043 testing records, and finally the Probe class consisted of
40,553 training and 60,832 testing records.

B. Intrusion detection classifier evolution

The evolution of an intrusion detection classifier differs
from the query optimization task only semantically. We in-
terpret data samples as documents and features as terms. The
normalized feature value corresponds to the index weight of
a term in a document (feature weight in a data sample) while
the class of the record corresponds to document relevance.
In the testing data, there are only 2 crisp product classes:
normal traffic (class 0) and attack (class 1). The goal of the
algorithm was to find an expression (fuzzy classifier) that will
describe the set of records describing an attack. The mapping
of normalized data onto an IRS index matrix is illustrated
in table IIb.

TABLE II: KDD Cup intrusion detection data set.

(a) Normalized features

Feat. Feat. . . . Feat. Prod.
Id 1 2 839 class
1 0.846 0.951 . . . 0.148 1
2 0.856 0.9452 . . . 0.160 1
3 0.882 0.968 . . . 0.160 0
...

...
...

...
...

(b) Intrusion detection data set as an IRS index
matrix D.

D =


0.846 0.951 · · · 0.148
0.856 0.9452 · · · 0.160

...
...

. . .
...

0.618 0.861 · · · 0.025



The settings for the GP are summarized in table III.

TABLE III: GA parameters used for fuzzy classifier evolution.

Parameter Value
Population size 100
Generations limit 5000
Fitness F-Score according to eq. (7)
Mutation probability 0.8
Crossover probability 0.2

The F-Score parameter β was set in different experiments
to 1, 0.5 and 5 to see detection capabilities of evolved
classifiers with different priorities of precision and recall in
fitness function. We have observed overall accuracy of the
classification (OA) as the percent of correctly classified records
in the test collection, detection rate (DR), e.g. the percent of
correctly classified attacks and false positives (FP), e.g. the

percent of regular records missclassified as attacks. Obviously,
good classifier would feature high OA, high DR and low FP.

The results of experiments are summarized in table IV.

TABLE IV: Calssification results for different attack classes.

(a) Results for attack class DoS

β
0.5 1 5

OA 93.95 99.31 95.22
DR 99.42 99.27 94.04
FP 28.07 0.53 0.05

(b) Results for attack class U2R

β
0.5 1 5

OA 99.95 99.96 99.95
DR 50 34.34 50
FP 0.02 0 0.02

(c) Results for attack class R2L

β
0.5 1 5

OA 93.95 98.87 99.09
DR 99.42 38.17 31.07
FP 28.07 0.43 0.12

(d) Results for attack class Probe

β
0.5 1 5

OA 94.02 98.46 98.34
DR 90.34 63.2 59.11
FP 5.83 0.05 0.01

We can see that evolved classifier reached reached in all
cases and for all attack classes good accuracy above 93 percent.
However, DR and FP are for some attack classes not so good.
The best combination of high DR and low FP was reached for
DoS and β = 1. The classifier managed to detect 99.27 percent
of attacks and misclassified only acceptable 0.53 percent of
harmless connections. For the U2R attack class, the best
classifiers managed to detect 50 percent of the attacks. In R2L
experiment, the classifier evolved with β = 0.5 reached DR
99.42 percent, but it also misclassified close to 30 percent of
harmless connections. The classifiers with low FP managed to
detect only 38 and 31 percent of attacks. Finally, the classifiers
evolved for Probe attacks managed to detect fair 90 percent of
attacks at the cost of 5.83 percent of false positives for β = 0.5
and around 60 percent of attacks with FP percent below 0.05
for β = 1 and β = 5.

The different results for different attack classes suggest
that the nature of the fetaures describing the attacks varies
and different settings for GP (e.g. the value of β) needs to
be used. Moreover, we have seen that high overall acuuracy
of classification does not imply good detection rate and low
misclassification of legitimate traffic.

IV. CONCLUSIONS

We have implemented a genetic programming to evolve
fuzzy classifiers for intrusion detection. The intrusion detection
problem was reformulated as an information retrieval task
and a search query optimization algorithm was used to infer
symbolic fuzzy classifier describing the fuzzy set of attacks in
the collection describing network traffic.

The evaluation of the algorithm over the KDD Cup 1999
collection has shown that the algorithm is able, for some attack
classes, to find good classifiers that can serve as tools for
intrusion detection.

The evolution of fuzzy classifier for intrusion detection is an
ongoing project with a number of tasks deserve attention in this
case. The choice of the best fitness function (are IR measures



really the best fitness function for classifier evolution?) or
the interpretation of fuzzy weights in the classifier (is the IR
retrieval status value the optimal choice?) are among the most
appealing open questions.
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