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Abstract—Computer security is very important in these
days. Computers are used probably in any industry and
their protection against attacks is very important task. The
protection usually consist in several levels. The first level is
preventions. Intrusion detection system (IDS) may be used as
next level. IDS is useful in detection of intrusions, but also in
monitoring of security issues and the traffic. This paper present
IDS based on Flexible Neural Trees. Flexible neural tree is
hierarchical neural network, which is automatically created
using evolutionary algorithms to solving of defined problem.
This is very important, because it is not necessary to set the
structure and the weights of neural networks prior the problem
is solved. The accuracy of proposed technique is always above
98% and the speed of decision making process enable its using
in real-time applications.

Keywords-flexible neural tree, genetic algorithm, intrusion
detection, real-time classification

I. INTRODUCTION

An intrusion is defined to be a violation of the security

policy of the system; intrusion detection thus refers to

the mechanisms that are developed to detect violations of

system security policy. Intrusion detection is based on the

assumption that intrusive activities are noticeably different

from normal system activities and thus detectable. Intrusion

detection is not introduced to replace prevention-based tech-

niques such as authentication and access control; instead,

it is intended to complement existing security measures

and detect actions that bypass the security monitoring and

control component of the system. Intrusion detection is clas-

sified into two types: misuse intrusion detection and anomaly

intrusion detection. Misuse intrusion detection uses well-

defined patterns of the attack that exploit weaknesses in the

system and application software to identify the intrusions.

Anomaly intrusion detection identifies deviations from the

normal usage behavior patterns to identify the intrusion.

Various intelligent paradigms namely Neural Networks

[10], Support Vector Machine [14], Neuro-Fuzzy systems

[17], Linear genetic programming [1], Decision Trees [5]

and Adaptive Regression Splilnes [15] have been used for in-

trusion detection. Various data mining techniques have been

applied to intrusion detection because it has the advantage

of discovering useful knowledge that describes a user’s or

program’s behavior from large audit data sets [18], [4].

This paper proposes a Flexible Neural Tree (FNT) [7]

for selecting the input variables and detection of network

intrusions. Based on the predefined instruction/operator sets,

a Flexible Neural Tree Model can be created and evolved.

FNT allows input variables selection, over-layer connections

and different activation functions for different nodes. In

our previous work, the probabilistic incremental program

evolution (PIPE) and ant programming (AP) algorithm have

been employed to find a near-optimal neural tree [8], [9].

In this work, the hierarchical structure is evolved using

tree-structure based genetic algorithm. The fine tuning of

the parameters and weights encoded in the structure is

accomplished using evolutionary algorithms as well. The

proposed method interleaves both optimizations. The pro-

cedure starts with randomly generated structures and corre-

sponding parameters and weights. It first tries to improve

the structure and then as soon as an improved structure is

found, it fine tunes its parameters and weights. It then goes

back to improving the structure again and, fine tunes the

structure and rules parameters. This process continues until

a satisfactory solution is found or a time limit is reached.

The goal of this work is the usage of flexible neural tree

model for selecting the important features of IDS and for

constructing classifier for intrusion detection using flexible

neural tree which accomplishes real-time classification.

Rest of the paper is organized as follows. In Section II,

we present some theoretical background of flexible neural

tree model. In Section V experiment details and results are

provided, followed by conclusions in the last section.

II. FLEXIBLE NEURAL TREE

A general and enhanced flexible neural tree (FNT)

model is proposed for problem solving. Based on the

predefined instruction/operator sets, a flexible neural tree

model can be created and evolved. In this approach,

over-layer connections, different activation functions for

different nodes and input variables selection are allowed.

The hierarchical structure could be evolved by using

tree-structure based evolutionary algorithms with specific

instructions. The fine tuning of the parameters encoded in

the structure could be accomplished by using parameter

optimization algorithms. The proposed method interleaves
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Figure 1. A flexible neuron operator (instructor)

both optimizations. Starting with random structures and

corresponding parameters, it first tries to improve the

structure and then as soon as an improved structure is

found, it fine tunes its parameters. It then goes back to

improving the structure again and, provided it finds a better

structure, it again fine tunes the rules’ parameters. This

loop continues until a satisfactory solution is found or a

time limit is reached.

A. Encoding and Evaluation

A tree-structural based encoding method with specific

instruction set is selected for representing a FNT model in

this research. The reason for choosing the representation is

that the tree can be created and evolved using the existing

or modified tree-structure-based approaches, i.e., Genetic

Programming (GP), Probabilistic Incremental Program

Evolution (PIPE), Ant Programming (AP).

B. Flexible Neuron Instructor

The used function set F and terminal instruction set T

for generating a FNT model are described as follows:

S = F ∪ T = {+2,+3, . . . ,+N} ∪ {x1, x2, . . . , xn} (1)

where +i (i = 2, 3, . . . , N) denote non-leaf nodes’

instructions and taking i arguments. Input variables

x1, x2, . . . , xn are leaf nodes’ instructions and taking no

argument each. The output of a non-leaf node is calculated

as a flexible neuron model (see figure 2). From this point

of view, the instruction +i is also called a flexible neuron

operator (instructor) with i inputs. In the creation process

of neural tree, if a nonterminal instruction, i.e., +i is

selected, i real values are randomly generated and used for

representing the connection strength between the node +i

and its children. In addition, two adjustable parameters ai

and bi are randomly created as flexible activation function

parameters. Activation function can vary according to given

task. In this work we use following classical Gaussian

activation function:

f(ai, bi, x) = e
−(

x−ai

bi
)2

(2)
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Figure 2. A typical representation of neural tree with function in-
struction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3}

The output of a flexible neuron +n can be calculated as

follows. The total excitation of the +n is

netn =
n

∑

j=1

wj × xj (3)

where xj (j = 1, 2, . . . , n) are the inputs to node +n.

The output of the node +n is then calculated by

outn = f(an, bn, netn) = e−( netn−an

bn
)2 (4)

A typical evolved flexible neural tree model is shown

as Figure 2. The overall output of flexible neural tree

can be computed from left to right by depth-first method,

recursively.

C. Fitness function

A fitness function maps FNT to scalar, real-valued fitness

values that reflect the FNT’ performances on a given task.

Firstly the fitness functions should be seen as error measures,

i.e., MSE or RMSE. A secondary non-user-defined objec-

tive for which algorithm always optimizes FNTs is FNT size

as measured by number of nodes. Among FNTs with equal

fitness smaller ones are always preferred. Commonly used

fitness function used for the PIPE and SA is given by mean

square error (MSE):

Fit(i) =
1

P

P
∑

j=1

(yj
1 − y

j
2)

2 (5)

or Root Mean Square Error (RMSE):

Fit(i) =

√

√

√

√

1

P

P
∑

j=1

(yj
1 − y

j
2)

2 (6)

where P is the total number of samples, y
j
1 and y

j
2 are the

actual time-series and the FNT model output of j-th sample.

Fit(i) denotes the fitness value of i-th individual.



D. Tree Structure and Parameter Learning

Finding an optimal or near-optimal neural tree could

be accomplished by using tree-structure based evolutionary

algorithms, i.e., genetic programming (GP), probabilistic

incremental program evolution (PIPE), gene expression pro-

gramming (GEP), multi expression programming (MEP),

estimation of distribution programming (EDP) and the pa-

rameters optimization algorithms, i.e., genetic algorithms

(GA), evolution strategy (ES), evolutionary programming

(EP), particle swarm optimization (PSO), estimation of dis-

tribution algorithm (EDA), and so on. The general learning

procedure for constructing the FNT model can be described

in high level as follows [7]:

1) Set the initial values of parameters used in the GA

algorithms. Set the elitist program as NULL and its

fitness value as a biggest positive real number of the

computer at hand. Create a random initial population

(flexible neural trees and their corresponding parame-

ters)

2) Structure optimization by genetic algorithm, in which

the fitness function is calculated by mean square error

(MSE) or root mean square error(RMSE)

3) If a better structure is found and no better structure

is found for certain number of generations (10 in this

study), then go to step (4), otherwise go to step (2)

4) Parameter optimization by genetic algorithms. In this

stage, the tree structure or architecture of flexible neu-

ral tree model is fixed, and it is the best tree taken from

the sorted population of trees. All of the parameters

used in the best tree formulated a parameter vector to

be optimized by local search

5) If the maximum number of local search is reached, or

no better parameter vector is found for a significantly

long time then go to step (6); otherwise go to step (4);

6) If satisfactory solution is found, then the algorithm is

stopped; otherwise go to step (2).

We have modified the third step of the algorithm to

achieve time savings in evolution of best flexible neural

tree. Experiments have shown there is no need to optimize

the connection weights and parameters immediately after

the better structure is found, because very often better

structure is discovered after few generations. The weights

and parameters tunning is also very time consuming task, so

we rather wait certain number of generations before we start

weights and parameters optimization. By this enhancement

we achieved very good time savings toward the original

algorithm.

III. GENETIC ALGORITHMS AND FLEXIBLE NEURAL

TREES

In this work, we use genetic algorithms [2], [3] for

structure optimization as well as for activation function pa-

rameters and tree nodes weights optimization. The selection,

crossover and mutation operators used are same as those of

standard genetic programming (GP). A genetic algorithm

starts with selection of two parents from current population.

The product of crossover operator can be one or more

offspring - two in this study. The mutation of offspring is

performed at the last step of genetic algorithm. After these

three steps we have new offspring which is placed into a

newly arise population. The process is repeated until desired

new population is built. As soon as the new population is

built, the new population is evaluated and sorted according

to the fitness function.

We have also modified the population sort procedure to

achieve smaller trees - feature extraction. If the fitness of

two trees is equal or almost the same (differs about some

user defined threshold) we prefer the smaller tree, thus the

smaller trees with such a feature are placed better, what

means it have better chance to be selected for crossover and

mutation.

In this study we also use another genetic operator called

Elitism. The elitism means that certain number of best

individuals from the current generation are copied into a

new generation, without performing crossover and mutation

operations. This method can very rapidly increase perfor-

mance of genetic algorithms, because it prevents losing the

best found solution.

A. Selection

Suppose we have population P of n individuals sorted

according to individuals fitnesses. We need to select two

parents for crossover operator. The selection in our work is

done by weighted roulette algorithm.

B. Crossover

In GP the tree structure crossover operation is imple-

mented by taking randomly selected subtrees in the individ-

uals and exchanging them. Crossover of node weights and

activation function parameters are done same as for artificial

neural networks [13], [12], [21], [20].

C. Mutation

A number of neural tree mutation operators are developed

as follows:

1) Changing one terminal node: randomly select one

terminal node in the neural tree and replace it with

another terminal node.

2) Changing one function node: randomly select one

function node and replace it with a newly generated

subtree.

3) Growing: select a random function node in hidden

layer of the neural tree and add newly generated

subtree as a new child.

4) Pruning: randomly select a node in the neural tree and

delete it in the case the parent node has more than two

child nodes.



A mutation of tree weights and activation function param-

eters is the same as for artificial neural networks [13], [12],

[21], [20].

IV. EXPERIMENTAL DATA

The data for the experiments was prepared by the 1998

DARPA intrusion detection evaluation program by MIT Lin-

coln Labs [11]. The original data contains 744 MB data with

4,940,000 records. The data set has 41 attributes for each

connection record plus one class label. Some features are

derived features, which are useful in distinguishing normal

connection from attacks. These features are either nominal

or numeric. Description of these data may be found in [18],

[16], [11], [19]. For our experiments, the 10% sample of

these data is used [19].

The data was preprocessed; all nominal values were

converted to the numeric representation and all features were

normalized. The data was divided into 4 classes, according

the attack classes defined in [19]. Each class contains all

records signed as normal activity and all records which

belong to specified attack class. For each class, a division

into two collections - training data and testing data was

performed. The training data contains 40% of randomly

selected data and the testing data contains the rest of them.

Finally, another one class was defined - this class contains

all records from all 4 attack classes and the normal activity

records. This class represented the main functionality of the

IDS - distinguish attacks from the normal activity.

The data collections are called according the name of the

attack class, which it contains. The five used collection are

called DoS (Denial of Services), U2R (User to Root), R2L

(Remote to User), Probe (Probing) and the last one which

contains all records is called Attack, because its purpose is

to test algorithm to distinguish any attack.

The statistics of the data collection is shown in Table I.

As may be seen, the number of records differs in each

collection. The class DoS contains the largest amount of

records and the class U2R contains the lowest number of

records. The amount of records, which belongs to the normal

traffic is the same in each collection - approximately 90 000.

This will compare the efficiency of the proposed algorithm

in detecting events, which are rare (U2R) and events which

are very frequent in the data (DoS).

Table I
STATISTICS OF THE DATA COLLECTIONS

Collection training records Testing records Total records

DoS 195 494 293 242 488 736
U2R 38 931 58 399 97 330
R2L 39 361 59 043 98 404
Probe 40 553 60 832 101 385
Attack 197 608 296 413 494 021

V. EXPERIMENTS AND RESULTS

In this section we present the results of experiments with

flexible neural tree based IDS for large data. One of key

benefit of the flexible neural tree is dimension reduction

feature. Secondly, it has shown the FNT is a very fast

classifier which accomplishes real-time decision making.

All of the experiments have more than 98% accuracy in

all of the testing sets. Time consumption for classification

of all records did not exceed 300 milliseconds for bigger

collections (DoS and Attack) and 100 milliseconds for

smaller collections (U2R, R2L and Probe).

The mechanisms of input selection in the FNT construct-

ing procedure are as follows. (1) Initially all the input

variables are selected to formulate the random FNT model

(initial population of randomly generated trees) with same

probabilities. (2) The variables that have more contribution

to the objective function will be enhanced and have a

high opportunity to survive at the next generations by

a evolutionary procedure. (3) The evolutionary operators,

that is crossover and mutation, provide an input selection

method by which the FNT should select appropriate vari-

ables automatically. The size of the initial population of

randomly generated trees were set to 50 individuals and

size of the initial population of connection weights and

activation function parameters was set to 100 individuals.

At the beginning of the algorithm each of the randomly

generated tree covered all of the 41 input variables. In this

stage of the algorithm the training set is used.

In this work we use flexible neural tree as a classifier as

well, i.e. the part of IDS responsible for decision making.

Once the flexible neural tree structure, weights and activation

function parameters are evolved, we use this evolved tree

for classification of records appearing in our collection. The

classification made by flexible neural tree is the overall

output of the evolved tree. The input to the classifier (FNT)

are variables selected during the training phase, i.e. evolved

tree terminal nodes (leaf nodes).

Summary of the results is shown in table II and table

III respectively. In table II are the results for teaching

collections and table III denotes the results for testing collec-

tions. Description of the tables is follows: column Precision

means percent of correctly classified records, column FP

holds for False Positive Error, column FN represents False

Negative Error, column Time is the total time in milliseconds

of classification of all records and column Records is the

number of records being classified.

As was mentioned above, one of the key feature of flexible

neural trees is the dimension reduction. Our flexible neural

tree algorithm based on genetic algorithms and with the

feature of preferring smaller trees, reduced the number of

important variables of class U2R and R2L to just 2 of

original 41 input variables. This significantly improves the

classification time. Table IV shows the sizes of best evolved



trees and extracted important variables as well. Description

of variables can be found in [6].

In figures 3, 4, 5, 6 are presented best evolved trees by

our FNT algorithm. These trees are used as a classifiers for

samples of training and testing collections.

Table II
RESULTS FOR TRAINING COLLECTIONS

Collection Precision[%] FP[%] FN[%] Time[ms] Records

DoS 98.88 0.42 0.68 140 195 494
U2R 99.95 0.0 0.05 31 38 931
R2L 98.86 0.0 1.14 31 39 361
Probe 99.25 0.03 0.71 47 40 553
Attack 98.54 0.25 1.21 188 197 608

Table III
RESULTS FOR TEST COLLECTIONS

Collection Precision[%] FP[%] FN[%] Time[ms] Records

DoS 98.84 0.42 0.71 250 293 242
U2R 99.94 0.001 0.05 47 58 399
R2L 98.85 0.001 1.14 47 59 043
Probe 99.31 0.03 0.65 78 60 832
Attack 98.57 0.27 1.15 297 296 413

Table IV
FNT SIZE AND EXTRACTED VARIABLES

Class FNT Size Important variables

DoS 7 x2, x9, x12, x25, x34, x41

U2R 3 x9, x41

R2L 3 x9, x25

Probe 20 x2, x4, x9, x15, x18, x25, x27, x30, x31, x34, x41

Attack 11 x2, x4, x9, x11, x12, x18, x25, x27, x34, x41
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Figure 3. Best evolved tree for Denial of Services collection.

VI. CONCLUSIONS

In this paper, we presented a Flexible Neural Tree ap-

proach to detect different types of network intrusions. We

have used genetic algorithms for tree structure optimization

as well as for connection weights and activation function

parameters tuning. All the experiments were done on new

large data collection and the results show very good classifi-

cation accuracy which was not worse than 98% of correctly

classified records in all data collections. We have proved the

flexible neural tree is also very suitable for real-time decision

making and great for dimension reduction.
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Figure 4. Best evolved tree for a) Remote to User collection and b) User
to Root collection.
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Figure 5. Best evolved tree for Probing collection.
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Figure 6. Best evolved tree for Attack collection.
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