
A Secure and LightWeight Approach for Critical Data Security in Cloud

Sanchika Gupta
Department of E&CE

Indian Institute of Technology, Roorkee
Uttarakhand, India

dr.sanchikagupta@gmail.com

Padam Kumar
Department of E&CE

Indian Institute of Technology, Roorkee
Uttarakhand, India

padamfec@iitr.ernet.in

Anjali Sardana
Department of E&CE

Indian Institute of Technology, Roorkee
Uttarakhand, India

Ajith Abraham
IT For Innovations - Center of Excellence

VSB-Technical University of Ostrava, Czech Republic
*Machine Intelligence Reserch Labs (MIR Labs), WA, USA

ajith.abraham@ieee.org

Abstract—	 Cloud computing is a model that provides ubiquitous,
on demand access to a shared pool of computing resources
including networks, servers, storage, application and services
that can be easily provisioned and released. As Cloud is a shared
and distributed environment, the need for ensuring security of its
critical infrastructure that includes computing, network and
storage is immense. One of the critical resources to look after in
cloud environment is the data which is stored in files. The files
can be configuration file at servers, or private user confidential
files at users own work space but they all have a risk of data
modification associated with them. If user data is modified
through an attack then it will decline the trust of user on cloud
services and if the important configuration files are modified,
they will disrupt the functioning of cloud environment, like
attacker can escalate its privileges and access to critical resources
through such tampering and modifications to important files.

The paper solves the problem addressed and focuses on
a proposal and prototype implementation of a tool built for
Cloud File integrity establishment and monitoring that
establishes and checks file Integrity periodically. The novelty of
the approach lies in the fact that the tool does not require any
database for storing the integrity of files and the integrity of the
file is the compressed encrypted hash of the data stored in the file
that can't be reverse engineered by an attacker easily. The tool is
lightweight and initial results dictate that it is scalable and
efficient. The Real time deployment and analysis of tool is under
progress.

Keywords:- Intrusion detection, attacker, Cloud, Security,
Monitoring, Integrity, file, signature, hash, monitoring,
establishment, Compression.

I. INTRODUCTION
Cloud computing is not a new topic to buzz upon, it was

known to the industry since past. But now it is emerging out as
a great platform for computing and data storage. The
effectiveness of cloud is because of the services it provides to
end users. Cloud provides the usage of facilities such as
computing and data storage remotely on a pay per usage
model. The services are generally provided at software,
platform and infrastructure layer and are generally known as
software as a service, platform as a service and infrastructure as
a service.

Cloud according to NIST is a model that provides access to
a configurable pool of shared resources that can be easily
provisioned and released on demand. The access to such
resources including computing, data storage, application and
services is through remote network access facility[1]. The
important and remarkable feature provided by cloud to the new
era of computing is the easy provisioning of resources and
release of them that indirectly increases the efficiency and
utilization of important computing and storage resources.

Cloud based on the type of service it provides can be
broadly classified into Compute Cloud and Storage cloud.
However cloud provides offering of its services at three
different layers which are SaaS (Software as a Service), PaaS
(Platform as a Service) and IaaS (Infrastructure as a Service).In
the model of cloud computing the services are provided by a
well defined set of cloud service providers and are availed by a
set of cloud service users. The whole concept of cloud
computing takes as its base the concept of virtualization [2].
The concept of virtualization provides the facility of creation
of virtual replicas of resources including computing, storage ,
operating system, network etc. [3].
Virtualization can be applied on hardware level to provide
virtual copies of hardware resources such as disk, processor etc
in which case it is known as hardware virtualization.
Virtualization takes many forms including network, desktop
and memory virtualization. It provides the way through which
physical cloud resources can be efficiently provisioned
individually to its users transparently. The word transparently
dictates that such virtualization of physical resources in cloud
will be seen by the cloud vendors only with users having no
information of what is the infrastructure behind.

Currently because of the facilities Cloud provides there is a
huge demand of such services in the industry both by
individual users and small corporate entities that can’t purchase
such services but require them on demand. Some of the great
providers of such services include Google, Rack space, IBM,
Microsoft, Symantec, HP.

As Cloud is getting deployed at a fast pace rate because of
the facilities it provides there has been a little focus on the

security aspects of it. As cloud is a remotely used shared
facility it requires Focus on security of its critical Infrastructure
and resources. The Infrastructure of cloud and its resources
can be broadly classified into the following four categories:

1. VM Host, Hosts
2. Virtual and Private Network
3. Critical Data or Information.

Whenever a Cloud User request provisioning of computing and
operating system resources a VM is assigned to the user that
remain allocated to till a predefined amount of period requested
by the user. Hence until the VM is released it is the
responsibility of cloud vendor to provide Security to the Virtual
Machine so that malicious programs must not interrupt with the
proper functioning of system virtual entity assigned to the user.
It is not only the VM that needs to be secured Cloud should
also provide security to other VM in the environment from the
attack that can be launched through malicious system calls on
other Virtual Machines.
This Problem is solved with the use of Host based Intrusion
detection system that detects well-known attacks on VM
including VM Escape, VM Hoping etc. Host based IDS are
however of many types, based on the kind of technique used
for malicious system call detection [19-27]. Such IDS are
generally deployed at individual hosts in Cloud environment,
or a single IDS is implemented at the privileged node where
the activities from all nodes are captured and analyzed [4]. In
virtualization environment many of the attacks are VM based
attacks that includes but are not limited to VM Escape, VM
hoping etc. Such attacks are also handled with the use of host
based IDS [5].
Network Infrastructure is also one of the important resources to
look after in Cloud as the whole access to the shared pool of
resources depends on it. With respect to network we require
that the data of the cloud user flowing through the network
must remain safe. Also the network should remain available
because unavailability of Network will decrease the trust of
user in using Cloud services.
Network Availability is attacked majorly through Denial and
Distributed Denial of Service attacks. Data confidentiality is
tampered through Network and Packet sniffers that sniff the
data going on to the network. However many solutions are
proposed for taking care of network based attacks including
Network intrusion detection systems. Also for preventing
secret data loss through sniffing the data in the environment
generally flows in encrypted form. In one of our research paper
we have also analyzed these intrusion detection systems and
found that their effectiveness varies according to their
placement and configuration in Cloud computing environment
[4].
 The third important resource to look after in Cloud
environment that people are less focused upon are the system
specific or configuration specific files which are responsible
for proper functioning of Cloud or the files that are given to
each VM users during VM allocation or the important files that
resides in user private workspace and which need assurance of
integrity. These are not only the configuration files, but the

files that are important and existing remotely, so that anybody
can have access to them.
The importance of file integrity establishment and checking is
necessary because a user trust plays an important role in cloud.
For example, if a user has taken cloud services for storing,
managing and working on its private data and if that data gets
modified by some malicious entity it will destroy the trust of
that user on the services of cloud vendor. This is not the only
reason for providing security to the files stored in Cloud; one of
the other reasons is that Cloud is a automatic provisioning,
management and release based service hence it has a collection
of configuration files that are assigned and allocated to VM
users and which represent the access privileges and
configuration specifications, if such files gets manipulated
through any malicious entities then it will harm the proper
functioning of Cloud.
However such an access for modification of files can be easily
prevented in the distributed environment through assigning
access roles and privileges. But the problem of data integrity
management is not simple in a distributed environment like
Cloud. We are taking into picture the problem that such access
and privileges can be obtained by malicious users through
exploitation of operating system specific vulnerabilities. We
identified that the file integrity establishment and reporting
tools, which are used today are complex and so cannot be
directly applied to the Cloud environment. The complexity of
the current file integrity Tools lies in the usage of external and
specific databases for integrity management of files. Like many
Integrity establishment tools make use of database that stores
the integrity of the files.

During integrity checking the integrity of the file is checked
for equality with that stored in the database. But the problem
remains there only as now it requires additional resources for
providing maintenance and security to the databases that stores
the integrity information. We have analyzed that the problem
of integrity establishment and monitoring can be simplified to
be applied in cloud environment by reducing the amount of
additional resources, as that will not only decrease the
complexity but reduce external dependency with increased
level of security. One of the important thing we noted is that in
Cloud environment, the amount of files stored are large, hence
the storage requirements becomes complex because a separate
database for storing file integrity hash key will take additional
and a decent amount of extra storage space..

We have also found that some files doesn’t require a huge
auditing in them, they only require that there data will remain
unaltered and if it gets altered by any unauthorized user, the
file must be replaced by its replica. Hence in such cases a
solution that unnecessarily increases the complexity by
introducing severe analysis of files access and integrity
checking will not be an optimum solution. We have analyzed
that some tools popular in the market do a thorough analysis of
file activities but for certain environment and files such a
deeper analysis may not be worthy if the goal is only just to
maintain integrity. Moreover if we make the detection process
complex, a large number of resources are being utilized for
providing security and users are left with a small amount of

resources at their disposal. And if you see Cloud a large
proportion of files that are distributed across (responsible for
configuration) the cloud and are responsible for proper
functioning of Cloud, requires that they will remain correct as
any modification in them may lead to breaches in Cloud
security, availability and integrity.

In this paper we have taken as issue the secure and
lightweight implementation of integrity establishment and
monitoring tool for securing critical data in Cloud
environment. We have solved it by proposing and
implementing a very lightweight file monitoring tool called as
Secure Cloud based File Monitoring Tool also known as
SFMT. We have currently focused on securing important
configuration and system specific files of VM’s in cloud
environment. SFMT is a centralized file monitoring tool which
runs on privileged domain and is capable to establish and
monitor integrity of files residing in other domains in Cloud
environment. This tool can also remotely check the integrity of
configuration and system specific files to verify that they are
not manipulated or tampered by anybody inside or outside the
Cloud. This is a periodic task that establishes and verifies file
integrity after specified interval of time.

The novelty of the solution lies in the usage of
cryptographic checksum over compressed data of file for
establishing and verifying the integrity of files. This techniques
improves security of integrity (hash) generated for a file so that
it can’t be reproduced by a malicious entity easily and is
lightweight as it does not require any database to store it as the
integrity generated remain in the file itself.

II. RELATED WORKS
File Integrity Monitoring is a critical instance for the

protection and security of unauthorized breaches in the file
system. Moreover file integrity monitoring is an essential
requirement for NIST 800-53 [6], PCI Compliance [7] and also
according to Consensus Audit Guidelines. Many file integrity
solutions are proposed in virtual machines and Cloud
environment.

The concept of checksum based security measures to verify
integrity of file is not new. Previously researchers have
proposed techniques for checking integrity of files on Cloud.
Hai Jin et al. proposed VMFence [6] which is used to monitor
network flow and file integrity in real time. An important well
known tool known as Tripwire also do file system monitoring
by storing the hash keys of files on a regularly basis and storing
them in a database.

Pennington et al. [8] proposed storage-based intrusion
detection system which allows the storage systems to watch for
data modification characters. I3FS [9] intercepts file system
calls and injects its integrity checking operations in the kernel
mode. It performs checksum comparison in the critical path.
NOPFIT [10] is another file system integrity tool for virtual
machine which uses multi-byte NOP injection. XenFIT [11] is
a file integrity monitor which is implemented on Xen. In
XenFIT, the monitored system consist of breakpoints, which
intercepts file system calls e.g. open, close, and write. It
records the system call log, and sends it to the privileged VM.
It is necessary to put an intercepting system call module in the
monitored VM, which is easily disabled by the attackers.

There is a great need to monitor the server performance in
Cloud environment. Various tools for monitoring data breaches
in Cloud are present. File loggers are also proposed by
researchers for accountability and transparency in Cloud
environment. These file loggers intercepts file access calls and
gather the data that can be used to identify the modification and
alterations in files distributed across the Cloud.

 Flogger [12] is a file centric logger for monitoring file
access and transfers within Cloud computing environment. It
provides a tool for the end user to check if their files have been
tampered. It can be implemented in both virtual and physical
spaces in the Cloud providing full transparency.

Tripwire [13] is a host based IDS which alerts on macro
changes to the files and folders. Tripwire stores the hash values
of the files in a database and compares the current hash values
of files with the database values to identify any intrusion. It
works in 4 modes and does the actual checking in the check
mode. The other 3 modes of operation of tripwire are init,
update and test mode.There are various file monitoring tools
that are offline and checks system integrity of host files. But
those tools cannot be deployed in Cloud environment as the
trust on each host cannot be quantified. Tools such as iNotify,
File alteration manager which are proposed for verifying file
integrity of systems on LAN’s, doesn’t provides an appropriate
solution for vast and scalable Cloud.

In our study we found that the architecture of Cloud
requires a lightweight solution that highly efficient and
optimized in terms of storage databases and can hence decrease
the communication and computational cost in Cloud
environment. Solutions such as file loggers and integrity
monitors with need for extra resources looks a complex
solution for Cloud environment. Our proposed solution
separates out as a low complexity solution that stores
cryptographic checksum in the files itself. Hence our solution
doesn’t require any centralized database to store the checksum
of files. This provides Cloud a lightweight tool to look at the
integrity of files with minimal resources.

III. PROPOSED WORK
The broad overview of proposed scheme is shown in the
diagram given in figure1. The working of our proposed file
monitoring tool is periodic in nature. The tool works under the
control of administrator on privileged domain and its settings
such as periodic time interval for checking integrity of files can
be set. The tool retrieves files from a location and read it to
generate a checksum of its content (which are compressed
through compressing techniques using Bzip2 Module in perl)
which are then encrypted and are stored in the file itself
between specific tags. In Integrity Monitoring the tabs are
searched for the extraction of previous checksum, which are
then compared with the checksum of the contents (generated in
the same way but excluding checksum data in file). If they are
found equivalent then it means, no changes have been made to
the file and the file is unaltered. However if some changes are
made to the file the two checksum (one stored in file and other
one currently calculated) will not match. The tools response
manager and alert generation component generates alert for the
scenario and take necessary action such as replacing the old file
with latest version with new integrity established.

Figure 1. Overview of SFMT

The working of our tool can be explained through the diagram
shown in figure1 and is divided into steps given below [14].

1. The first step is to locate the folder and files present in
a particular VM (for example VM1). These files can
be located through various means. One way is to
locate the shared folder that contain folder and files
specific to a particular VM.

2. The files are then accessed by the SFMT module.
3. The tool allows selection of the task that can be

Integrity Establishment or Integrity Monitoring. In
integrity checking the encrypted hash codes are
generated for the files and appended into them.

4. The results of the integrity establishment and the new
file (with added encrypted hash) are sent to the
Response Manger and Alert Generator component.

5. Response Manager sends the new file obtained from
Integrity Establishment Component for storing at its
location.

6. The file destination is located and the new file is then
stored in VM repository of the VM it belongs to.

7. In Integrity Monitoring the encrypted hash codes are
captured from the file and are checked with the
currently generated encrypted hash code to identify
manipulations if any.

8. The results of Integrity Monitoring are given to
Response Manager and Alert Generation Module
which then report alerts pertaining to manipulation in
files if any through sending emails and SMS to
respective persons and also take necessary
countermeasures.

This Integrity Establishment and Integrity Monitoring process
is periodic and is applied on each VM in a sequential manner.
The process runs in background and hence requires a very less
computational power for carrying out operations. The
cryptographic checksum of compressed file contents is
appended to the file on periodic basis. The integrity
establishment and verification can be set as one time per day or

one time per week based on the needs of a specific
configuration and environment and is an admin controlled
parameter. Whenever the integrity of a file needs again
reestablishment the previous line containing the cryptographic
checksum of the file is truncated and a new line is inserted to
the file containing the new valid cryptographic checksum of
the file with its start and end tags.

IV. IMPLEMENTATION DETAILS
We have implemented the proposed scheme of file integrity
monitoring with the use of Perl on windows platform. The tool
is created as an independent application that can reside
centrally on a privileged domain.

The tool uses md5 digest scheme for creating the
digest of the file content, which are first compressed through
Bzip2 Module of Perl and the crypt scheme that takes the md5
digest as plaintext and specified salt value to return a string.
The file is compressed so that the complexity of generating the
same hash for two files with different contents can be increased
for the attacker. The important quality of the crypt scheme is
that the same plaintext and salt generate the same crypt value
but there is no known way to get the original plaintext from the
generated hash string.

The md5 hash scheme is the traditional scheme of
creating a 128 bit or 16 byte digest value. It takes as input any
message of arbitrary length and generate 16 byte digest of the
message given as input. The implementation is a prototype
however more advanced algorithms for hash generation can be
used with good collision resistant properties.

During file integrity establishment, after the file is
accessed from the VM file repositories it is read as a string and
is given to the md5 hash generation module. The generated
hash value is then fed into the crypt module which generates
the encrypted hash value of the md5 hash value. These values
are then appended to the original file between two identical
tags. These tags are <Secure> tags which help the monitoring
module in locating the encrypted hash codes when the file is
checked for integrity monitoring. During file integrity
monitoring step, the file is searched for these two identical tags
from where the encrypted hash value is fetched. The original
file’s (after discarding tags and data) encrypted hash value is
then calculated in the same way it is calculated during file
integrity establishment step.

The two values one which is fetched between the tags and
the other currently generated are checked for equality. If the
results of equality are true it indicates that the file has not been
altered since its last value. However if it’s unequal then an
alarm is generated and responses are taken by Response
Manager and Alert Generator module. One of such responses is
to log such an occurrence and replace the modified file in the
VM with the original file with added integrity to it.

V. RESULTS AND DISCUSSIONS

We have applied the scheme proposed in Cloud for checking
and verifying the integrity of files stored on various VM’s.
The snapshot given in Figure 2 is a part of a file before file
integrity checking is applied over it. Figure 3 provides a

snapshot of the same file after integrity is established on it.
The information between the starting and ending tags is the
cryptographic checksum generated for the file.

 Figure 2: A File snapshot before Integrity Establishment

 Figure 3: A File snapshot after Integrity Establishment

If integrity establishment is specified than all the files in that
folder location are retrieved and the cryptographic checksum
are appended to them. Snapshot in Figure 4 describes how
SFMT extracts each file from folder and provides integrity
establishment by appending a cryptographic checksum.

However if integrity monitoring is the requirement
then all the files at the particular location are extracted and
their integrity checking is performed. Figure 5 provides a
snapshot of Integrity monitoring by SFMT on files of a folder
shared with a VM.If some variations are found then the list of
the files with variations are properly informed and reported by
the tool on the console after which the responses can be fired
by the administrator to back up the latest files at those locations
and creating change logs. Figure 6 describes how a
manipulated file is reported through alarm by SFMT. The
reason for getting alarm for ‘license’ file in Figure 6 is that we
have manipulated the file by just one character adding to it.
The secret of this scheme lies in the salt, which is used for the
creation of encrypted hash from md5 hash calculated and it
must be kept securely at the centralized domain. In our case it
is fixed however in real implementation with many VM it can
have different values for each independent VM for security
concerns. The integrity for files is reestablished after periodic
interval of time. However integrity monitoring is a recursive
process that occurs more frequently over files stored at VM
locations so as to maintain integrity of files to its best possible
and report alerting instances if any. With encrypted hash added
to the files it is nearly impossible for any VM user to
manipulate the file for his benefit and generate the encrypted
hash value to it so that it will go undetected by the integrity
monitoring module. The reason lies in the fact that
unauthorized manipulator do not know which secret salt value
is used for the creation of encrypted hash even if he knows the
hash algorithm used.

Figure 4. Snapshot of Integrity establishment by SFMT

Figure 5: Snapshot of Integrity Monitoring by SFMT

Figure 6: Snapshot of Alarm generation by SFMT

VI. CONCLUSIONS

This paper illustrated a prototype implementation of a
tool built for Cloud File integrity establishment and

monitoring that establishes and checks file Integrity
periodically. The algorithm is light weight as it can run in
background for file monitoring and require minimal operations
on the file for generating and verifying the integrity. Currently
we have done our testing with normal text files which are
generally used as configuration files and it was found that for
50 files each of 200kb our scheme just takes four and a half
seconds for Integrity Establishment and near to five seconds
for Integrity Monitoring. This means that the scheme is quite
light weight and can be used in Cloud environment effectively
with low implementation cost and changes.

REFERENCES

1. R. Buyya, Y. Chee Shin, and S. Venugopal, “Market-
Oriented Cloud Computing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities,” High
Performance Computing and Communications, 2008. HPCC
'08. 10th IEEE International Conference on, pp. 5-13.
2. B. Paul, D. Boris, F. Keir, H. Steven, H. Tim, H. Alex, N.
Rolf, P. Ian, and W. Andrew, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, 2003,
pp. 164-177.
3. L. Flavio, and P. Roberto Di, “Secure virtualization for
cloud computing,” ACM Journal of Network and Computer
Applications vol. 34, no. 4, 2010, pp. 1113-1122.
4. S. Gupta, S. Horrow, A. Sardana, M. Parashar, D. Kaushik,
O.F. Rana, R. Samtaney, Y. Yang, and A. Zomaya, “A Hybrid
Intrusion Detection Architecture for Defense against DDoS
Attacks in Cloud Environment Contemporary Computing,”
Communications in Computer and Information Science 306,
Springer Berlin Heidelberg, pp. 498-499.
5. H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhao, M. Li, and W.
Zheng, “A VMM-based intrusion prevention system in cloud
computing environment,” The Journal of Supercomputing,
2011, pp. 1-19.
6. S.P. Nist, “800-53 Rev. 2,” Recommended Security
Controls for Federal Information Systems, 2007.
7. T. Bradley, PCI compliance: implementing effective PCI
data security standards, Syngress Media Inc, 2007.
8. G.P. Adam, D.S. John, G. John Linwood, A.N.S. Craig,
R.G. Garth, and R.G. Gregory, “Storage-based intrusion
detection: watching storage activity for suspicious behavior,”
Book Storage-based intrusion detection: watching storage
activity for suspicious behavior, Series Storage-based
intrusion detection: watching storage activity for suspicious
behavior, ed., Editor ed.^eds., USENIX Association, 2003, pp.
9. S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3FS:
An in-kernel integrity checker and intrusion detection file
system.”
10. K. Junghan, K. Inhyuk, and E. Young Ik, “NOPFIT: File
System Integrity Tool for Virtual Machine Using Multi-byte
NOP Injection,” Computational Science and Its Applications
(ICCSA), 2010 International Conference on, pp. 335-338.
11. Q. Nguyen Anh, and T. Yoshiyasu, “A novel approach for
a file-system integrity monitor tool of Xen virtual machine,”

Book A novel approach for a file-system integrity monitor tool
of Xen virtual machine, Series A novel approach for a file-
system integrity monitor tool of Xen virtual machine, ed.,
Editor ed.^eds., ACM, 2007, pp.
12. R.K.L. Ko, P. Jagadpramana, and L. Bu Sung, “Flogger: A
File-Centric Logger for Monitoring File Access and Transfers
within Cloud Computing Environments,” Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011
IEEE 10th International Conference on, pp. 765-771.
13. H.K. Gene, and H.S. Eugene, “The design and
implementation of tripwire: a file system integrity checker,”
Book The design and implementation of tripwire: a file system
integrity checker, Series The design and implementation of
tripwire: a file system integrity checker, ed., Editor ed.^eds.,
ACM, 1994, pp.
14. Sanchika Gupta, Anjali Sardana, and P. Kumar, “A light
Weight Centralized File Monitoring Approach for Securing
Files in Cloud Environment,” The 7th International
Conference for Internet Technology and Secured Transactions
(ICITST-2012), IEEE [Accepted].
19. Alvaro Herrero, Emilio Corchado, Maria Pellicer and Ajith
Abraham, MOVIH-IDS: A Mobile-Visualization Hybrid
Intrusion Detection System, Neurocomputing Journal, Elsevier
Science, Netherlands, 72(15), pp. 2775-2784, 2009.
20. A. Abraham, C. Grosan and C. Martin-Vide, Evolutionary
Design of Intrusion Detection Programs, International Journal
of Network Security, Vol.4, No.3, pp. 328-339, 2007.
21. Y. Chen, A. Abraham and B. Yang, Hybrid Flexible
Neural Tree Based Intrusion Detection Systems, International
Journal of Intelligent Systems, John Wiley and Sons, USA,
Volume 22, pp. 1-16, 2007.
22. S. Peddabachigari, A. Abraham, C. Grosan and J. Thomas,
Modeling Intrusion Detection System Using Hybrid Intelligent
Systems, Journal of Network and Computer Applications,
Elsevier Science, Volume 30, Issue 1, pp. 114-132, 2007.
23. A. Abraham, R. Jain, J. Thomas and S.Y. Han, D-SCIDS:
Distributed Soft Computing Intrusion Detection Systems,
Journal of Network and Computer Applications, Elsevier
Science, Volume 30, Issue 1, pp. 81-98, 2007.
24. S. Chebrolu, A. Abraham and J. Thomas, Feature
Deduction and Ensemble Design of Intrusion Detection
Systems, Computers and Security, Elsevier Science, Volume
24/4, pp. 295-307, 2005.
25. S. Mukkamala, A. Sung and Ajith Abraham, Intrusion
Detection Using Ensemble of Soft Computing and Hard
Computing Paradigms, Journal of Network and Computer
Applications, Elsevier Science, 28(2), pp. 167-182, 2005.
26. A. Abraham, C. Grosan and Y. Chen, Cyber Security and
the Evolution in Intrusion Detection Systems, Journal of
Engineering and Technology, ISSN 0973-2632, I-Manager
Publications, Vol. 1, No. 1, pp. 74-81, 2005.
27. S. Mukkamala, A. Sung, A. Abraham and Vitorino Ramos,
Intrusion Detection Systems Using Adaptive Regression
Splines, Enterprise Information Systems VI, Seruca, I.;
Springer-Verlag, ISBN: 1-4020-3674-4, pp. 211-218, 2006.

