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Abstract. Age-related macular degeneration (AMD) is a leading cause of vision
loss and blindness around the world. With an increase in age, the number of
people impacted by the disease is observed to be growing. Knowledge about
the occurrence of AMD should be used to develop appropriate eye care for
these people. So, in this paper, we present an AMD detection and classification
using DenseNetCNN. Data is collected from various repositories such as AREDS,
Optretina andSTARE.These are initially pre-processed using the histogramequal-
ization technique. Then it is passed to feature extraction technique where GLCM
comes in hand for extracting required features and finally passed to quintessential
process which is the classification where DenseNet169+ CNN comes in play for
effective classification. We have evaluated our model under accuracy, sensitivity,
specificity performance measure and is compared with other pre-trained models
like VGG16, ResNet50, GoogleNet, MobileNet and Inception V3 in which our
model outperforms other state-of-art models with 98% of accuracy.

Keywords: Age-related macular degeneration · Ant colony optimisation ·
Classification · Convolutional neural network

1 Introduction

In Western countries, age-related macular degeneration (AMD) is the primary reason
for vision loss and irreversible blindness of the aged [1]. It encompasses a wide range of
macula problems. Although the initial stage of AMD is silent, examination of the retina
can reveal tiny lesions known as drusen. The appearance of hemorrhages (wet AMD)
or the formation of regional atrophy are both signs of progression of the disease, as is a
growth in the size or quantity of drusen (late dry AMD). A Study [2] developed a clinical
categorization for AMD. It is divided into four categories: non-AMD, mild, moderate,
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Fig. 1. a) Vision of normal people. b) Vision of person with AMD

and progressive AMD [3]. Figure 1 (a) depicts the vision of normal people and 1(b), the
vision of a person with AMD.

SD-OCT (Spectral-Domain Optical Coherence Tomography) is widely used equip-
ment that explains specific AMD findings such as drusen, intra-retinal fluid (IRF), sub-
retinal fluid (SRF), sub-retinal hyper-reflective substance, which includes hemorrhage
and retinal colourant epithelium detachment, among others [12]. Exudative modifica-
tions (intra- and sub-retinal fluid and hemorrhage) are the most common reasons for
many doctors to start anti-VEGF medication and monitor its effectiveness [13]. For the
big clinical experiment discussed earlier [14], zero tolerance was used. As a result, the
volume of OCT data that needs to be analyzed is growing faster than clinical capacity
[15].

Machine-learning advances have found an answer for interpreting vast volumes of
medical picture data resulting from repeated patient treatment and follow-up observa-
tions [16]. Convolutional neural networks (CNNs) have made tremendous progress in
the processing of clinical images [18]. CNNs have already been used in ophthalmology
for the categorization of diabetic retinopathy on fundus images, visual field evalua-
tion of patients, and assessment of paediatric nuclear cataracts, among other applica-
tions [19]. Computerized detection of AMD characteristics in OCT and fundus pictures,
anti-VEGF drug counselling, and disease progression tracking have all been done with
neural networks [19]. Although several researchers have categorized the exudative ele-
ment of AMD for computerized segmentation [21], we are unaware of any publica-
tions that categorize exudative alterations with AMD in deep learning models excluding
segmentation.

This paper focuses on an accurate and efficient model for detection and classification
of AMD in which key points are as mentioned below:

1. The detection of AMD by Deep Learning
2. Datasets used are AREDS, Optretina and STARE.
3. DenseNet169 + CNN is used for Classification.
4. An accuracy of 98% is achieved.
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The remaining sections organized as follows: Sect. 2 depicts the works related to this
paper that is been so far done by research while Sect. 3 illustrates the methodologies of
the proposed model. Section 4 is focused on the simulation analysis of proposed model
and finally the paper concludes with Sect. 5.

2 Literature Review

Using the Optretina database and CNN approach, Zapta et al. [17] used AI to detect
retinal fundus images, quality verification, laterality analysis, macular degeneration, and
potential glaucoma. They had a 94.7% accuracy rate. A Convolutional Neural Network
is much slower due to procedures such as a max pool [4]. The training technique takes a
long time if the computer does not have a powerful GPU and a ConvNet requires a huge
database to analyze and train the neural network.

Motozawa et al. [26] used the STARE database and the CNN approach to develop
OCT-based DL (Deep Learning) models for distinguishing normal and AMD, as well as
exudative and non-exudative AMD alterations. They had a 96% accuracy rate. Com-
putational power (depends on network design and data amount) and Sophisticated
architecture are two drawbacks of their job (Not every time).

With the database AREDS and CNN, Keenan et al. [6] developed a DL system for
automatic detection of geographic atrophy from color fundus pictures. They achieved
an accuracy of 92.7%. The disadvantage of their work is that it does not work well with
high dimensions and requires more computational resources.

Grassman [20] used the CORRA database and the RNN approach to construct a
DL system to predict Age-Related Eye Disease (AREDS) research intensity scale for
AMD using color fundus photography. They had an accuracy percentage of 92.7%. The
drawbacks of their work include the fact that neural networks are black boxes, meaning
we don’t know whether each independent variable influences the dependent variables.
Traditional CPU training is both technologically incompetent and time-intensive, and
neural network training data is crucial [23]. As a result, over-fitting and generalization
become a worry. The method is more dependent on training data and can be customized
to meet your specific requirements.

3 Methodology

Here the author tries to propose a new methodology for the detection and classification
of AMD using a hybrid structure of Densenet 169 and CNN [5]. Figure 2 depicts the
diagram of the methodology of the proposed model. Here, initially, we collect datasets
from repositories likeAREDS,Optretina andSTAREwhich is followedbyproposing this
dataset as it contains noises and other anomalies. For that, we use histogram equalization
processing technique. Further, extracting features using GLCM is done. Finally, passes
to the main stage which is classification [25]. Here we use the DENSENET169 neural
network for accurately classifying images into disease/no-disease or dry/wet ARMD.
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Fig. 2. Methodology of the proposed model

3.1 Dataset

The repositories used are AREDS, Optretina and STARE.

• The AREDS is a multi-centre, panel study of AMD and cataracts. The AREDS study
included a clinical investigation of large quantity mineral and vitamin supplements
for AMD [7] and a clinical investigation of large quantity vitamin supplements for
cataracts, as well as natural history data. Participants in the AREDS study had to
be between the ages of 55 and 80 at the time of enrollment, and they had to be in
healthy conditions which would otherwise make a longitudinal observation or drug
administration difficult or impossible. 4,757 participants were divided into four AMD
categories based on fundus images assessed by a centralised reading centre, finest
visual acuity, and ophthalmologic examinations.

• Optretina has been doing telemedicine screenings at optical centres since 2013, and in
workplace offices and private firms since 2017. The Optretina tagged contents, which
contain 306,302 retinal pictures, were used in this study. NMC (colour fundus and
red-free) and optical coherence tomography are used to create the images (OCT) [8].
Images from various types and brands of cameras were included in the dataset.

• The STARE dataset (Structured Analysis of the Retina) is a retinal vascular seg-
mentation dataset. It includes 20 colour fundus photos that are all the same size
(700605).
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3.2 Pre-processing

Once the data is collected, preprocessing should be done to remove any noises or anoma-
lies. For the cleansing purpose, we used histogram equalization. Histogram equalization
is a contrast correction approach in image processing that uses the image’s histogram.
For that, we need to convert the given image into a greyscale version. In greyscale con-
version, we normalize the non-uniformities and then enhances the contrast of the image.
Then this converted image is given for histogram equalization process where it enhances
image based on the intensity values and thereby receiving a pre-processed output which
will then be passed on for extraction process [9].

3.3 Feature Extraction

In the proposed model, the GLCM technique is used to derive information from the
image. The proportion of co-occurring values at a given interval is represented by a
grey level co-occurrence matrix (GLCM), which is a matrix formed over an image [22].
In a GLCM matrix, the quantity of grey levels, G, in an image equals the number of
rows and columns. As a result, using statistical characteristics is one of the earliest
methodologies proposed in the image analysis literature. Haralick [14] recommended
using a co-occurrencematrix. It evaluates the connectionbetween the twoadjacent pixels,
the first of which is referred to as a reference pixel and the second as a neighbour pixel.
It’s also known as a grey tone spatial dependence matrix [10]. It is used to identify the
texture of an image by tabulating the intensity values of an image and the frequency with
which they appear. The five characteristics we extracted are homogeneity, correlation,
co-occurrence, energy, and entropy. There are two-pixel values included in GLCM,
standard pixel and neighbor pixel. The neighbor pixel is picked as the pixel to the right
of each reference pixel. The GLCM matrix is a square matrix with Ni as the no: of grey
levels. To get element [j,k], divide the total number of such comparisons by the number
of times the pixel value of j is next to the pixel value of k. The features extracted from
the GLCM are contrast, correlation, energy, homogeneity and entropy. Table 1 depicts
the corresponding equations of the features extracted.

3.4 Feature Selection and Feature Optimization

Feature selection is a technique for choosing a collection of extracted features or creating
factors with the greatest classification results. This method prevents model overfitting
by removing potentially irrelevant or misleading information. In other terms, it identifies
key characteristics which can be utilized to distinguish healthy from unhealthy images.
Ant colony optimization (ACO) is a successful approach that is useful in the solution of
NP-hard combination optimization problems and it has been widely applied in GWAS.
The basic idea of ACO is to express the feasible solutions of optimization problems
with ant paths and use overall paths of the ant group to constitute the solution space of
optimization problems. Ants on relatively short paths tend to release more pheromone.
With the passage of time, pheromone concentration that accumulates on the short paths
gradually increases and more and more ants choose the paths. Eventually, all the ants
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Table 1. Statistical features of the features used in feature extraction

Extracted features Equation

Mean M =
(

1
m×n

)m=1∑

x=0

n=1∑

y=0
f (x, y)

Standard deviation SD(σ ) =
√√√√

(
1

m×n

)m=1∑

x=0

n=1∑

y=0
(f (x, y) − M )2

Entropy E = −
m=1∑

x=0

n=1∑

y=0
f (x, y)2f (x, y)2

Skewness Sk (X ) =
(

1
mn

)∑
(f (x,y)−M )3

SD3

Kurtosis Kurt(x) =
(

1
mn

)∑
(f (x,y)−M )4

SD4

Contrast Con = ∑m−1
k=0

∑n−1
y=0 (x − y)2f (x + y)

Correlation Corr =
∑m−1

x=0
∑n−1

y=0 (x,y)f (x,y)−MxMy
σxσy

Coarseness Cness = 1
2m+n

∑m−1
k=0

∑n−1
y=0 f (x, y)

will gather on the optimal path under positive feedback, which exactly corresponds to
the optimal solution of the optimization problem.

In this study, a genetic optimization strategy formed using crossover and muta-
tion operators in the genetic algorithm was combined with an ant colony optimization
shortest-pathmethod to achieve feature selection.Holland created theGeneticAlgorithm
(GA), which is a method of addressing an optimization issue that operates similarly to
biological evolution. In a genetic algorithm, a starting population of solutions (similar
to chromosomes) is selected and subjected to iterative change. Every member in the cur-
rent population has a fitness value assigned to them. The fitness value is determined by
training the prediction model with the training data set and then calculating the selection
error. The lower the value of selection error, the lower the fitness. As a result, those with
a higher fitness value will be chosen to create the next population. For a predetermined
number of generations, the algorithm continues until the best answer throughout the
evolution process does not shift to a better value. This predefined value can be 20% or
30% of the generation number determined by the best solution so far.

For example, at generation 50, the algorithm achieves a value of 200, which does not
change for 15 generations (30%of 50), causing the process to stop.Our primary objective
was to distinguish between dry and moist ARMD [11], as well as ARMD without
symptoms. To obtain a P-value, variance analysis was used to choose the top-ranking
energy and entropy parameters. For categorization, the top ten statistically significant (P
0.05) variables (1 energy, 3 entropy, 6 other nonlinear) were chosen. The optimization is
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Fig. 3. Flowchart of ant colony optimization

done byAntColonyOptimization. The flowchart ofAntColonyOptimization is depicted
in Fig. 3.

3.5 Classification

This is the most crucial process of the entire system in which we use several ML or
DL techniques to predict the desired output. So, in this paper, for diagnosing the AMD
anddisease/no-disease or dry/wet ARMD, we use DenseNet169 + CNN. It is a Fully
Convolutional Neural Network (FCN) that is a simultaneously trained learning network
with convolutional filters in place of fully linked layers as judgement layers. By linking
the output neurons of wholly attached levels to all input neurons, this alteration on the
top level’s aids in the reduction of data connected to a place caused by fully linked
areas. DenseNet169 + CNN’s defining feature is its ability to reuse features extracted
and boost characteristic dispersion by establishing a straight link among each layer and
every subsequent layer. Dense, transition down, and transition up are the three essential
blocks of the DenseNet169+CNNnetwork. A batch normalization step follows a ReLU
as an input signal, a 3 × 3 convolution layer, and a dropout layer with a 0.2 decreasing
rate in the Dense block (DB). A batch normalization layer, a ReLU as an input signal, a 3
× 3 convolution layer, a dropout layer with a 0.2 dropping rate, and a 2 × 2Max pooling
layer make up a transition down (TD) block. Three transposed convolution layers make
up a transition Up (TU) block. It’s worth noting that batch normalization and dropout
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can both help to reduce overfitting. The network may need one, both, or none of these,
based on the extent of overfitting. We discovered that integrating both dropout and
batch normalization in our network improves performance on this issue. The network’s
architecture includes a 3 × 3 convolution layer on the input, five dense blocks with 4, 5,
7, 10, and 12 layers each, a transition down component, one dense block with 15 layers
in the final layer of the down-sampling path (bottleneck), five transitions up blocks with
dense blocks of 12, 10, 7, 5, and 4 layers, and a 1 × 1 convoluted layer followed by a
non-linearity indicated by the Softmax function. RMSprop [24], a stochastic gradient
descent optimization technique, is utilized for training the networkwith a rate of learning
of 10–3 in 120 epochs and a 30 epoch early-stop condition. The images are enhanced
with vertical flips and irregular cropping to artificially increase the number of images.
Uniform distribution was used to initialize the network’s weights, and the loss function
was cross-entropy. Testing of stages can begin once the model has been developed by
utilizing the trained model to section the images in the test set. Figure 4 depicts the
architecture of DenseNet169 + CNN.

Fig. 4. Architecture of DenseNet169 + CNN

4 Experimental Results

The proposed DenseNet169+CNNmodel is compared with the existing cut-edge mod-
els such as VGG16, ResNet50, GoogleNet, MobileNet and Inception V3 and their per-
formance is measured using several measures such as Accuracy, Specificity, Sensitivity,
Precision, F-measure and confusion matrix.

.
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Table 2. Metrics of performance measures

Metrics of performance measure Mathematical description

1. Sensitivity, TPR = TP
TP+FN

2. Specificity, S = TN
FP+TN

3. Precision = TP
TP+FP

4. Accuracy = TP+TN
TP+FN+TP+TN

5. F Score = 2TP
2TP+FN+FP

Here, True positive (TP): You predicted a positive and it turned out to be correct; True
Negative (TN): The negative you predicted is correct; False Positive (FP): You predicted
something positive but it wasn’t true, and False Negative (FN): You predicted something
negative but it wasn’t true. Table 2 shows the metrics of performance measures.

Table 3 illustrates the evaluation results of DenseNet169+ CNN with other models
in which CNN gives better results. Figure 5 gives the graphical representation of the
confusion matrix.

Table 3. Confusion matrix

Classification models TP FN FP TN

VGG16 142 20 12 59

GoogleNet 136 28 21 43

InceptionV3 120 38 38 30

ResNet50 132 29 27 41

MobileNet 149 7 5 70

DenseNet169 + CNN (Proposed) 160 1 1 30

Table 4 represents the comparison of the proposed model with other models based
on performance for images 1, 2 and 3 respectively. Figures 6, 7 and 8 depict a graph
of overall performance analysis of images 1, 2 and 3. Table 5 depicts comparison of
proposed model with state-of-art works.
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Fig. 5. Graphical representation of confusion matrix

Table 4. Performance analysis of images 1,2 and 3.

Metrics VGG16 GoogleNet inceptionV3 ResNet50 MobileNet Densenet169
+ CNN
(Proposed)

Image
1

Accuracy 91 75.1 69 82 95 98

Sensitivity 91.78 81.59 78.08 86.6 95.77 98.5

Specificity 88.8 60 44.44 68 93.33 96.5

Precision 94.7 82.6 79.17 89.04 97.14 98.5

F-measure 93.71 82.09 78.62 87.84 96.45 98

Image
2

Accuracy 90 79 64 74 93 98

Sensitivity 84.1 89 78.01 88.11 93.42 97.95

Specificity 88 64.21 54.24 69.21 94.11 96.5

Precision 92.12 74.54 89.20 88.24 98 98.5

F-measure 93.71 82.09 78.62 87.84 96.45 98

Image
3

Accuracy 89 76.21 72 85 96.02 98

Sensitivity 94.21 78.59 67.08 87.56 93.70 98.15

Specificity 92.12 64 55.54 69.12 89.12 96

Precision 84.17 72.46 69.19 90.04 96.14 98

F-measure 84.71 79.09 81 86.94 96 97.95
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Fig. 6. Overall performance analysis of image 1

Fig. 7. Overall performance analysis of image 2

Fig. 8. Overall performance analysis of image 3
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Table 5. Comparison of proposed model with state of art works

Author Database Method Accuracy (%)

Zepta et al. [17] Optretina AI 94.7

Motozoa et al. [26] Stare CNN 96

Keenan et al. [6] Areds DL 92.7

Grassman et al. [20] Areds DL 92.7

Proposed model Areds, Optretina and Stare DenseNet169 + CNN 98

5 Conclusions

This research introduces a new DenseNet169 + CNN model for AMD detection and
classification. We have suggested a new methodology with a few steps, which makes
the model more cut edge one among the present ones. This methodology used the
DenseNet169 + CNN more specific and sensitive compared to other models. Here,
we used DenseNet169 + CNN for better evaluation and it clearly classified the given
image into disease/non-disease or wet/dry AMD. This model is compared with other
present models and we obtained a better result of 98% accuracy. Also, this paper is
much useful for other researchers in helping them to bring other hybrid models for even
better evaluation of AMD.
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