
Approximate String Matching by Fuzzy
Automata

Václav Snášel1, Aleš Keprt2, Ajith Abraham3, and Aboul Ella Hassanien4

1 Department of Computer Science, Faculty of Electrical Engineering
and Computer Science, VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava–Poruba, Czech Republic
Vaclav.Snasel@vsb.cz

2 Department of Computer Science, Faculty of Sciences, Palacký University
Tomkova 40, 779 00 Olomouc, Czech Republic

Ales.Keprt@upol.cz
3 Center of Excellence for Quantifiable Quality of Service
Norwegian University of Science and Technology, Norway

ajith.abraham@ieee.org
4 Cairo University

Faculty of Computer and Information,
Giza, Egypt

aboitcairo@gmail.com

Abstract. We explain new ways of constructing search algorithms us-
ing fuzzy sets and fuzzy automata. This technique can be used to search
or match strings in special cases when some pairs of symbols are more
similar to each other than the others. This kind of similarity can’t be
handled by usual searching algorithms. We present sample situations,
which would use this kind of searching. Then we define a fuzzy automa-
ton, and some basic constructions we need for our purposes. We continue
with definition of our fuzzy automaton based approximate string match-
ing algorithm, and add some notes to fuzzy–trellis construction which
can be used for approximate searching.

1 Introduction

When constructing search algorithms, we often need to solve the problem of
approximate searching. These constructions can also be extended by a weight
function, as described by Muthukrishnan [7].

Approximate string matching and searching isn’t a new problem, it has been
faced and solved many times. It is usually based on Aho-Corasick automata and
trellis constructions, and is often used when working with text documents or
databases, or antivirus software.

In this paper, we present a technique which can be used to search or match
strings in special cases when some pairs of symbols are more similar to each
other than other pairs. This kind of similarity can’t be handled by usual search-
ing algorithms. (Also note that even so called “fuzzy string matching” doesn’t

distinguish between more or less similar symbols, so it’s not related to fuzzy
math at all.) We start our paper with some motivational examples, showing
that there are several situations, which would use this kind of searching. Then
we define a fuzzy automaton, and some basic constructions we need for our pur-
poses. We continue with definition of our fuzzy automata based approximate
matching algorithm, and add some notes to fuzzy-trellis construction which can
be used for approximate searching.

2 Motivational examples

Let us start with some motivational examples.

2.1 DNA Strings

We can understand DNA as a string in alphabet Σ = {A,C,G, T}. Bases A and
G are called purine, and bases C and T are called pyrimidine.

Kurtz [4] writes: “The transversion/transition weight function reflect the
biological fact that a purine→purine and pyrimidine→pyrimidine replacement
is much more likely to occur than a purine�pyrimidine replacement. Moreover,
it takes into account that a deletion or insertion of a base occurs more seldom.”

In the other words, we have to take into account that the level of similarity
or difference of two particular DNA strings can’t be simply expressed as the
number of different symbols in them. We need to look at the particular symbol
pairs. Obviously, the classic algorithm of approximate string searching doesn’t
cover this situation.

2.2 Spell checker

A spell checker based on a dictionary of correct words and abbreviations is a
common way of doing basic check of a text document. We go through document
and search each of its words in our dictionary. The words not found in there are
highlighted and a correction is suggested. The suggested words are those ones
which are present in the dictionary and are the most similar to the unknown one
is sense of addition, deletion and replacement of symbols.

This common model is simple to implement, but it doesn’t cover the fact that
some pairs of symbols are more similar than others. This is also very language–
specific. For example in Latin alphabet ‘a’ and ‘e’ or ‘i’ and ‘y’ are somewhat
related hence more similar than for example ‘w’ and ‘b’. In many European
languages we can found some letters of extended Latin alphabet, whose similarity
solely depends on the nature of a national language, e.g. in some languages ‘ä’
is similar or even identical to ‘ae’ so their exchange should be favored over
other string operations. The primary problem here is that it can’t be simply
implemented by standard string search models.

2.3 Summary

A fuzzy automaton allows us to define individual levels of similarity for particular
pairs of symbols or sequences of symbols, so it can be used as a base for a better
string search in the sense of presented examples.

There are extensive research materials discussing fuzzy automata – you can
find a list of other works in Asveld’s survey [1].

3 Approximate String Matching by Fuzzy Automata

3.1 Fuzzy set

For completeness, we start with a very short definition of a fuzzy set. We define
set L as the interval L = [0, 1],

∨
L = supL = 1,

∧
L = inf L = 0. Let B is a

finite set. Then function A : B → L is called fuzzy set A of B.

Whenever A ⊆ B, we can also take A as a fuzzy set A : B → L.

∀b ∈ B : A(b) =
{∨

L if b ∈ A∧
L if b /∈ A

Note: Definition of L and related stuff can also be more generalized, see Nguyen
& Walker [8] or Bělohlávek [2] for more details. Also, an infinite B could possibly
be a base of an infinite fuzzy set, but we do not need this kind of generalization
here.

3.2 Fuzzy automaton

Fuzzy automata are generalization of nondeterministic finite automata (see Grus-
ka [3]) in that they can be in each of its states with a degree in range L.

Fuzzy automaton is a system

M = (Σ,Q, δ, S, F)

where
Σ is a finite input alphabet
Q is a finite set of states
S ⊆ Q is the set of start states
F ⊆ Q is the set of final (accepting) states
δ = {δa : a ∈ Σ} is a fuzzy transition function
δa : Q×Q→ L is a fuzzy transition matrix of order |Q|, i.e. a fuzzy relation

Note: Fuzzy Automaton recognizes (accepts) a fuzzy language, i.e. language to
which words belong in membership/truth degrees not necessarily equal to 0 or
1. Instead, each state of fuzzy automaton is a vector of values in range [0, 1] (i.e.
each state maps Q→ L).

3.3 The transition function

Fuzzy transition function δ is actually the set of fuzzy relation matrices
mentioned above, i.e. a fuzzy set of Q×Σ ×Q.

δ : Q×Σ ×Q→ L

For a given s, t ∈ Q and a ∈ Σ, value of δ(s, a, t) = δa(s, t) is the degree of
transition from state s to state t for input symbol a.

Every fuzzy set A of Q is called a fuzzy state of automaton M . If an input
a ∈ Σ is accepted by M , the present fuzzy state A will be changed to the
state B = A ◦ δa, where ◦ is a composition rule of fuzzy relations (e.g. minimax
product).

Note: This definition is very similar to the one of the probabilistic finite automa-
ton, including the set of transition matrices (see Gruska [3]). We can see that
the notation is similar, but we must be aware that the principles of fuzzy au-
tomata are quite different and more generic compared to the quite old-fashioned
probabilistic automata.

3.4 Minimax product

Minimax product is defined as follows:
Let P = [pij], Q = [qjk] and R = [rik] be matrix representations of fuzzy
relations for which P ◦ Q = R. Then, by using matrix notation, we can write
[pij] ◦ [qjk] = [rik], where

rik =
∨
∀j

(pij ∧ qjk)

Note: This is equivalent to the classic matrix multiplication with operators ∨
(join) and ∧ (meet) used as a substitute for classic operators + (plus) and ·
(times) respectively. We express this analogy since it can be useful when imple-
menting the fuzzy automata on a computer.

3.5 Extension to words

The fuzzy transition function δ can be extended to the word-based extended
fuzzy transition function δ∗.

δ∗ : Q×Σ∗ ×Q→ L

For w = a1a2 . . . an ∈ Σ∗ the fuzzy transition matrix is defined as a composition
of fuzzy relations: δ∗(w) = δa1 ◦ δa2 ◦ · · · ◦ δan (from left to right).

For empty word ε we define

δ∗(q1, ε, q2) =
{∨

L if q1 = q2∧
L if q1 6= q2

Note that if L = [0, 1], then
∨
L = 1 and

∧
L = 0.

3.6 Final (accepting) states

Function fM is the membership degree of word w = a1 . . . an to the fuzzy
set F of final states.

fM : Σ∗ → L

fM (w) = fM (a1 . . . an) = S ◦ δa1 ◦ . . . ◦ δan ◦ F

Note that fM is a fuzzy set of Σ∗, but we don’t use this terminology here.
Instead, we use fM to determine membership degree of a particular word w.

3.7 Epsilon transitions

In section 3.5 we defined ε-transitions for extended fuzzy transition function.
We can generalize that definition to generic ε-transitions, i.e. we define a fuzzy
relation δε.

δε : Q×Q→ L

δε(q1, q2) = δ∗(q1, ε, q2)

4 Minimization of fuzzy automata

4.1 The minimization of an automaton

One of the most important problems is the minimization of a given fuzzy automa-
ton, i.e. how to decrease the number of states without the loss of the automaton
functionality.

For a given λ ∈ L, let us have a partition (factor set) Qλ = {q̄1, . . . , q̄n} of
set Q, such that ∀ q̄i ∈ Qλ, qr, qt ∈ q̄i, q ∈ Q, and a ∈ Σ holds

|δa(qr, q)− δa(qt, q)| < λ
|δa(q, qr)− δa(q, qt)| < λ
|S(qr)− S(qt)| < λ

(1)

q̄i ⊆ F or q̄i ∩ F = ∅ (2)

We construct fuzzy automaton Mλ = (Σ,Qλ, δλ, Sλ, Fλ) where

δλ(q̄, u, r̄) = δλu(q̄, r̄) =

∑
qi∈q̄

∑
rj∈r̄

δu(qi, rj)

|q̄| · |r̄|

Sλ(q) =

∑
qj∈q̄

S(qj)

|q̄|

Fλ = {q̄ : q̄ ⊆ F}

and q̄, r̄ ∈ Qλ

Theorem 1. Let w = a1a2 . . . am. Then |fM (w)− fMλ
(w)| < λ(m+ 2).

P r o o f. See Močkoř [6].

Let us describe how to use these equations: We must define the maximum word
length m0, and the maximum acceptable difference λ0 for the words of this
maximum size. Then we can compute λ this way:

λ =
λ0

m0 + 2
(3)

Having the λ value, we can perform desired automaton minimization.

4.2 An example

Let us have fuzzy automaton M = (Σ,Q, δ, S, F).
Σ = {0, 1}
Q = {q1, q2, q3, q4, q5}

δ0 =

0.45 0.50 0.80 0.31 0.35
0.47 0.46 0.78 0.34 0.30
0.10 0.15 0.51 0.83 0.78
0.70 0.67 0.42 1.00 0.94
0.71 0.68 0.37 0.95 1.00

δ1 =

0.78 0.74 1.00 1.00 0.96
0.73 0.77 0.96 0.96 0.96
1.00 0.96 0.00 0.00 0.05
0.10 0.12 0.80 1.00 0.97
0.14 0.12 0.76 0.99 0.95

S =

(
1.00 0.15 1.00 0.85 0.90

)
F = {q3}

We want to minimize this fuzzy automaton in such way that the outgoing tran-
sition function will differ by less than 0.25 for words long 2 symbols at most.

According to (3), λ0 = 0.25, m0 = 2, so we compute λ = 0.25
2+2 = 0.0625.

Now we make the fuzzy automaton Mλ from this analysis according to formulas
(1) and (2):

Qλ = {q̄1, q̄2, q̄3}
q̄1 = {q1, q2}, q̄2 = {q3}, q̄3 = {q4, q5}
Sλ =

(
0.125 1.000 0.875

)
Then, for example, we get

δλ0(q̄1, q̄1) = δλ(q̄1, 0, q̄1) =
1
4

(0.45 + 0.50 + 0.47 + 0.46) = 0.47

fM (01) = S ◦ δ0 ◦ δ1 ◦ F = 0.8

fMλ
(01) = Sλ ◦ δλ0 ◦ δλ1 ◦ Fλ = 0.8

As you can see in the example, we reduced the number of states from 5 to 3,
and still the fM (01) = fMλ

(01). Generally, according to the above formulas,
|fM (w)− fMλ

(w)| < 0.25.

5 Approximate string matching based on distance
functions

5.1 Hamming and Levenshtein distance

In this chapter we present constructions R(M,k) and DIR(M,k), originally
introduced by Melichar and Holub [5].

These constructions correspond to the creation of a nondeterministic automa-
ton M ′ from the automaton M accepting string P = p1p2 . . . pn. Automaton M ′

accepts those strings P ′, whose value of P to P ′ distance is equivalent or lower
than the given k while using distance functions R or DIR.

Distance R(P, P ′) is called Hamming distance and is defined as the min-
imum number of symbol replacement operations in string P required for the
conversion of string P into string P ′ (or vice versa).

Distance DIR(P, P ′) is called Levenshtein distance and is defined as the
minimum number of operations of symbol deletion (D), insertion (I) or replace-
ment (R) in P required for the conversion of string P into string P ′ (or vice
versa).

Automaton M ′ is called R−trellis or DIR−trellis as the case may be. The
construction of these automata is described, for example, in the paper [5]. The
trellis construction is a crucial part in the approximate string matching, so we
need to generalize the trellis construction to our fuzzy automata. We will do in
the following paragraphs.

5.2 Construction of fuzzy trellis from a non-fuzzy one

Let us have similarity function s, which defines similarity level between each
pair of input symbols.

s : Σ ×Σ → L (4)

s(ai, aj) =

∧
L if ai and aj are fully different∨
L if ai and aj are fully equal

other value ∈ L if ai and aj are similar
(5)

We usually also define s(ai, aj) = s(aj , ai), but it is generally not required. If
we don’t obey this rule, we get an asymmetric relation, which is less common in
real applications, but still mathematically correct.

Now we can define fuzzy transition function δ′ as

δ′a(qi, qj) =
∨
b∈Σ

(s(a, b) · δb(qi, qj)) (6)

∀qi, qj ∈ Q, a ∈ Σ.

We use formula 6 to construct a fuzzy trellis M ′ = (Σ,Q, δ′, S, F) from the
given similarity function s and a given non-fuzzy trellis M ′ = (Σ,Q, δ, S, F).
This construction is generic and not limited to just R-trellis and DIR-trellis
presented above.

5.3 An example

Let us show an example of fuzzy trellis construction for Hamming distance.

Let us have Σ = {‘a’,‘b’,‘c’}, and automaton M ′ = (Σ,Q, δ, S, F) is a R-trellis
based on word w0 = {“ab”}.

δa =

1 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 δb =

1 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 δc =

1 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Now we are going to construct fuzzy R-trellis of this R-trellis. Let us say symbols
‘a’ and ‘c’ are a bit similar, while the other ones are pairwise different.

s =

1 0 ∗
0 1 0
∗ 0 1

 , ∗ ∈ L

We construct fuzzy transition function δ′.

δa =

1 1 0 ∗ 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 δb =

1 0 0 1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 δc =

1 ∗ 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Now we can compare words w1 = {“bb”} and w1 = {“cb”} to the original

word w0.
If we use the original Hamming function distance R, we get R(w0, w1) = 1

and R(w0, w2) = 1. In this case the words w1 and w2 have got the same level of
similarity to the w0.

If we say that symbols ‘a’ and ‘c’ are a bit similar, we can define for example
∗ = s(‘a’,‘c’) = 0.3. Now fM ′(w1) = 0, while fM ′(w2) = 0.3, and we can see that
w0 is more similar to w2 than w1. This is how a fuzzy trellis works.

5.4 Another variants of similarity function

It may be better to use a different approach to similarity function than the one
shown in formula 5. Formally, we stay at the same definition (see formula 4), but
use a non-zero values for fully different symbols. This time, we define a minimum
value smin which is assigned to s(ai, aj) whenever i and j and fully different, and
use greater values than smin when i and j are similar. This modified approach
performed better in our experiments.

6 Conclusion

We described the construction of a fuzzy automaton for string matching and
searching for patterns in strings. Our approach allows defining different simi-
larity levels for particular pairs of symbols, which can be very useful in several
applications. Specifically, we expect immediate applicability in the field of DNA
string matching. We also did some research in the field of fuzzy Aho-Corasick
automata (ACA), proving that the classic ACA can be generalized to fuzzy
ACA. This generalization brings our fuzzy based approximate string matching
to another set of classic pattern searching applications.

In the future we want to focus on the minimization of fuzzy automata and
compare fuzzy automata with other related techniques, e.g. constructions with
weight function as described by Muthukrishnan [7].

References

1. Asveld P.R.J. A bibliography on Fuzzy Automata, Grammars and Language. In:
Bulletin of the European Association for Theoretical Computer Science. No.58,
1996, pp. 187–196.

2. Bělohlávek R. Fuzzy Relational Systems: Foundations and Principles. Kluwer Aca-
demic Publishers, 2002, 382 pp., ISBN 0-306-46777-1.

3. Gruska J. Foundations of Computing. International Thomson Computer Press,
1997, 197 pp., ISBN: 1-85032-243-0.

4. Kurtz S. Approximate String Searching under Weighted Edit Distance. In: Pro-
ceedings of 3rd South American Workshop oh String Processing, Carton University
Press, 1996, pp. 156–170.

5. Melichar B., Holub J. 6D Classification of Pattern Matching Problem. In: Proceed-
ings of the Prague Stringology Club Workshop 97, 1997, pp. 24–32.

6. Močkoř J. Minimization of Fuzzy Automata. textitRSV FMPE, Hav́ı̌rov, Czech
Republic, 1982. (in Czech)

7. Muthukrishnan S. New Results and Open Problems Related to Non-Standard
Stringology. In: Proceedings of 6th Combinatorial Pattern Matching Conference
CMP 95, Springer Verlag, LNCS 937, Espoo, Finland, 1995, pp. 298–317.

8. Nguyen H.T., Walker E.A. A First Course in Fuzzy Logic. (2nd edition) Chapman
& Hall/CRC, 2000, 372 pages, ISBN: 0-8493-1659-6.

