
Optimization of Rules Selection
for Robot Soccer Strategies

Regular Paper

Václav Snášel1, Václav Svatoň1, Jan Martinovič1,* and Ajith Abraham1

1 Department of Computer Science, FEECS, VŠB - Technical University of Ostrava, Ostrava-Poruba, Czech Republic
* Corresponding author E-mail: jan.martinovic@vsb.cz

Received 31 Aug 2012; Accepted 16 Jul 2013

DOI: 10.5772/56827

© 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Mobile embedded systems belong among the
typical applications of distributed systems control in real-
time. An example of a mobile control system is a robotic
system. The proposal and realization of such a distributed
control system represents a demanding and complex task
for real-time control. In the process of robot soccer game
applications, extensive data is accumulated. The reduction
of such data is a possible win in a game strategy. The main
topic of this article is a description of an efficient method
for rule selection from a strategy. The proposed algorithm
is based on the geometric representation of rules. A
described problem and a proposed solution can be applied
to other areas dealing with effective searching of rules in
structures that also represent coordinates of the real world.
Because this construed strategy describes a real space and
the stores physical coordinates of real objects, our method
can be used in strategic planning in the real world where
we know the geographical positions of objects.

Keywords Robot Soccer, Strategy, Rule

1. Introduction

This introduction contains an explanation of our view of
strategies and rules and how we use them for mapping

coordinates of the real world. In the next part of the
article, our method is practically applied to a robot soccer
game in which we can see the benefits of the presented
solution to the existing algorithm. The algorithms and
approaches from this article may serve beyond their mere
use in games of robot soccer.

A complete set of options that are available to players in
any game situation in order to achieve the objective is
considered as a strategy in game theory [1, 13]. The result
of this strategy depends not only on the actions of the
individual player but also on the actions of other players
or elements of the game. A so-called pure strategy
contains a list of all possible situations that may arise in
the game. For strategy [2] can be considered any mapping
or description of the space in which we know the
geographical positions of the objects located in it, and we
have defined a finite set of rules that tell us how these
objects can behave in a given situation. This principle can
be applied to a number of areas of the real world and is
generally called ‘strategy planning’ [3]. From our
perspective, the best approach is to use such strategies to
describe a space and the objects in it, and to use the
subsequent search for the optimal path or relocation of
these objects in order to achieve our desired goals. In
other words, we are interested in strategies dealing with

1Václav Snášel, Václav Svatoň, Jan Martinovič and Ajith Abraham:
Optimization of Rules Selection for Robot Soccer Strategies

ARTICLE

Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

International Journal of Advanced Robotic Systems

planning. A practical example might be a strategy for
traffic control at the airports [4]. The strategy represents
the area of the airport and also provides rules upon
which are selected the optimal paths for aircrafts towards
assigned runways. The following section will explain the
importance of strategy in the game of robot soccer, in
which our method was also practically tested.

2. Strategies in robot soccer games

In this section, the problems of a robot soccer game are
described. Robot soccer has been selected as a sample
topic because it contains a number of challenges in the
areas of robot control, image analysis and the above-
mentioned strategic planning. Strategy is inherently
connected with robot soccer games. The basic idea of
robot soccer is the same as in real football, namely to win
over the opponent by the number of scored goals. Just
like in a real football, the team that usually wins is the
team with the better strategy.

Robot soccer games can be divided into two main types:
games with autonomous control and those with
centralized control. In games based on autonomous
control, the players are considered to be mutually
independent agents. Each player only has information
about its surroundings, which in most cases contains
information simulating a field of view of the player. Each
player also has its own strategy or a set of rules that
defines how it should behave in the current situation. By
a ‘situation’ is meant information about those objects that
are currently in the player’s field of view. The main
representative of this category is undoubtedly the
international robotics competition RoboCup [16].

The second type of game involves games with central
management. We also use this type of game in this article
[5]. As the name suggests, there is one central element
that has information about all the objects located on the
game field at every step of the game. The behaviour of
the robots in specific situations is controlled by one
central strategy that controls all the robots of the
controlled team using globally-available information (the
coordinates of the ball, the coordinates and rotations of
the robots, etc.) describing the situation on the game field.
This game type is represented by The Federation of
International Robot-soccer Association (FIRA).

In practical terms, strategies are used according to
various methods. For example, strategies based on
standard decision trees [6] where actions are selected
based on the robots’ position in relation to the ball, the
owner of the ball, the distance to the goal, etc. Another
frequently-used method is a strategy based on fuzzy logic
[7-9], where game situations are divided into several
levels and where the corresponding types of behaviour of

robots are assigned to them. Many teams participating in
some of the categories of RoboCup address autonomous
robot control methods based on case-based reasoning [17,
18], which is an artificial intelligence problem-solving
technique that catalogues experience into cases and
matches the current problem to the experience. On the
other hand, teams participating in FIRA competitions use
a number of methods dealing with the centralized control
of robots.

We can encounter combinations of the above-mentioned
approaches or even vastly different ones. The main idea is
still the same: to create a system that will respond as
quickly as possible to changes of situations in the game
field by the best possible relocation and control of the
robots in order to score in an opponent’s goal. In the
following sections, we present our method for the quick
and effective selection of rules from a strategy in a robot
soccer game.

3. Strategy for our robot soccer game

Our work is based on the FIRA category called
‘SimuroSot’, which uses the centralized control of robots.
This category contains a FIRA simulator as the game
server simulating a game environment and the two client
programs with an implemented strategy for the left or the
right team. Both playing teams have access to the global
information describing the current situation on the field
at each game moment. Next, prepared strategies decide
what actions the controlled team must perform, based on
this information.

Figure 1. 2D robot soccer simulator

Our goal was to create a unified and robust library for a
robot soccer game that could be used in a real robot game
and a game running within the simulator. Such a
proposed system was built from interconnected modules
containing the necessary functionality for prediction,
image analysis and robot control, etc. This architecture
allowed us to perform experiments with different

2 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

methods used for the efficient processing of the strategy
or else to create a partially-simulated game containing
both real and simulated robots. For the extensive testing
of these methods, we created a 2D robot soccer simulator
(see Figure 1) that was also used for the experiments
presented in this paper.

In our work, we have two types of representation of the
game field. The first type is an abstract coordinate system.
In it, the physical coordinates of the real objects on the
field are mapped to a standard coordinate system (see
Figure 2). Because this logical representation is very
detailed, it is used mainly for actual robot control and
image analysis, which requires the greatest possible
accuracy. However this very detailed representation is
not suitable for the strategy’s description. As mentioned
above, the strategy contains a set of rules that describes
how the robots should behave in a given situation. A
strategy based on a very detailed coordinate system
would have to include a large number of rules, and most
of these rules would have been very similar so as to
almost describe the actual situation on the game field.

Figure 2. Inner game field representation

Therefore we introduce the term so-called ‘grid
coordinates’. Grid coordinates have much lower
resolution and are only used for the definition of
strategies and underlying rules (see Figure 2). This
simplification is sufficient for us because for the purposes
of the strategic planning we do not need to know the
exact position of each robot. All we need is the
approximate location of the robot represented by the grid
coordinates.

By using grid coordinates, we reduce the accuracy of the
mapping of the physical coordinates of the robots into the
logical ones but, on the other hand, we dramatically
reduce the number of the rules needed to create a
strategy. If necessary, it is possible to convert the grid
coordinates back to the physical and to use them for the

aforementioned robot control. The robot's behaviour in
the grid coordinates is then controlled by so-called
‘tactics’ [10]. The tactics contain functions for robot
control, such as turning the robot, shooting at goal or
passing the ball. Therefore, in terms of hierarchy, the
strategy takes care of the placement of the robots in the
grid coordinates while at the lower level, under the
strategy, the tactics are executed. The tactics work with
the physical coordinates and controls the robot inside the
grid. The strategy, as we understand it, is the quaternion

, , ,X Y p m< > where:

• UX X⊂ where UX is the universe of all situations
that may occur during the game and X is a set of
game situations defined by the strategy,

• UY Y⊂ where Y is a set of instructions that the

strategy uses to control the robots and UY is the
universe of all possible instructions,

• p is a projection X Y→ ,

• m is a projection UX X→ ,

• (()) U
up m x X∈ where U

ux X∈ : every real
situation on the game field is assigned by a game
situation from the strategy, which itself also
contains instructions as to where to move the robots.

The selection of the appropriate rule from the strategy
depends on the current game situation. This situation is
represented by the current state of the game in robot
soccer. This state contains information about the position
of the robots and the ball on the game field as well as
their rotations and speeds. However, the most important
data for the strategy includes the grid coordinates of all
the objects on the game field.

Example rule Red team rule
 Mine A1 A2 B1 B2
 Opponent B1 B2 C1 C2
 Ball B2
 Destination A1 B2 C1 C2

 Mine 11 12 21 22
 Opponent 21 22 31 32
 Ball 22
 Destination 11 22 31 32

Table 1. Strategy rule

As we have explained, the strategy is a finite set of rules
that describe the current situation on the game field and,
thus, says where to move the robots in that situation.
Each rule can be easily expressed as a quaternion (M, O,
B, D), where M denotes the grid coordinates of the robots,
O denotes the coordinates of the opponent's robots, B
denotes the coordinates of the ball and D denotes the
coordinates of the desired destination of the robots. An
example of such a rule is given in Table 1.

Because this system is based on the centralized control of
every step of the game, we have access to the grid
coordinates of each object on the game field. Thus, at
every step of the game we can compute how similar the

3Václav Snášel, Václav Svatoň, Jan Martinovič and Ajith Abraham:
Optimization of Rules Selection for Robot Soccer Strategies

real situation on the game field is to that described by the
selected rule from our strategy. Table 1 gives an example
of a rule created for a 5-member team of robots. The rule
consists of just 4 robots because the strategy does not
include the goalkeeper. The only role of the goalkeeper is
to protect the goal, and so it is not necessary to include it
in the strategy. For graphical representation of this rule
see Figure 3.

Figure 3. Situation on the game field

4. Existing problems

The current approach to our strategies is based on the
description presented above. Therefore, at every step of
the game we compare the current situation on the field
with those situations described in the rules of the
strategy. By ‘comparing’ is meant the computation of the
Euclidean distance between the real situation on the field
and the situation described by the selected rule. The
Euclidean distance is computed from the grid coordinates
of the ball, the friendly robots and the opponent robots.
The resulting number is computed as the sum of these
three individual distances and represents the distance
between the real situation and the situation in a given
rule. Afterwards, the rule with a minimum Euclidean
distance is selected from the strategy. From this selected
rule, the grid coordinates marked as ‘destination’ are
used to move the friendly robots to designated locations
on the game field.

From this description, one of the main problems of this
approach becomes obvious. At each step of the game, we
must constantly calculate the distance between the real
situation on the game field and all the rules contained in
the used strategy. With any increase of the number of
rules in the strategy, we also increase the time needed to
find the closest rule. This at first glance may not seem like
a serious problem, but when it is realized that a given
moment of one cycle of the game takes several
milliseconds, we must perform this computation almost
constantly. Thus, any time saved while finding the closest
rule allows us to respond to changing situations on the
game field as quickly as possible.

Another problem with this architecture relates to the
identification of the robots. For identification, we
consider their coloured markings. Our designed
architecture does not include robots that are uniquely
identifiable by IDs or assigned roles. This is because of
the desire for greater discretion during the game. For
example, in a specific game situation, a defender and an
attacker can switch places during an attack on goal, if
possible. The players do not need to be identified by
unique IDs or roles. However, this poses problems during
the selection of the closest rule from the strategy. Each
rule only tells us that some robot can be found in the grid
coordinates. However, it does not tell us specifically that
this particular robot must be located in the grid
coordinates. This was also one of the requirements of the
design of our architecture (i.e., the mutual independence
of strategies and the robots’ identification).

To calculate the distances of robots, it is necessary to
work with the real robots. This issue was solved using a
permutation without repetition. For each rule the,
distance between robots is not computed only once but k
times, where k means a number of robots. Then, it is
always selected from this permutation the mapping with
the smallest value of the calculated distance and it is
considered to be the final distance between the real
situation and the situation described by the selected rule.
This approach causes that the increasing number of
robots in the game also increases exponentially the
number of operations required to find the closest rule
from the strategy. Our presented method attempts to
preserve the concept of a general and independent
strategy but with the eliminating the above mentioned
shortcomings.

5. Our approach

The main area of our interest lies in the optimization of
rule searching from the strategy using a graph and so-
called ‘space-filling curves’ [11]. A space-filling curve
(SFC) is a way of mapping a multidimensional space onto
a one-dimensional space [19, 11]. An SFC is a path
through the points of a discrete Cartesian space that
passes through each point exactly once. There are many
types of SFCs. Typically, an SFC is more likely to connect
points that are close. The family of Hilbert curves [22] is
known to have good locality-preserving properties.
However, they are complex to construct. A much simpler
curve to construct is the Z-curve [12], which is the main
reason for using this type of SFC in this article. Like other
space-filling curves, a Z-order curve maps data points in a
multidimensional space onto a one-dimensional space,
where each point is represented by a unique number,
called Z-address or a Morton code. [23, 24]. A Z-address is a
bit string calculated by interleaving the bits of all the
coordinate values of a data point. For a d-dimensional

4 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

space with ([0; 2v-1]) as the coordinate value domain
ranges, the Z-address of a data point contains dv bits. The
i-th bit of a Z-address is contributed by the (i/d)-th bit of
the (i%d)-th coordinate. For example, the Z-address of
p = (1; 6; 3; 7) (i.e., (001; 110; 011; 111) in binary) is
010101111011. This Z-address calculation is reversible, so
the original coordinate can be recovered from its
corresponding Z-address. Z-order is a good approximation
of geometric similarity [21]. The Z-order can be computed
very efficiently using bit interleaving of the point
coordinates in the Cartesian space [23].

RecursiveZ(int level, int x, int y)
{
 if(level=0)
 return;
 if(level>1){
 RecursiveZ(level-1, 2*x, 2*y) ;
 RecursiveZ(level-1, 2*(x+1)+1, 2*y) ;
 RecursiveZ(level-1, 2*x, 2*(y+1)) ;
 RecursiveZ(level-1,2*(x+1)+1, 2*(y+1)) ;
 }
 addToIndexList(x, y);
 addToIndexList(x+1, y);
 addToIndexList(x+2, y);
 addToIndexList(x+1, y+1);
 addToIndexList(x+2, y+1);
}

Table 2. Z-order pseudocode

The algorithm for computing the Z-order curve is based
on this method by using its recursive nature. Due to its
properties, it is suited for converting a two-dimensional
matrix representing the playing field into a one-
dimensional array of the coordinates of the individual
robots.

Figure 4. Grid 6x4 with Z-order curve

Thus, if we use the Z-order to arrange the robots’
coordinates in the real situation on the game field and
then to arrange the robots coordinates within each set of
rules, all we need to do next is compute the distance
between these two sorted sequences. Accordingly, we do
not have to solve the issue of the ambiguity of the robots
using permutations. The removal of these permutations

will mean that even with a large number of robots on the
game field there is no longer an exponential increase in
the time needed for computation. The algorithm in its
original form is created for a square space, so it was
slightly modified for our game field with dimensions 6x4.
A pseudocode algorithm for the computation of the Z-
order curve can be seen in Table 2 and Figure 4 shows the
final relocation of the robots located on the game field.

However using a Z-order curve does not eliminate the
need to compute the distances between the real situation
and all the rules defined in the strategy in every step of
the game. Therefore, it was necessary to completely
change the principle of how the individual rules from the
strategy would be chosen. To address this problem, we
decided to use an undirected connected graph with edge
valuations. It is suitable for our purposes both in terms of
the effective searching of similar rules as well as from the
perspective of a relatively easy visualization of the rules
contained in the strategy.

Let the graph be defined as a pair G = <V, E> where V is a
non-empty set of vertices and E is a set of two-element
sets of vertices, also called ‘undirected edges’. In our case,
the set of vertices consists of the individual rules from the
strategy. The edges contain an evaluation that
corresponds to a distance between the two neighbouring
vertices (rules). A distance is considered to be a
normalized value of a Euclidean distance computed from
two sorted sequences using the above-mentioned Z-order
applied to the neighbouring vertices that contain the
robots’ grid coordinates.

However, this graph will contain all the edges between
all the defined vertices. The main idea of this graph lies in
the fact that very similar rules to those of the strategy will
be connected by a strong bond (a small distance) while
the rules that differ fundamentally will be connected with
a weak bond (a large distance). Thus, we do not have to
compare the current situation on the game field with
every rule from the strategy at each game step. It is
sufficient to compare the current situation only with the
neighbouring rules connected by the strong bond.
Basically, each current step of the game is represented by
some real situation on the game field and is mapped to a
certain rule from the strategy. We assume that in the next
step (which, in our simulator, takes only several ms) the
situation on the game field does not change sufficiently to
have required the choice of some completely different
rule from the strategy. In other words, the robots will not
have enough time to move a sufficiently large distance
over the game field and, therefore, the currently selected
rule will not change or else some very similar rule will be
selected instead. We can pre-compute this strategy graph
before the start of the game because the rules of the
strategy do not change during the game. During the game
itself, we use it only to quickly find those rules of the

5Václav Snášel, Václav Svatoň, Jan Martinovič and Ajith Abraham:
Optimization of Rules Selection for Robot Soccer Strategies

strategy that most closely match the real situation on the
game field.

For greater clarity, we compare the time complexity of the
two presented algorithms. The first algorithm at each
game moment compares the current situation on the field
with all those situations that are represented by the rules
in the strategy. In addition, the algorithm needs to
compute the permutations of all the robots on the field
(except for the goalkeeper) for both the left and the right
team. This time complexity can be expressed as:

O (Nrules * (P (Nleft – 1) + P (Nright – 1)))

where Nrules is the number of rules in the strategy, P is the
permutation without repetition, Nleft is the number on
robots of the left team and Nright is the number of robots
on the right team.

On the other hand, the presented optimization utilizing a
Z-order to arrange the robots’ coordinates and an
undirected connected graph with edge valuations for the
quick searching of the rules can be expressed by the
following two steps:

1. Pre-computation of the graph of rules: O (P (Nrules),
where P is a permutation without repetition and
Nrules is the number of rules in the strategy,

2. Rule selection: O (Srules * (Zleft + Zright)), where Srules
is the selected number of neighbouring vertices for
searching, Zleft is one comparison of two Z-order
arrays representing robots on the left team and Zright
is one comparison of two Z-order arrays
representing robots on the right team.

This idea is also based on the experience that a majority
of strategies consist of several so-called ‘actions’. These
actions are based on the selected subset of rules from the
strategy. These actions are not strictly defined in the
strategy, but may be created by a user during the
construction of the strategy. For example, we can create a
strategy that consists of 15 rules. The first five rules can
represent the action for an attack on the right flank, the
next five rules can represent an attack on the left flank
and the last five rules can be for defence. Thus, we have
created a strategy consisting of 15 rules which represents
only three actions as intended by the user. We are mainly
interested in the fast searching of the closest rules from
the strategy and in the smoothest execution of the follow
up actions, which are defined by these rules.

6. Experiments

For our experiments, we created a sample strategy
consisting of 18 rules. This strategy was created for a
game with 11 robots on each team. Therefore, every rule
in the strategy contains 10 coordinates for each of the

robots (the goalkeeper is not controlled by the strategy).
All the rules of this strategy can be seen in table 3. This
strategy was created in our tool for the simple and
intuitive creation of strategies, called the ‘strategy
creator’.

Example strategy
Rule 1
Mine 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Opponent 4,2 4,3 4,2 4,3 5,2 5,4 5,1 5,4 6,1 6,4
Ball 4,3
Move 4,2 4,2 3,2 4,3 2,2 2,3 3,1 3,3 2,1 2,4
Rule 2
Mine 4,2 4,2 3,2 4,3 2,2 2,3 3,1 3,3 2,1 2,4
Opponent 4,2 4,3 4,2 4,3 5,2 5,3 4,1 4,4 6,1 6,4
Ball 4,2
Move 5,2 5,2 4,2 5,3 3,2 3,3 3,1 3,4 2,1 2,4
Rule 3
Mine 5,2 5,2 4,2 5,3 3,2 3,3 3,1 3,4 2,1 2,4
Opponent 4,2 4,3 5,2 4,3 5,2 5,3 4,1 4,4 6,1 6,4
Ball 5,2
Move 6,2 5,2 4,2 6,3 3,2 3,3 3,1 3,4 2,1 2,4
Rule 4
Mine 6,2 5,2 4,2 6,3 3,2 3,3 3,1 3,4 2,1 2,4
Opponent 4,2 4,3 6,2 5,3 5,2 6,3 5,1 4,4 6,1 5,4
Ball 6,2
Move 6,2 5,2 4,2 6,3 3,2 3,3 3,1 3,4 2,1 2,4
Rule 5
Mine 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Opponent 4,2 4,3 4,2 4,3 5,2 5,4 5,1 5,4 6,1 6,4
Ball 4,3
Move 4,3 4,3 3,2 3,3 3,2 2,3 2,2 3,4 2,1 2,4
Rule 6
Mine 4,3 4,3 3,2 3,3 3,2 2,3 2,2 3,4 2,1 2,4
Opponent 4,2 4,3 4,2 5,3 4,1 5,4 5,2 4,4 6,1 6,4
Ball 4,3
Move 4,3 4,4 3,2 3,4 3,1 3,3 2,2 4,4 2,1 2,4
Rule 7
Mine 4,3 4,4 3,2 3,4 3,1 3,3 2,2 4,4 2,1 2,4
Opponent 4,3 4,3 4,2 5,3 4,1 5,4 5,1 4,4 6,1 6,4
Ball 4,4
Move 4,3 5,3 3,2 4,4 3,1 3,3 2,2 5,4 2,1 3,4
Rule 8
Mine 4,3 5,3 3,2 4,4 3,1 3,3 2,2 5,4 2,1 3,4
Opponent 4,3 4,3 4,2 5,3 4,1 5,4 5,1 4,4 6,1 6,4
Ball 5,3
Move 5,3 6,3 4,2 5,4 4,1 3,3 2,2 6,3 2,1 3,4
Rule 9
Mine 5,3 6,3 4,2 5,4 4,1 3,3 2,2 6,3 2,1 3,4
Opponent 5,3 4,3 4,2 5,2 5,2 6,3 5,1 5,4 6,1 6,4
Ball 6,3
Move 5,3 6,3 4,2 5,4 4,1 3,3 2,2 6,3 2,1 3,4
Rule 10
Mine 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Opponent 4,2 4,3 4,2 4,3 5,2 5,4 5,1 5,4 6,1 6,4
Ball 4,3
Move 3,2 3,3 3,2 3,3 2,2 2,3 3,1 3,4 2,1 2,4

6 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

Rule 11
Mine 3,2 3,3 3,2 3,3 2,2 2,3 3,1 3,4 2,1 2,4
Opponent 3,2 3,3 3,1 4,3 4,2 4,4 4,1 5,3 6,1 5,4
Ball 3,2
Move 3,2 3,3 2,2 2,3 2,2 1,3 2,1 3,4 1,2 2,4
Rule 12
Mine 3,2 3,3 2,2 2,3 2,2 1,3 2,1 3,4 1,2 2,4
Opponent 2,2 2,3 2,1 3,3 3,2 4,4 4,1 4,3 6,1 5,4
Ball 2,2
Move 3,2 3,3 1,2 2,3 2,2 1,3 1,1 2,4 1,2 1,4
Rule 13
Mine 3,2 3,3 1,2 2,3 2,2 1,3 1,1 2,4 1,2 1,4
Opponent 2,2 2,3 2,1 3,3 3,2 4,4 4,1 4,3 6,1 5,4
Ball 1,2
Move 3,2 3,3 1,2 2,3 2,2 1,3 1,1 2,4 1,2 1,4
Rule 14
Mine 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Opponent 4,2 4,3 4,2 4,3 5,2 5,4 5,1 5,4 6,1 6,4
Ball 4,3
Move 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Rule 15
Mine 3,2 3,3 3,2 3,3 2,2 2,4 2,1 2,4 1,1 1,4
Opponent 3,2 3,3 4,2 4,3 4,1 4,4 5,2 5,4 5,1 6,4
Ball 3,3
Move 2,3 3,4 2,2 3,4 2,2 2,4 3,1 2,4 1,2 1,3
Rule 16
Mine 2,3 3,4 2,2 3,4 2,2 2,4 3,1 2,4 1,2 1,3
Opponent 3,2 3,4 4,2 4,3 4,1 4,4 5,2 5,4 5,1 6,4
Ball 3,4
Move 2,3 3,3 2,2 3,4 2,2 2,4 3,1 2,4 1,2 1,3
Rule 17
Mine 2,3 3,3 2,2 3,4 2,2 2,4 3,1 2,4 1,2 1,3
Opponent 2,2 2,3 3,2 3,3 4,1 4,4 4,2 4,3 5,1 5,3
Ball 2,3
Move 2,3 3,3 2,2 3,4 2,1 2,4 3,1 1,4 1,2 1,3
Rule 18
Mine 2,3 3,3 2,2 3,4 2,1 2,4 3,1 1,4 1,2 1,3
Opponent 1,2 1,3 2,2 2,3 4,1 3,4 4,2 4,3 5,1 5,3
Ball 1,3
Move 2,3 3,3 2,2 3,4 2,1 2,4 3,1 1,4 1,2 1,3

Table 3. Example strategy used in the experiments

As mentioned in section 4, one of the main reasons why
we decided to use a graph and space-filling curves
instead of the currently-used permutations was time
efficiency. The previous implementation was used mainly
for games with five robots on each team. This number of
robots was sufficient for the initial experiments. Despite
the number of permutations of the all robots and the
constant need to search through every rule in the
strategy, we achieved an average time of 1 ms per search
(one strategy moment). However, with an increasing
number of robots on the game field, there was a rapid
deceleration in time efficiency. With 11 robots per team,
one search took an average of 142 seconds, which for the
real game is a completely unusable solution.

Previous version using permutations
Robots per team Time of one strategy

moment (one search)
5 0.9642 ms
7 198.5552 ms
9 1 589.3497 ms

11 142 917.1025 ms
Current version using a Z-order and graph

with 11 robots per team
Number of neighbouring

vertices for searching
Time of one strategy
moment (one search)

5 0.2444 ms
10 0.2672 ms
15 0.2979 ms

Table 4. Time comparison of two implementations of rules
selection from the strategy

A new implementation utilizing a Z-order for the sorting
of the robots’ coordinates and a graph for the
representation of the rules achieved significantly better
results. The experiments with the new implementation
were always created for games with 11 robots per team.
The only parameter that has been changed was the
number of neighbouring vertices used for the searching
during each game step. The sample strategy contains a
total of 18 rules, and so every vertex in the graph will
have 17 neighbours. For each search, the following rule is
chosen from a selected number of the nearest neighbours.
Table 4 shows the final comparison of both approaches in
terms of the time required for the computation of the
following rule.

Figure 5. Rule selection using a graph

Figure 5 illustrates how the following rule is selected
during each game step. For simplicity, let us say that the
currently-used rule is rule 6. From our pre-computed
graph, we can get all 17 neighbours of rule 6 and the
evaluation of all the connected edges. Next, we can create a
selected subset of rules according to the required number
of nearest neighbours we want to use for the comparison.

7Václav Snášel, Václav Svatoň, Jan Martinovič and Ajith Abraham:
Optimization of Rules Selection for Robot Soccer Strategies

In the next step, we only need to compare the real
situation on the game field with the situations described
by the selected neighbours and the currently selected
rule. This is because the current rule does not necessarily
have to be changed at each game step. The most similar
rule is then returned as a result of searching.

Time needed to
pre-compute the
strategy graph

Number of rules in the strategy

18 50 100 200

14 ms 18 ms 25 ms 48 ms

Number of rules in the strategy

500 1000 2000 5000

224 ms 854 ms 3411 ms
22144

ms

Table 5. Pre-computation of the strategy graph

The time of the first search [ms]

Neigh. vertices
Number of rules in the strategy

18 50 100 200

5 12.4671 13.1436 12.3526 12.4121

10 13.1754 14.0021 13.4584 15.9173

15 13.1247 14.0465 14.0344 13.4878

25 - 14.4588 15.4874 14.1972

Neigh. vertices
Number of rules in the strategy

500 1000 2000 5000

5 15.8301 16.6385 17.9907 18.5728

10 15.9452 17.1577 18.4847 19.1544

15 15.4454 16.4877 17.9443 18.7314

25 15.9879 17.7984 18.4772 20.1478

Table 6. The first search

The time of the common search [ms]

Neigh.
vertices

Number of rules in the strategy

18 50 100 200

5 0.2993 0.2087 0.2179 0.2379

10 0.3539 0.4143 0.4575 0.4972

15 0.4235 0.4798 0.5646 0.7871

25 - 0.4587 0.5887 0.6448

Neigh.
vertices

Number of rules in the strategy

500 1000 2000 5000

5 0.4949 0.6094 0.9411 1.8443

10 0.5421 0.7989 0.9781 1.7854

15 0.7554 0.8121 1.4875 1.6778

25 0.7945 0.9877 1.5751 1.7887

Table 7. The common search

It is important to emphasise that because we compare the
real situation on the game field (which may not be
described by rule of the strategy) and the situations
described by the rules of the strategy, the winning rule
may not be always the same as the nearest neighbour
from the graph.

For further experiments, we prepared strategies of 50,
100, 200, 500, 1,000, 2,000 and 5,000 rules. For each
strategy, we measured the time required to pre-compute
the strategy graph (Table 5) and the average search time
of one rule during the game (Table 7). It is important to
note that at the beginning of the game (i.e., during the
first game moment) the rule from the previous game
moment is not known. Therefore, it is necessary to search
from all of the neighbouring vertices in the graph instead
of just a selected subset of the most similar rules. Table 6
contains the measured times of the first search. Table 5
shows that the time required to pre-compute the graph
grows rapidly with the increasing number of rules. On
the contrary, the time required to search for the rule
changes slowly. The time of the first search is in the tens
of ms and the times of the subsequent searches are in
units of ms. The experiments were performed on a
desktop computer with a processor Intel Core i5 3.4GHz
with 8GB RAM DDR3 1600MHz.

Figure 6. The places with the most frequent occurrence of the
robots

The places with the most frequent occurrence of the
robots on the playground could also be determined by a
simple analysis of the created strategy. Figure 6 shows
the players of both teams on the game field defined by
the rules of this strategy (grid coordinates for friendly
and opponent robots). The evaluation of the individual
grid cells was calculated as the sum of all the robots of the
team in the cell which is defined by rule.

7. Conclusion

In this work, strategies for robot soccer games were
discussed. The description of the approach for strategies’
definitions was presented. The main part of the article
discussed the optimization of the best rule selection in a
real-time running robot soccer game based on a Z-order
and graphs.

8 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

A Z-order is representative of the category of space-filling
curves. It is a function for mapping data from a
multidimensional space onto a one-dimensional space
while preserving the locality of data points. A Z-order is
therefore highly suitable for the quick mapping of the
two-dimensional array, representing the game field, onto
a one-dimensional array containing the coordinates of
each robot. With this ordered array of robots, it is thus
substantially easier to work, especially during the phase
of rule selection. Utilizing a graph to represent the rules
of the strategy brings various benefits, not only in terms
of computing speed but also in terms of the relatively
easy visualization of the strategy which, for example,
allows us to reveal its weaknesses.

Games can in general represent any situation in nature. In
[14], game theory is applied for adversarial reasoning in
security resource allocation and scheduling problems. In
[14], the authors showed that randomized policies
mitigate a key vulnerability of human plans: predictability.
In [15] methods for strategy extraction are described.

8. Acknowledgments

This work was supported by Grant SGS No. SP2013/70,
VŠB - Technical University of Ostrava, Czech Republic
and by Grant SGS No. SP2013/167, VŠB - Technical
University of Ostrava, Czech Republic. We would like to
thank the students on the bachelor’s and master’s courses
at the VŠB - Technical University of Ostrava, who
participated in the development and further
improvement of the simulator for robot soccer that was
used to create the above-mentioned experiments.

9. References

[1] M. J. Osborne (2004) An introduction to game theory.

New York Oxford, Oxford University Press.
[2] C. F. Camerer (2003) Behavioral Game Theory:

Experiments in Strategic Interaction. Princeton
University Press.

[3] S. Ontanón, K. Mishra, N. Sugandh and A. Ram
(2007) Case-based planning and execution for real-
time strategy games. Lecture Notes in Computer
Science, Volume 4626, 164-178.

[4] M. A. Stamatopoulos, K. G. Zografos and A. R.
Odoni (2004) A decision support system for airport
strategic planning. Transportation Research Part C:
Emerging Technologies, Volume 12, 91–117.

[5] J. Martinovic, V. Snasel, E. Ochodkova, L. Zołta, J.
Wu and A. Abraham (2010) Robot soccer - strategy
description and game analysis. Modelling and
Simulation, 24th European Conference ECMS 2010.

[6] H. P. Huang and C. C. Liang (2002) Strategy-based
decision making of a soccer robot system using a
real-time self-organizing fuzzy decision tree. Fuzzy
Sets and Systems 127, 49-64.

[7] P. J. Thomas and R. J. Stonier (2003) Fuzzy control in
robot-soccer, evolutionary learning in the first layer
of control. Journal of Systemics, Cybernetics and
Informatics, Volume 1, 75-80.

[8] H. L Sng., G. S. Gupta and C. H. Messom (2002)
Strategy for collaboration in robot soccer. Electronic
Design, Test and Applications, 347-351.

[9] K. Jinwook Kim, K. Yoon-Gu and A. Jinung (2011)
A fuzzy obstacle avoidance controller using a
lookup-table sharing method and its applications for
mobile robots. International Journal of Advanced
Robotic Systems, Vedran Kordic, Aleksandar
Lazinica, Munir Merdan (Ed.), InTech

[10] G. Klancar, M. Lepetic, R. Karba and B. Zupancic
(2003) Robot soccer collision modelling and
validation in multi-agent simulator. Mathematical
and Computer Modelling of Dynamical Systems:
Methods, Tools and Applications in Engineering and
Related Sciences, Volume 9, 137-150.

[11] H. Sagan (1994) Space-filling curves. Springer-
Verlag.

[12] G. M. Morton (1966) A computer oriented geodetic
database and a new technique in file sequencing.
Technical Report, IBM Ltd. Ottawa, Canada.

[13] J-H. Kim, D-H. Kim, Y-J. Kim, K. T. Seow (2010)
Soccer robotics. Springer Tracts in Advanced
Robotics

[14] M. Jain, J. Tsai, J. Pita, C. Kiekintveld, S. Rathi, M.
Tambe and F. Ordonez (2010) Software assistants for
randomized patrol planning for the LAX airport
police and the Federal Air Marshals Service.
Interfaces, Volume 40, 267–290.

[15] V. Srovnal, B. Horak, R. Bernatik and V. Snasel (2004)
Strategy extraction for mobile embedded control
systems apply the multi-agent technology.
International Conference on Computational Science,
Springer LNCS, 631-637.

[16] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda and E.
Osawa (1997) RoboCup: the Robot World Cup
Initiative. AGENTS '97 Proceedings of the First
International Conference on Autonomous Agents,
340-347.

[17] A. Aamodt and E. Plaza (1994) Case-based reasoning:
foundational issues, methodological variations and
system approaches. Artificial Intelligence
Communications, Volume 7, Number 1, 39-52.

[18] R. Ros, J. L. Arcos, R. L. de Mantaras and M. Veloso
(2009) A cased-based approach for coordinated
action selection in robot Soccer. Artificial
Intelligence, Volume 173, Numbers 9-10, 1014-1039.

[19] W. G. Aref and I. Kamel (2000) On multi-dimensional
sorting orders. DEXA 2000, Springer Verlag, 774–783.

[20] M. Connor and P. Kumar. (2010) Fast construction of
k-nearest neighbor graphs for point clouds.
Visualization and Computer Graphics, IEEE
Transactions on, Volume 16, Number 4, 599 -608.

9Václav Snášel, Václav Svatoň, Jan Martinovič and Ajith Abraham:
Optimization of Rules Selection for Robot Soccer Strategies

[21] M. F. Mokbel, W. G. Aref and I. Kamel (2003)
Analysis of multi-dimensional space-filling curves,
GeoInformatica, Volume 7, Number 3, 179–209.

[22] A. R. Butz (1971) Alternative algorithm for Hilbert
space filling curve. IEEE Trans. on Computers,
20:42442.

[23] H. Samet (2006) Foundations of multidimensional
and metric data structures, The Morgan Kaufmann
Series in Computer Graphics.

[24] T. Skopal, M. Kratky and V. Snasel (2002) Properties
of space filling curves and usage with UB-trees. ITAT
2002.

10 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827

