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Abstract Mobile embedded systems belong among the 
typical applications of distributed systems control in real-
time. An example of a mobile control system is a robotic 
system. The proposal and realization of such a distributed 
control system represents a demanding and complex task 
for real-time control. In the process of robot soccer game 
applications, extensive data is accumulated. The reduction 
of such data is a possible win in a game strategy. The main 
topic of this article is a description of an efficient method 
for rule selection from a strategy. The proposed algorithm 
is based on the geometric representation of rules. A 
described problem and a proposed solution can be applied 
to other areas dealing with effective searching of rules in 
structures that also represent coordinates of the real world. 
Because this construed strategy describes a real space and 
the stores physical coordinates of real objects, our method 
can be used in strategic planning in the real world where 
we know the geographical positions of objects. 
 
Keywords Robot Soccer, Strategy, Rule 

 
1. Introduction 
 
This introduction contains an explanation of our view of 
strategies and rules and how we use them for mapping 

coordinates of the real world. In the next part of the 
article, our method is practically applied to a robot soccer 
game in which we can see the benefits of the presented 
solution to the existing algorithm. The algorithms and 
approaches from this article may serve beyond their mere 
use in games of robot soccer. 
 
A complete set of options that are available to players in 
any game situation in order to achieve the objective is 
considered as a strategy in game theory [1, 13]. The result 
of this strategy depends not only on the actions of the 
individual player but also on the actions of other players 
or elements of the game. A so-called pure strategy 
contains a list of all possible situations that may arise in 
the game. For strategy [2] can be considered any mapping 
or description of the space in which we know the 
geographical positions of the objects located in it, and we 
have defined a finite set of rules that tell us how these 
objects can behave in a given situation. This principle can 
be applied to a number of areas of the real world and is 
generally called ‘strategy planning’ [3]. From our 
perspective, the best approach is to use such strategies to 
describe a space and the objects in it, and to use the 
subsequent search for the optimal path or relocation of 
these objects in order to achieve our desired goals. In 
other words, we are interested in strategies dealing with 
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planning. A practical example might be a strategy for 
traffic control at the airports [4]. The strategy represents 
the area of the airport and also provides rules upon 
which are selected the optimal paths for aircrafts towards 
assigned runways. The following section will explain the 
importance of strategy in the game of robot soccer, in 
which our method was also practically tested. 
 
2. Strategies in robot soccer games 
 
In this section, the problems of a robot soccer game are 
described. Robot soccer has been selected as a sample 
topic because it contains a number of challenges in the 
areas of robot control, image analysis and the above-
mentioned strategic planning. Strategy is inherently 
connected with robot soccer games. The basic idea of 
robot soccer is the same as in real football, namely to win 
over the opponent by the number of scored goals. Just 
like in a real football, the team that usually wins is the 
team with the better strategy. 
 
Robot soccer games can be divided into two main types: 
games with autonomous control and those with 
centralized control. In games based on autonomous 
control, the players are considered to be mutually 
independent agents. Each player only has information 
about its surroundings, which in most cases contains 
information simulating a field of view of the player. Each 
player also has its own strategy or a set of rules that 
defines how it should behave in the current situation. By 
a ‘situation’ is meant information about those objects that 
are currently in the player’s field of view. The main 
representative of this category is undoubtedly the 
international robotics competition RoboCup [16]. 
 
The second type of game involves games with central 
management. We also use this type of game in this article 
[5]. As the name suggests, there is one central element 
that has information about all the objects located on the 
game field at every step of the game. The behaviour of 
the robots in specific situations is controlled by one 
central strategy that controls all the robots of the 
controlled team using globally-available information (the 
coordinates of the ball, the coordinates and rotations of 
the robots, etc.) describing the situation on the game field. 
This game type is represented by The Federation of 
International Robot-soccer Association (FIRA). 
 
In practical terms, strategies are used according to 
various methods. For example, strategies based on 
standard decision trees [6] where actions are selected 
based on the robots’ position in relation to the ball, the 
owner of the ball, the distance to the goal, etc. Another 
frequently-used method is a strategy based on fuzzy logic 
[7-9], where game situations are divided into several 
levels and where the corresponding types of behaviour of 

robots are assigned to them. Many teams participating in 
some of the categories of RoboCup address autonomous 
robot control methods based on case-based reasoning [17, 
18], which is an artificial intelligence problem-solving 
technique that catalogues experience into cases and 
matches the current problem to the experience. On the 
other hand, teams participating in FIRA competitions use 
a number of methods dealing with the centralized control 
of robots. 
 
We can encounter combinations of the above-mentioned 
approaches or even vastly different ones. The main idea is 
still the same: to create a system that will respond as 
quickly as possible to changes of situations in the game 
field by the best possible relocation and control of the 
robots in order to score in an opponent’s goal. In the 
following sections, we present our method for the quick 
and effective selection of rules from a strategy in a robot 
soccer game. 
 
3. Strategy for our robot soccer game 
 
Our work is based on the FIRA category called 
‘SimuroSot’, which uses the centralized control of robots. 
This category contains a FIRA simulator as the game 
server simulating a game environment and the two client 
programs with an implemented strategy for the left or the 
right team. Both playing teams have access to the global 
information describing the current situation on the field 
at each game moment. Next, prepared strategies decide 
what actions the controlled team must perform, based on 
this information. 

 

 
 

Figure 1. 2D robot soccer simulator 
 
Our goal was to create a unified and robust library for a 
robot soccer game that could be used in a real robot game 
and a game running within the simulator. Such a 
proposed system was built from interconnected modules 
containing the necessary functionality for prediction, 
image analysis and robot control, etc. This architecture 
allowed us to perform experiments with different 

2 Int J Adv Robot Syst, 2014, 11:13 | doi: 10.5772/56827



methods used for the efficient processing of the strategy 
or else to create a partially-simulated game containing 
both real and simulated robots. For the extensive testing 
of these methods, we created a 2D robot soccer simulator 
(see Figure 1) that was also used for the experiments 
presented in this paper. 
 
In our work, we have two types of representation of the 
game field. The first type is an abstract coordinate system. 
In it, the physical coordinates of the real objects on the 
field are mapped to a standard coordinate system (see 
Figure 2). Because this logical representation is very 
detailed, it is used mainly for actual robot control and 
image analysis, which requires the greatest possible 
accuracy. However this very detailed representation is 
not suitable for the strategy’s description. As mentioned 
above, the strategy contains a set of rules that describes 
how the robots should behave in a given situation. A 
strategy based on a very detailed coordinate system 
would have to include a large number of rules, and most 
of these rules would have been very similar so as to 
almost describe the actual situation on the game field. 
 

 
 

Figure 2. Inner game field representation 
 
Therefore we introduce the term so-called ‘grid 
coordinates’. Grid coordinates have much lower 
resolution and are only used for the definition of 
strategies and underlying rules (see Figure 2). This 
simplification is sufficient for us because for the purposes 
of the strategic planning we do not need to know the 
exact position of each robot. All we need is the 
approximate location of the robot represented by the grid 
coordinates. 
 
By using grid coordinates, we reduce the accuracy of the 
mapping of the physical coordinates of the robots into the 
logical ones but, on the other hand, we dramatically 
reduce the number of the rules needed to create a 
strategy. If necessary, it is possible to convert the grid 
coordinates back to the physical and to use them for the 

aforementioned robot control. The robot's behaviour in 
the grid coordinates is then controlled by so-called 
‘tactics’ [10]. The tactics contain functions for robot 
control, such as turning the robot, shooting at goal or 
passing the ball. Therefore, in terms of hierarchy, the 
strategy takes care of the placement of the robots in the 
grid coordinates while at the lower level, under the 
strategy, the tactics are executed. The tactics work with 
the physical coordinates and controls the robot inside the 
grid. The strategy, as we understand it, is the quaternion 

, , ,X Y p m< >  where: 

• UX X⊂  where UX  is the universe of all situations 
that may occur during the game and X  is a set of 
game situations defined by the strategy, 

• UY Y⊂  where Y is a set of instructions that the 

strategy uses to control the robots and UY  is the 
universe of all possible instructions, 

• p  is a projection X Y→ , 

• m  is a projection UX X→ , 

• ( ( )) U
up m x X∈  where U

ux X∈ : every real 
situation on the game field is assigned by a game 
situation from the strategy, which itself also 
contains instructions as to where to move the robots. 

 
The selection of the appropriate rule from the strategy 
depends on the current game situation. This situation is 
represented by the current state of the game in robot 
soccer. This state contains information about the position 
of the robots and the ball on the game field as well as 
their rotations and speeds. However, the most important 
data for the strategy includes the grid coordinates of all 
the objects on the game field. 
 

Example rule  Red team rule
 Mine A1 A2 B1 B2 
 Opponent B1 B2 C1 C2 
 Ball B2 
 Destination A1 B2 C1 C2 

 Mine 11 12 21 22 
 Opponent 21 22 31 32 
 Ball 22 
 Destination 11 22 31 32 

 

Table 1. Strategy rule 
 
As we have explained, the strategy is a finite set of rules 
that describe the current situation on the game field and, 
thus, says where to move the robots in that situation. 
Each rule can be easily expressed as a quaternion (M, O, 
B, D), where M denotes the grid coordinates of the robots, 
O denotes the coordinates of the opponent's robots, B 
denotes the coordinates of the ball and D denotes the 
coordinates of the desired destination of the robots. An 
example of such a rule is given in Table 1. 
 
Because this system is based on the centralized control of 
every step of the game, we have access to the grid 
coordinates of each object on the game field. Thus, at 
every step of the game we can compute how similar the 
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real situation on the game field is to that described by the 
selected rule from our strategy. Table 1 gives an example 
of a rule created for a 5-member team of robots. The rule 
consists of just 4 robots because the strategy does not 
include the goalkeeper. The only role of the goalkeeper is 
to protect the goal, and so it is not necessary to include it 
in the strategy. For graphical representation of this rule 
see Figure 3. 
 

 
 

Figure 3. Situation on the game field 
 
4. Existing problems 
 
The current approach to our strategies is based on the 
description presented above. Therefore, at every step of 
the game we compare the current situation on the field 
with those situations described in the rules of the 
strategy. By ‘comparing’ is meant the computation of the 
Euclidean distance between the real situation on the field 
and the situation described by the selected rule. The 
Euclidean distance is computed from the grid coordinates 
of the ball, the friendly robots and the opponent robots. 
The resulting number is computed as the sum of these 
three individual distances and represents the distance 
between the real situation and the situation in a given 
rule. Afterwards, the rule with a minimum Euclidean 
distance is selected from the strategy. From this selected 
rule, the grid coordinates marked as ‘destination’ are 
used to move the friendly robots to designated locations 
on the game field. 
 
From this description, one of the main problems of this 
approach becomes obvious. At each step of the game, we 
must constantly calculate the distance between the real 
situation on the game field and all the rules contained in 
the used strategy. With any increase of the number of 
rules in the strategy, we also increase the time needed to 
find the closest rule. This at first glance may not seem like 
a serious problem, but when it is realized that a given 
moment of one cycle of the game takes several 
milliseconds, we must perform this computation almost 
constantly. Thus, any time saved while finding the closest 
rule allows us to respond to changing situations on the 
game field as quickly as possible. 

Another problem with this architecture relates to the 
identification of the robots. For identification, we 
consider their coloured markings. Our designed 
architecture does not include robots that are uniquely 
identifiable by IDs or assigned roles. This is because of 
the desire for greater discretion during the game. For 
example, in a specific game situation, a defender and an 
attacker can switch places during an attack on goal, if 
possible. The players do not need to be identified by 
unique IDs or roles. However, this poses problems during 
the selection of the closest rule from the strategy. Each 
rule only tells us that some robot can be found in the grid 
coordinates. However, it does not tell us specifically that 
this particular robot must be located in the grid 
coordinates. This was also one of the requirements of the 
design of our architecture (i.e., the mutual independence 
of strategies and the robots’ identification). 
 
To calculate the distances of robots, it is necessary to 
work with the real robots. This issue was solved using a 
permutation without repetition. For each rule the, 
distance between robots is not computed only once but k 
times, where k means a number of robots. Then, it is 
always selected from this permutation the mapping with 
the smallest value of the calculated distance and it is 
considered to be the final distance between the real 
situation and the situation described by the selected rule. 
This approach causes that the increasing number of 
robots in the game also increases exponentially the 
number of operations required to find the closest rule 
from the strategy. Our presented method attempts to 
preserve the concept of a general and independent 
strategy but with the eliminating the above mentioned 
shortcomings.  
 
5. Our approach 
 
The main area of our interest lies in the optimization of 
rule searching from the strategy using a graph and so-
called ‘space-filling curves’ [11]. A space-filling curve 
(SFC) is a way of mapping a multidimensional space onto 
a one-dimensional space [19, 11]. An SFC is a path 
through the points of a discrete Cartesian space that 
passes through each point exactly once. There are many 
types of SFCs. Typically, an SFC is more likely to connect 
points that are close. The family of Hilbert curves [22] is 
known to have good locality-preserving properties. 
However, they are complex to construct. A much simpler 
curve to construct is the Z-curve [12], which is the main 
reason for using this type of SFC in this article. Like other 
space-filling curves, a Z-order curve maps data points in a 
multidimensional space onto a one-dimensional space, 
where each point is represented by a unique number, 
called Z-address or a Morton code. [23, 24]. A Z-address is a 
bit string calculated by interleaving the bits of all the 
coordinate values of a data point. For a d-dimensional 
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space with ([0; 2v-1]) as the coordinate value domain 
ranges, the Z-address of a data point contains dv bits. The 
i-th bit of a Z-address is contributed by the (i/d)-th bit of 
the (i%d)-th coordinate. For example, the Z-address of  
p = (1; 6; 3; 7) (i.e., (001; 110; 011; 111) in binary) is 
010101111011. This Z-address calculation is reversible, so 
the original coordinate can be recovered from its 
corresponding Z-address. Z-order is a good approximation 
of geometric similarity [21]. The Z-order can be computed 
very efficiently using bit interleaving of the point 
coordinates in the Cartesian space [23]. 
 

RecursiveZ(int level, int x, int y) 
{ 
   if(level=0) 
      return; 
   if(level>1){ 
      RecursiveZ(level-1, 2*x, 2*y) ; 
      RecursiveZ(level-1, 2*(x+1)+1, 2*y) ; 
      RecursiveZ(level-1, 2*x, 2*(y+1)) ; 
      RecursiveZ(level-1,2*(x+1)+1, 2*(y+1)) ; 
   } 
   addToIndexList(x, y); 
   addToIndexList(x+1, y); 
   addToIndexList(x+2, y); 
   addToIndexList(x+1, y+1); 
   addToIndexList(x+2, y+1); 
} 

 

Table 2. Z-order pseudocode 
 
The algorithm for computing the Z-order curve is based 
on this method by using its recursive nature. Due to its 
properties, it is suited for converting a two-dimensional 
matrix representing the playing field into a one-
dimensional array of the coordinates of the individual 
robots. 
 

             
 

Figure 4. Grid 6x4 with Z-order curve 
 
Thus, if we use the Z-order to arrange the robots’ 
coordinates in the real situation on the game field and 
then to arrange the robots coordinates within each set of 
rules, all we need to do next is compute the distance 
between these two sorted sequences. Accordingly, we do 
not have to solve the issue of the ambiguity of the robots 
using permutations. The removal of these permutations 

will mean that even with a large number of robots on the 
game field there is no longer an exponential increase in 
the time needed for computation. The algorithm in its 
original form is created for a square space, so it was 
slightly modified for our game field with dimensions 6x4. 
A pseudocode algorithm for the computation of the Z-
order curve can be seen in Table 2 and Figure 4 shows the 
final relocation of the robots located on the game field.  
 
However using a Z-order curve does not eliminate the 
need to compute the distances between the real situation 
and all the rules defined in the strategy in every step of 
the game. Therefore, it was necessary to completely 
change the principle of how the individual rules from the 
strategy would be chosen. To address this problem, we 
decided to use an undirected connected graph with edge 
valuations. It is suitable for our purposes both in terms of 
the effective searching of similar rules as well as from the 
perspective of a relatively easy visualization of the rules 
contained in the strategy. 
 
Let the graph be defined as a pair G = <V, E> where V is a 
non-empty set of vertices and E is a set of two-element 
sets of vertices, also called ‘undirected edges’. In our case, 
the set of vertices consists of the individual rules from the 
strategy. The edges contain an evaluation that 
corresponds to a distance between the two neighbouring 
vertices (rules). A distance is considered to be a 
normalized value of a Euclidean distance computed from 
two sorted sequences using the above-mentioned Z-order 
applied to the neighbouring vertices that contain the 
robots’ grid coordinates. 
 
However, this graph will contain all the edges between 
all the defined vertices. The main idea of this graph lies in 
the fact that very similar rules to those of the strategy will 
be connected by a strong bond (a small distance) while 
the rules that differ fundamentally will be connected with 
a weak bond (a large distance). Thus, we do not have to 
compare the current situation on the game field with 
every rule from the strategy at each game step. It is 
sufficient to compare the current situation only with the 
neighbouring rules connected by the strong bond. 
Basically, each current step of the game is represented by 
some real situation on the game field and is mapped to a 
certain rule from the strategy. We assume that in the next 
step (which, in our simulator, takes only several ms) the 
situation on the game field does not change sufficiently to 
have required the choice of some completely different 
rule from the strategy. In other words, the robots will not 
have enough time to move a sufficiently large distance 
over the game field and, therefore, the currently selected 
rule will not change or else some very similar rule will be 
selected instead. We can pre-compute this strategy graph 
before the start of the game because the rules of the 
strategy do not change during the game. During the game 
itself, we use it only to quickly find those rules of the 
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strategy that most closely match the real situation on the 
game field. 
 
For greater clarity, we compare the time complexity of the 
two presented algorithms. The first algorithm at each 
game moment compares the current situation on the field 
with all those situations that are represented by the rules 
in the strategy. In addition, the algorithm needs to 
compute the permutations of all the robots on the field 
(except for the goalkeeper) for both the left and the right 
team. This time complexity can be expressed as: 
 

O ( Nrules * ( P ( Nleft – 1 ) + P ( Nright – 1 ) ) ) 
 
where Nrules is the number of rules in the strategy, P is the 
permutation without repetition, Nleft is the number on 
robots of the left team and Nright is the number of robots 
on the right team. 
 
On the other hand, the presented optimization utilizing a 
Z-order to arrange the robots’ coordinates and an 
undirected connected graph with edge valuations for the 
quick searching of the rules can be expressed by the 
following two steps: 

1. Pre-computation of the graph of rules: O ( P ( Nrules ), 
where P is a permutation without repetition and 
Nrules is the number of rules in the strategy, 

2. Rule selection: O ( Srules * ( Zleft + Zright ) ), where Srules 
is the selected number of neighbouring vertices for 
searching, Zleft is one comparison of two Z-order 
arrays representing robots on the left team and Zright 
is one comparison of two Z-order arrays 
representing robots on the right team. 

 
This idea is also based on the experience that a majority 
of strategies consist of several so-called ‘actions’. These 
actions are based on the selected subset of rules from the 
strategy. These actions are not strictly defined in the 
strategy, but may be created by a user during the 
construction of the strategy. For example, we can create a 
strategy that consists of 15 rules. The first five rules can 
represent the action for an attack on the right flank, the 
next five rules can represent an attack on the left flank 
and the last five rules can be for defence. Thus, we have 
created a strategy consisting of 15 rules which represents 
only three actions as intended by the user. We are mainly 
interested in the fast searching of the closest rules from 
the strategy and in the smoothest execution of the follow 
up actions, which are defined by these rules. 
 
6. Experiments 
 
For our experiments, we created a sample strategy 
consisting of 18 rules. This strategy was created for a 
game with 11 robots on each team. Therefore, every rule 
in the strategy contains 10 coordinates for each of the 

robots (the goalkeeper is not controlled by the strategy). 
All the rules of this strategy can be seen in table 3. This 
strategy was created in our tool for the simple and 
intuitive creation of strategies, called the ‘strategy 
creator’. 
 

Example strategy 
Rule 1 
Mine 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Opponent 4,2  4,3  4,2  4,3  5,2  5,4  5,1  5,4  6,1  6,4 
Ball 4,3 
Move 4,2  4,2  3,2  4,3  2,2  2,3  3,1  3,3  2,1  2,4 
Rule 2 
Mine 4,2  4,2  3,2  4,3  2,2  2,3  3,1  3,3  2,1  2,4 
Opponent 4,2  4,3  4,2  4,3  5,2  5,3  4,1  4,4  6,1  6,4 
Ball 4,2 
Move 5,2  5,2  4,2  5,3  3,2  3,3  3,1  3,4  2,1  2,4 
Rule 3 
Mine 5,2  5,2  4,2  5,3  3,2  3,3  3,1  3,4  2,1  2,4 
Opponent 4,2  4,3  5,2  4,3  5,2  5,3  4,1  4,4  6,1  6,4 
Ball 5,2 
Move 6,2  5,2  4,2  6,3  3,2  3,3  3,1  3,4  2,1  2,4 
Rule 4 
Mine 6,2  5,2  4,2  6,3  3,2  3,3  3,1  3,4  2,1  2,4 
Opponent 4,2  4,3  6,2  5,3  5,2  6,3  5,1  4,4  6,1  5,4 
Ball 6,2 
Move 6,2  5,2  4,2  6,3  3,2  3,3  3,1  3,4  2,1  2,4 
Rule 5 
Mine 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Opponent 4,2  4,3  4,2  4,3  5,2  5,4  5,1  5,4  6,1  6,4 
Ball 4,3 
Move 4,3  4,3  3,2  3,3  3,2  2,3  2,2  3,4  2,1  2,4 
Rule 6 
Mine 4,3  4,3  3,2  3,3  3,2  2,3  2,2  3,4  2,1  2,4 
Opponent 4,2  4,3  4,2  5,3  4,1  5,4  5,2  4,4  6,1  6,4 
Ball 4,3 
Move 4,3  4,4  3,2  3,4  3,1  3,3  2,2  4,4  2,1  2,4 
Rule 7 
Mine 4,3  4,4  3,2  3,4  3,1  3,3  2,2  4,4  2,1  2,4 
Opponent 4,3  4,3  4,2  5,3  4,1  5,4  5,1  4,4  6,1  6,4 
Ball 4,4 
Move 4,3  5,3  3,2  4,4  3,1  3,3  2,2  5,4  2,1  3,4 
Rule 8 
Mine 4,3  5,3  3,2  4,4  3,1  3,3  2,2  5,4  2,1  3,4 
Opponent 4,3  4,3  4,2  5,3  4,1  5,4  5,1  4,4  6,1  6,4 
Ball 5,3 
Move 5,3  6,3  4,2  5,4  4,1  3,3  2,2  6,3  2,1  3,4 
Rule 9 
Mine 5,3  6,3  4,2  5,4  4,1  3,3  2,2  6,3  2,1  3,4 
Opponent 5,3  4,3  4,2  5,2  5,2  6,3  5,1  5,4  6,1  6,4 
Ball 6,3 
Move 5,3  6,3  4,2  5,4  4,1  3,3  2,2  6,3  2,1  3,4 
Rule 10 
Mine 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Opponent 4,2  4,3  4,2  4,3  5,2  5,4  5,1  5,4  6,1  6,4 
Ball 4,3 
Move 3,2  3,3  3,2  3,3  2,2  2,3  3,1  3,4  2,1  2,4 
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Rule 11 
Mine 3,2  3,3  3,2  3,3  2,2  2,3  3,1  3,4  2,1  2,4 
Opponent 3,2  3,3  3,1  4,3  4,2  4,4  4,1  5,3  6,1  5,4 
Ball 3,2 
Move 3,2  3,3  2,2  2,3  2,2  1,3  2,1  3,4  1,2  2,4 
Rule 12 
Mine 3,2  3,3  2,2  2,3  2,2  1,3  2,1  3,4  1,2  2,4 
Opponent 2,2  2,3  2,1  3,3  3,2  4,4  4,1  4,3  6,1  5,4 
Ball 2,2 
Move 3,2  3,3  1,2  2,3  2,2  1,3  1,1  2,4  1,2  1,4 
Rule 13 
Mine 3,2  3,3  1,2  2,3  2,2  1,3  1,1  2,4  1,2  1,4 
Opponent 2,2  2,3  2,1  3,3  3,2  4,4  4,1  4,3  6,1  5,4 
Ball 1,2 
Move 3,2  3,3  1,2  2,3  2,2  1,3  1,1  2,4  1,2  1,4 
Rule 14 
Mine 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Opponent 4,2  4,3  4,2  4,3  5,2  5,4  5,1  5,4  6,1  6,4 
Ball 4,3 
Move 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Rule 15 
Mine 3,2  3,3  3,2  3,3  2,2  2,4  2,1  2,4  1,1  1,4 
Opponent 3,2  3,3  4,2  4,3  4,1  4,4  5,2  5,4  5,1  6,4 
Ball 3,3 
Move 2,3  3,4  2,2  3,4  2,2  2,4  3,1  2,4  1,2  1,3 
Rule 16 
Mine 2,3  3,4  2,2  3,4  2,2  2,4  3,1  2,4  1,2  1,3 
Opponent 3,2  3,4  4,2  4,3  4,1  4,4  5,2  5,4  5,1  6,4 
Ball 3,4 
Move 2,3  3,3  2,2  3,4  2,2  2,4  3,1  2,4  1,2  1,3 
Rule 17 
Mine 2,3  3,3  2,2  3,4  2,2  2,4  3,1  2,4  1,2  1,3 
Opponent 2,2  2,3  3,2  3,3  4,1  4,4  4,2  4,3  5,1  5,3 
Ball 2,3 
Move 2,3  3,3  2,2  3,4  2,1  2,4  3,1  1,4  1,2  1,3 
Rule 18 
Mine 2,3  3,3  2,2  3,4  2,1  2,4  3,1  1,4  1,2  1,3 
Opponent 1,2  1,3  2,2  2,3  4,1  3,4  4,2  4,3  5,1  5,3 
Ball 1,3 
Move 2,3  3,3  2,2  3,4  2,1  2,4  3,1  1,4  1,2  1,3 

 

Table 3. Example strategy used in the experiments 
 
As mentioned in section 4, one of the main reasons why 
we decided to use a graph and space-filling curves 
instead of the currently-used permutations was time 
efficiency. The previous implementation was used mainly 
for games with five robots on each team. This number of 
robots was sufficient for the initial experiments. Despite 
the number of permutations of the all robots and the 
constant need to search through every rule in the 
strategy, we achieved an average time of 1 ms per search 
(one strategy moment). However, with an increasing 
number of robots on the game field, there was a rapid 
deceleration in time efficiency. With 11 robots per team, 
one search took an average of 142 seconds, which for the 
real game is a completely unusable solution. 

Previous version using permutations
Robots per team Time of one strategy 

moment (one search) 
5 0.9642 ms 
7 198.5552 ms 
9 1 589.3497 ms 

11 142 917.1025 ms 
Current version using a Z-order and graph

with 11 robots per team 
Number of neighbouring 

vertices for searching 
Time of one strategy 
moment (one search) 

5 0.2444 ms 
10 0.2672 ms 
15 0.2979 ms 

 

Table 4. Time comparison of two implementations of rules 
selection from the strategy 
 
A new implementation utilizing a Z-order for the sorting 
of the robots’ coordinates and a graph for the 
representation of the rules achieved significantly better 
results. The experiments with the new implementation 
were always created for games with 11 robots per team. 
The only parameter that has been changed was the 
number of neighbouring vertices used for the searching 
during each game step. The sample strategy contains a 
total of 18 rules, and so every vertex in the graph will 
have 17 neighbours. For each search, the following rule is 
chosen from a selected number of the nearest neighbours. 
Table 4 shows the final comparison of both approaches in 
terms of the time required for the computation of the 
following rule.  
 

 
 

Figure 5. Rule selection using a graph 
 
Figure 5 illustrates how the following rule is selected 
during each game step. For simplicity, let us say that the 
currently-used rule is rule 6. From our pre-computed 
graph, we can get all 17 neighbours of rule 6 and the 
evaluation of all the connected edges. Next, we can create a 
selected subset of rules according to the required number 
of nearest neighbours we want to use for the comparison. 
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In the next step, we only need to compare the real 
situation on the game field with the situations described 
by the selected neighbours and the currently selected 
rule. This is because the current rule does not necessarily 
have to be changed at each game step. The most similar 
rule is then returned as a result of searching. 
 

Time needed to 
pre-compute the 
strategy graph  

Number of rules in the strategy 

18 50 100 200 

14 ms 18 ms 25 ms 48 ms 

Number of rules in the strategy 

500 1000 2000 5000 

224 ms 854 ms 3411 ms
22144 

ms 
 

Table 5. Pre-computation of the strategy graph 
 

The time of the first search [ms] 

Neigh. vertices 
Number of rules in the strategy 

18 50 100 200 

5 12.4671 13.1436 12.3526 12.4121

10 13.1754 14.0021 13.4584 15.9173

15 13.1247 14.0465 14.0344 13.4878

25 - 14.4588 15.4874 14.1972

Neigh. vertices 
Number of rules in the strategy 

500 1000 2000 5000 

5 15.8301 16.6385 17.9907 18.5728

10 15.9452 17.1577 18.4847 19.1544

15 15.4454 16.4877 17.9443 18.7314

25 15.9879 17.7984 18.4772 20.1478
 

Table 6. The first search 
 

The time of the common search [ms] 

Neigh. 
vertices 

Number of rules in the strategy 

18 50 100 200 

5 0.2993 0.2087 0.2179 0.2379 

10 0.3539 0.4143 0.4575 0.4972 

15 0.4235 0.4798 0.5646 0.7871 

25 - 0.4587 0.5887 0.6448 

Neigh. 
vertices 

Number of rules in the strategy 

500 1000 2000 5000 

5 0.4949 0.6094 0.9411 1.8443 

10 0.5421 0.7989 0.9781 1.7854 

15 0.7554 0.8121 1.4875 1.6778 

25 0.7945 0.9877 1.5751 1.7887 
 

Table 7. The common search 
 

It is important to emphasise that because we compare the 
real situation on the game field (which may not be 
described by rule of the strategy) and the situations 
described by the rules of the strategy, the winning rule 
may not be always the same as the nearest neighbour 
from the graph. 
 
For further experiments, we prepared strategies of 50, 
100, 200, 500, 1,000, 2,000 and 5,000 rules. For each 
strategy, we measured the time required to pre-compute 
the strategy graph (Table 5) and the average search time 
of one rule during the game (Table 7). It is important to 
note that at the beginning of the game (i.e., during the 
first game moment) the rule from the previous game 
moment is not known. Therefore, it is necessary to search 
from all of the neighbouring vertices in the graph instead 
of just a selected subset of the most similar rules. Table 6 
contains the measured times of the first search. Table 5 
shows that the time required to pre-compute the graph 
grows rapidly with the increasing number of rules. On 
the contrary, the time required to search for the rule 
changes slowly. The time of the first search is in the tens 
of ms and the times of the subsequent searches are in 
units of ms. The experiments were performed on a 
desktop computer with a processor Intel Core i5 3.4GHz 
with 8GB RAM DDR3 1600MHz. 
 

 
Figure 6. The places with the most frequent occurrence of the 
robots 
 
The places with the most frequent occurrence of the 
robots on the playground could also be determined by a 
simple analysis of the created strategy. Figure 6 shows 
the players of both teams on the game field defined by 
the rules of this strategy (grid coordinates for friendly 
and opponent robots). The evaluation of the individual 
grid cells was calculated as the sum of all the robots of the 
team in the cell which is defined by rule. 
 
7. Conclusion 
 
In this work, strategies for robot soccer games were 
discussed. The description of the approach for strategies’ 
definitions was presented. The main part of the article 
discussed the optimization of the best rule selection in a 
real-time running robot soccer game based on a Z-order 
and graphs.  
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A Z-order is representative of the category of space-filling 
curves. It is a function for mapping data from a 
multidimensional space onto a one-dimensional space 
while preserving the locality of data points. A Z-order is 
therefore highly suitable for the quick mapping of the 
two-dimensional array, representing the game field, onto 
a one-dimensional array containing the coordinates of 
each robot. With this ordered array of robots, it is thus 
substantially easier to work, especially during the phase 
of rule selection. Utilizing a graph to represent the rules 
of the strategy brings various benefits, not only in terms 
of computing speed but also in terms of the  relatively 
easy visualization of the strategy which, for example, 
allows us to reveal its weaknesses. 
 
Games can in general represent any situation in nature. In 
[14], game theory is applied for adversarial reasoning in 
security resource allocation and scheduling problems. In 
[14], the authors showed that randomized policies 
mitigate a key vulnerability of human plans: predictability. 
In [15] methods for strategy extraction are described. 
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