International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.2, No.2 (2006), pp. 151-158
(© Research India Publications http://www.ijcir.info

Population-Based Heuristics for Hard
Permutational Optimization Problems

Wojciech Bozejko! and Mieczystaw Wodeck?

"Wroctaw University of Technology
Institute of Computer Engineering, Control and Robotics
Janiszewskiego 11-17, 50-372 Wroctaw, Poland
wojciech.bozejko@pwr.wroc.pl

2University of Wroctaw
Institute of Computer Science
Przesmyckiego 20, 51-151 Wroctaw, Poland
mwd@ii.uni.wroc.pl

Abstract In this paper we present a population-based algo- annealing and genetic algorithm) quickly converge to a lo-
rithm for solving permutational optimization problems. It con- cal minimum and the diversification of its search process is
sists in testing the feasible solutions which are the local minima. difficult. We present a general population-based method ap-
This method is based on the following observation: if there are proach that can be used to find the approximate solutions of
the same elements in some positions in several permutations, e hard combinatorial optimization problems. These prob-
which are local minima, then one can suppose that these ele- o, .o e described as follows: for a given finite set of
ments can be in the same positions in the optimal solution. The feasible solutions,Y, the goal functionF is defined as a
presented properties and ideas can be applied to two classical . ' S .
mappingF : z — R*. The optimization problem aims at

strongly NP-hard scheduling problems: ar . . 3
finding the optimal solution:* € X with

F(z*) =min{F(z): =€ X}.

1. single machine total weighted tardiness problem

2. flow shop problem with goal functionC,q2-
Some representative examples of the permutation problems
from the OR-Library [3] are presented and compared with a.re the Traveling Salesman Proplem [24], the ngdratic.As—
the results yielded by the best algorithms discussed in the signment Prgblem [12] and the single [1] and multi-machine
literature. These results show that the algorithm proposed [10] scheduling problems. Although these problems present
allows us to obtain the best known results for the benchmarks Simple formulations, they are very troublesome, because in
in a short time. most cases they belong to the NP-hard problems class. For
many of these problems a natural solution representation
Keywords algorithm, metaheuristics, scheduling, optimizationconstitutes a permutation. Because of their inherent na-
population, local search ture, the permutation optimization probleP@P) has a huge
number of various local optima. Therefore, to solve these
problems the approximate methods mainly used are:

Computational experiments on the benchmark instances

l. Introduction
1. constructive methods,
Discrete optimization methods are applied to time-dependen
systems if there are problems of production management an
job’s scheduling. One can encounter such problems witBonstructive heuristics are essentially single pass methods
preparing the travel itineraries for tourists, the optimal way#/hich construct a permutation by fixing at each step the po-
(e.g. traveling salesman’s way), the schedule planning asition of an element in the permutation. They are very fast,
the expert systems connected with taking optimal decisionsasily implementable, however the performance of the gener-
Many of these deal with determining optimal schedulingted solutions is rather poor. The second group of the meth-
(permutation of some objects) and usually they are NP-hardds deals with improving a given solution. An important
They also have irregular goal functions and very many locahember of this group is the local search method. These al-
minima. Classic heuristic algorithms (tabu search, simulategbrithms usually finish calculations after finding a few local

é. improvement methods.

152 Wojciech Baejko and Mieczystaw Wodecki

optima. Thus nowadays many approaches, not so "sensitivll, Population-based algorithm

to detecting local optima — especially artificial intelligence

methods, are applied to SOIROP. Let IT be a set of all permutations of elements from the set
In this paper we present a method which belongs to thW = {1,2,...,n} and the function:

improvement approaches for solvilDP, and which con- N

sists in determining and researching the local minima. This F 1 — BT U{0}.

(heuristics) method is based on the following observation. If . . . -

there are the same elements in some positions in several pafg consider the problem which consists in determining op-

mutations, which are local minima, then these elements apgqal permu'tat|onr € 1L . .

in the same position in the optimal solution. To _solve thl_s problem we propose the hgurlstlc algorithm
The basic idea is to start with an initial population (any subs&{h'Ch examines local minima of the functidn. .TO d_eter-

of the solution space). Next, for each element of the populgjme local minimum a Iocql improvement algorithm is used.
tion, a local optimization algorithm is applied (e.qg. descendWe use the following notation:

ing search algorithm or metaheuristics, see [22]) to determing.« . gyp-optimal permutation determined by the
alocal minimum. In this way we obtain a set of permutations algorithm,

— local minima. If there is an element which is in the same

position in several permutations, then it is fixed in this posi- " number of elements in the population,

tion in the permutation, and other positions and elements of”* : Population in the iteration of the algorithm,
permutations are still free. A new population (a set of per- Pt ={m,ma, ..., my},

mutations) is generated by drawing free elements in free poLocalOpt(r) : local optimization algorithm to de-
sitions (because there are fixed elements in fixed positions). termine local minimum, where is
After determining a set of local minima (for the new pop- a starting solution,

ulation) we can increase the number of fixed elements. To LM : asetoflocal minima in iteratiof
prevent finishing the algorithm’s work after executing some LM = {f1, %2, ... ,in},

number of iterations (when all positions are fixed and there 7; = LocalOpt(m;),

is nothing left to draw), in each iteration "the oldest” fixed m€PL j=1,2, ..,n

elements are set as free. FSi a set of fixed elements and position in

The proposed here method is especially helpful in solving
large-sized instances of very difficult problems with irregu-)))
lar goal functions. One can encounter such problems, amol{§ /S0 use the following functions connected with popula-
others, in very efficient control strategies of the discrete prdion’s evolution:

duction Just-In-Time systems which are often elements o
production’s recommending systems.

We have adopted and tested our approach for two NP-hard
permutational scheduling problems:

permutations of populatioR”.

fFixSet(LMi, FS% . aprocedure which determines a
set of fixed elements and posi-
tions in the next iteration of the
algorithm,
FS*! = FizSet(LM*, FS?),
1. single machine total weighted tardiness problem NewPopul(FS*) : aprocedure which generates
a new population in the next
iteration of algorithm,
Pl = NewPopul (FS?).
2. flow shop problem with goal functiof,,, ..
In any permutationr € P’ positions and elements which
belong to the sef'S* (in iterations) we callfixed other ele-
We use the benchmark tests taken form the OR-Library [3fnents and positions we cétee.
We compare the obtained solutions with the best known ongse algorithm begins by creating an initial populati®f

published in the literature. We obtain the same solutions ind it can be created randomly). We set a sub-optimal solu-
executing a considerably smaller number of iterations angbn 7* as the best element of the populatiBf,

shortening the total calculation time.

This paper is organized as follows: in the next section we in- F(r*) = min{F(3): B € P°}.

troduce the notation, the elements of population-based algo-

rithm and the local search algorithms. The Section 3 include’s new population of iteration + 1 (a setPi*!) is gener-

the results of the computational experiments for two classicated as follows: for current populatioR™! a set of local
strong NP-hard problems of scheduling. The obtained resultsinima LM is determined (for each elementc P? exe-

are compared with the best known in the literature. The finauting procedurd.ocalOpt(r)). Elements which are in the
conclusions are presented in Section 4. same positions in local minima are established (procedure

Population-Based Heuristics 153

FizSet(LM®, F'S%)), and a set of fixed elements and posi- Select a starting point;

tions FS**! is generated. Each permutation of the new pop- xpes: «— ;

ulation P**! contains the fixed elements (in fixed positions) repeat

from the setF'S*t!. Free elements are randomly drawn in chose an elementfrom the neighborhood/ (z)

the remaining free positions of permutation. according to a given criterion based on the
If permutation3 € LM? exists andF'(3) < F(rn*), then goal function’s valuer'(y);

we updater* (7* « (). The algorithm finishes after a fixed TS

number of generations. if F(y) < F(zpest) then

The general structure of the population-based heuristic al- xpest < y;
gorithm for the permutation optimization problem is given until some termination condition is satisfied.
below.

Algorithm 1. Testing of Feasible Local Minima (TFLM) A grucial ingredient of the local s_ear_ch algor.ithm is th_e defi-
nition of the neighborhood function in combination with the

Initialization: _ solution representation. Itis obvious that the choice of a good
PO {my, 2. Ty random creation of the hejghborhood is one of the key elements of the neighborhood
. initial population search method’s efficiency.
F(a*) =min{F () : € P°}; the bestelementofthe Tyagitionally a neighborhood of the solutienis a search
_ _populationP® space which can be defined as a set of new solutions that can
i <—005 the number of iteration 3 be reached from by exactly one move (a single perturbation
FSY —0; a set of fixed elements and positions of). During the iterative process, the current solution of
repeat the algorithm "moves” through the solution spadefrom
Determine a set of local minima neighbor to neighbor. A move is evaluated by comparing the
LM — {fy, g, ..., 7y}, goal function’s value of the current solution to each single
where one of its neighbor.
#; —LocalOp(x;), =, € P'; The evolution of the solutiom?, i = 1,2,..., draws a tra-
for j — 1to ndo jectory in the search spadé There exist many criteria for
if F(7;) < F(x*) then selecting the next solution’™! in the neighborhood of".
o If the current solution is not worse that, i.e. F(ritl) <
end if; F(x*), then this strategy is usually called a steepest descent
end for; strategy. The main weakness of the descent algorithm is its
Determine a set inability to escape from local minima (all elements in the
FSi+! — FizSet(LM, FS?) neighborhoodV (r%) are worse tham®).
and generate a new population For any iteration of the local search algorithm a subset of
Pt — NewPopul(FSY); moves applicable to it is defined. This subset of moves gen-
i—i+1: erates a subset of solutions — the neighborhood. Each move
until not Stop Criterion. transforms a permutation (current solution) into another per-

. L i mutation fromII.
The algorithm stops Stop Criterior) after executing the | ot . andi k #1)

Max iter iterations or exceeding a fixed time.
ProceduresocalOpt FixSetandNewPopulare described in = (r(1),7(2), ..., 7k —1),7(k),7(k+1), ...,
further parts of the paper.

be a pair of positions in a permutation:

(il —1),7(),7(l+ 1), ..., m(n)).

A. Local optimization (LocalOpt procedure) Among many types of moves considered in the literature, two

A fast method based on the local improvement is applie(c)j]c them appear prominently:

to determine the local minima. The method begins with an 1. Insert move ifmove consists in removing the job(k)
initial solution 7. In each iteration for the current solution from the positionk and next insert it in a positioh
7’ the neighborhoodV' (=) is determined. TheV (x?) is Thus the move generates a new permutatifirin the
a subset of the set of feasible solutions. The neighborhood following way:

is generated by moves that are fixed transformations of the

solution % into another permutation from the set of the = (n(1),...,w(k = 1), 7(k+1),...,7(—1),
feasible solutiorlI. Next, from the neighborhood the best

elementri*! is chosen which is the current solution in the w(l), w(k), (I 4+ 1),...,7(n)),

next iteration. if k < 1,and

Algorithm 2. Neighborhood Search (NS) 7 = (n(1),...,7(l = 1), 7(k), x(l), 7l +1),..

)

154 Wojciech Baejko and Mieczystaw Wodecki

7k —1),7(k+1),...,7(n)), FS™ — FSN\{(a,1,a,9)} U{(a,l,a, 0+ 1)}.
if k> 1. The age parameter makes it possible to delete an element

from the setF'S?.

2. Swap moveg-movgin which the jobs ifr (k) and(l) Each fixed element is free after some number of iterations
are swapped among some positiégnand/. The move 54 can be fixed again in any free position.
generates the following permutation:

mF = (n(1),7(2),...,7(k — 1), 7 (1), 2) Inserting elements
_ Let P* = {m,m,...,m,} be a population of) elements
k4 1)l = 1) mk), 7 +1), - m(n)- in the iterationi. For each permutation; € P?, applying

Computational complexity of executirig-move isO(n) and the local search algorithnb.¢calOp{(r;) procedure), a set of

O(1) of executings—move. local minimaLM® = {71, #s,...,7,} is determined. For
In an implementation of theocalOp{r;) m; € P’ proce- any permutation
dure there is applied a very quidkprovement searchlgo- = (1), 7,(2), . 7)), j=1,2 .1,

rithm. The neighborhood is generated by swap and insert

moves (both-moves ands-moves) which consist in taking let be

an element from some position in the permutation and in- nr(a,l) =
serting it to another position and moving elements betwe
these positions. Such a neighborhood fras 1)(3n/2 — 2)
elements, where is the length of permutation.

{#; € LM": #;(1) =a}|.
ﬁpis a number of permutations from the sebd/? in which

the element is in the positior.
If a € N is a free element and

B. A set of fixed elements and position (FixSet procedure) o= nr(a,l) > ®(4)

’r] —)
then the element is fixed in the positiori; ¢ = 1 and the
quadruple(a, I, «,) is inserted to the set of fixed elements
and positions, that is

The setF'S‘ (in iterations) includes quadruplegs, [, a, ¢),
wherea is an element of the séVv = {1,2,...,n}, L is
a position in the permutationl (< | < n) anda, ¢ are
attributes of a paifa, l).

A parametery means adaptatiori and decides on inserting FS™ PSS U {(a,l,a,)}

to the set, ang — "ag€’ — decides on deleting from the set. Acceptance functio should be defined so that
Parametep enables to set free a fixed element after making a

number of iterations of the algorithm. However a parameter Vi, 0<®(i) < 1.
« determine such a fraction of local minima, in which an _
elements is in position!. 3) Deleting elements

Both of these parameters are described in a further part of thig (et many local minima each fixed element is released af-
chapter. The maximal number of elements in the/s8tis (o, executing some number of iterations.

n. If the quadruplg(a, [, a, ¢) belongs to the sef'S?, then Let be

there is an element in the position/ in each permutation i«)

from the populationP:. ES ={(a,l,a,p) € S 2 <T'(i)}

In each iteration of the algorithm, after determining Ioca|t is a set of some elements and positions which are fixed in
minima (LocalOptprocedure), a new sdtS‘t! = FStis h

. ‘ PR -« . all permutations of the populatiafi‘.
estabh;hed._ Next, an:cSet(LM ’ES) procedure 'S_ n If ES # 0, then elements of this set are deleted frBisi+!,
voked in which the following operations are executed:

that is
(a) changing of the age of each elemeptgarameter), FSitl FSi+1\ES7
(b) deleting the oldest elements, otherwise (whertZS = (), let
(c) inserting the new elements. §=(dl'\d,¢) € FS'T!
There are two functions of acceptaniEé) and ®(i) con- € Such that
nected with the operations of inserting and deleting. Both of g’ _ min{g L (a1, a,) € FSHY
them can be determined experimentally. @’ Lo ’

The element is deleted from the sdt.Si+!, that is

FS™ FSiTIG.
In each iteration of the algorithm the age of each element \ shoul f. . h h hel
which belongs ta” S is increased by 1, that is FunctionI'(¢) should be defined in such a way that each ele-

_ ment of the sef’S? is deleted after executing some number
Y(a,l,a,) € FS*, of iterations.

1) Modification of element’s age

Population-Based Heuristics 155

C. A new population procedure FA" _ the cost found by thelH algorithm,
54" — percentage relative deviation of the cost
If a quadruple(a, [, a, p) € F'S**', then in each permuta- function FA™ found by algorithmAH
tion of a new populatiodP’*! there exists an elemeatin a from the optimal (or best known) solution
position/. Randomly drawn free elements will be inserted in valueOPT,
remaining (free) positions. Populatidii*! is generated as §AH _ FA"-OPT , 100y,
follows: oPT ’
4%, — the average (for group of test instances)
Algorithm 3. New Population (NewPopu{F'S;. 1)) percentage relative deviatiot{’*) of the
- cost functionF4™ found by algorithmAH,
P 0; tAM" — the time of execution of the{ algorithm
Determine a set of free elements (in seconds).

FE«—{aeN: -3 (a,l,a,p) € FS+1}
and a set of free positions ‘

FP—{l: =3(a,l,a,¢) € FS*} A. Single machine scheduling problem
for j < tondo {Inserting fixed elemengs

for every (a, 1, a,) € FS"*+! do In the single machine total weighted tardiness problem, de-

mi(l) — a; noted asl|| > w;T;, aset of jobsN = {1,2,...,n} has to
end for: be processed without an interruption on a single machine that
W — FE- can handle only one job at a time. All jobs become available
’ for processing at time zero. Each joke N has an integer

{Inserting free elemen}s o2 . :
processing time;, a due dated;, and a positiveveightw,.

for s — 1ton do

if s € FPthen For a given sequence of the jobs and (the earliest) comple-
7;(s) — w, where tion timeC;, thetaere.SSTi: max0, C; — d;} and the cost
w — random(W) and W — W\{w}; fi(_Ci) = w; - T; of jobi € N can pe comput(_eq. The goal is
end for; to find a job sequence (permutation) that minimizes the sum
Piy1 — Py U{m;}. of the costs given by
end for. n n
F(m) = Z fr)(Cr(s)) = wa(i) “Tr()s
Functionrandomgenerates an element of the $&t from i=1 i=1
the uniform distribution. Computational complexity of thewherer ¢ II, andII is a set of all permutation
algorithm isO(n - n). The problem is NP-hard (Lenstra et all [16]). A large num-

ber of studies has been devoted to the problem. Emmons

[7] proposes several dominance rules that restrict the search
lll. Implementations of the method process for an optimal solution. These rules are used in many

algorithms. Enumerative algorithms that use dynamic pro-
In this section an application of the TFLM algorithm for twogramming and branch and bound approaches to the problem

classical scheduling problems: are described by Fischer [8], Potts and Van Wassenhove [21].
These and other algorithms are discussed and tested in a re-
« single machine total weighted tardiness problem, View paper by Abdul-Razaq et al. [1]. Algorithms consi-

tute a significant improvement to the exhaustive search, but
they remain laborious and are applicable only to relatively
« flow shop problem, small problems (with the number of jobs not exceeding 50).

The enumerative algorithms require considerable computer
is presented. We have compared the results of TFLM algoesources both in terms of the computation times and the core
rithm (for the test instances from OR-Library [3]) with otherstorage. Therefore, many algorithms have been proposed to
algorithms from the literature. find near optimal schedules in a reasonable time. These al-
The algorithm was coded in C++ and implemented on a Swgorithms can be broadly classified into construction and im-
Enterprise 4x400MHz computer. The algorithm starts with arovement methods.
feasible solutionr; € P?, and it tries to improve this solution The construction methods use dispatching rules to come up
making small changes in it. Values of functiohsand ® with a solution by fixing a job in a position at each step. Sev-
were set tal'(i) = 0.15 and®(i) = 0.6 (after preliminary eral constructive heuristics are described by Fischer [8] and
experiments). in a review paper by Potts and Van Wassenhove [22]. They
Let AH be an heuristic algorithm used to solve the considare very fast, but their quality is not good.
ered problem. For each group of test instances we have cdhe improvement methods start from an initial solution
lected the following values: and repeatedly try to improve the current solution by local

156 Wojciech Baejko and Mieczystaw Wodecki

changes. The interchanges are continued until a solution 18
cannot be improved is obtained. Such a solution is a 16
cal minimum. To increase the performance of local sea
algorithms, there are used metaheuristics like Tabu Se < 14
(Crauwels et al. [5]), Simulated Annealing (Potts and \ % 12
Wassenhove [22]), Genetic Algorithms (Crauwels etal. [¢ € —
Ant Colony Optimization (Den Basten et al. [6]). Aver 8 10 Bn=40
effective local-search method was proposed by Congrar g 8 Bn=50
al. [4] and next improved by Grosso et al. [11]. The key i @ @n=100
pect of the method is its ability to explore an exponential-s % 6
neighborhood in polynomial time, using a dynamic progra @ 4
ming technique.
2
1) Experimental results 0
An implementation of the TFLM algorithm was tested ¢ TFLM SA META

problems withn=40, 50 and 100 jobs of benchmark ii-

stances taken from the OR-library [3]. The benchmark sétigure. 1. Relative distance to the best known solutions for
contains 125 instances for each size ofithalue. There are the single machine scheduling.

results obtained by TFLM which are compared with the best

known results from the literature in the Table 1 and in th§ant to find a schedule such that the maximum completion
Figure 1. For comparison, also the results of the construgime is minimal.

tive algorithm META (composition of SWPT, EDD, AU and | gt = (r(1),7(2),...,7(n)) be a permutation of jobs
COVERT algorithms, the best constructive ones, see [2]) a&y 9

} X / ,...,n} andIl be the set of all permutations. Each per-
parallel simulated annealing (SA) algorithm based on [2 hutationw € T1 defines a processing order of jobs on each

are presented. The selected measure constituted relative gisichine. We want to find a permutatioh € II that:
tance (in percent) to the best known solution’s goal function.

Omax(ﬂ'*) = 216111_[1 Omax(ﬂ-)a

Table I Results for the single machine total tardiness prothereme(Tr) is the time required to complete all jobs on
lem (the average perce.nta%e relative deviatidi¥z, and the machines in the processing order given by the permuta-
average times of executiart™). tion . Completion time of jobr(;) on a maching: can be

n TELM SA META found using the recursive formula:
A UM 55 A SNETH
40 0,03% 0.17 120% 089 15.92% ik = maa{Ca(g—: Crgh1k + Pryn
50 0.06% 0.44 0.86% 1.68 14.69% Where
0, 0, 0,
100 0.26% 1.31 1.78% 2.90 16.64% 7(0) =0, Cop =0, k=1,2,....m,
average 0.09% 0.64 1.28% 1.82 15.75%

and
CjQZO, j:1,2,...,n.

As we can see in the Table 1 and in the Figure 1, the avdt-is well known thatC,q. (7) = Cr(n)m (S€€ [10]).

age results of the TFLM algorithm are much better than th@ohnson [14] provides with afi(nlogn) algorithm for two
results of the parallel SA and the constructive META algomachines F'|2|Cpax), Garey, Johnson and Seti [9] show that
rithms. We can additionally improves TFLM results by theF|3|Cuax iS strongly NP-hard. The best available branch
replacement of the simple descent search algorithm by an aaitd bound algorithms are those of Lageweg, Lenstra and
vanced local search algorithm. Rinnooy Kan [15]. Their performance is not entirely sat-
isfactory, as they experience difficulty in solving instances
with 20 jobs and 5 machines. Various local search methods
are available for the permutation flow shop problem. Tabu
The classic flow shop problem, denoted B§C,,...., can search algorithms are proposed by Nowicki, Smutnicki [18]
be described as follows. There is a set of enumerated joaad Grabowski, Wodecki [10]. Sequential simulated anneal-
J={1,2,...n} and a set ofn. machinesM={1,2,...m}. A ing algorithms are proposed by Osman, Potts [20], Ogbu,
job j € Jis a sequence oh operationg;1, Oja,... Ojm. Smith [19], Ishibuchi, Misaki and Tanaka [13]. A parallel
OperationO;;, corresponds to the processing of jplon a simulated annealing algorithm is proposed by Wodecki and
machinek during an uninterrupted processing timg. We Bozejko [25].

B. Flow shop problem

Population-Based Heuristics

1) Experimental results

Similarly as in the previous problem, the implementation
of the TFLM algorithm was tested on benchmark instancqs
taken from the OR-library [3] proposed by Taillard [23] and
compared with the best known results from the literature. 6
make a comparison, also the results of the best constructive
approximate algorithm NEH [17] and the parallel simulate
annealing (SA) algorithm from [25] are presented in the Ta-
ble 2 and in the Figure 2.

[1]

Table 2 Results for the flow shop problem (the average per-
centage relative deviatioh, %, and average times of exe-
cutiontA7).

n xm TFLM SA NEH
2
EED M aade, o4 gy P
20 x 5 0,04% 0.22 1.39% 1.10 2,87%
20 x 10 0.89% 0.44 2,32% 1.50 4,74%
20 x 20 0.76% 1.19 2.06% 2.75 3,69% [3]
50 x 5 0,12% 4.57 0,15% 11.20 0,89%
50 x 10 1.26% 17.02 1.68% 19.10 4,53%
average 0,61% 4.69 1,62% 7.13 3,34%
[4]
5
& [5]
4 i
g N
o N 020x5
o 3 .:.
= —5§ 020 x 10
B g% 8§20 x 20
o E§§ @50 x 5 [6]
= ﬁ§ W50 x 10
E N
N
N
3:3:

[7]

TFLM SA NEH

Figure. 2: Relative distance to the best known solutions for
the flow shop scheduling [8]
The results presented in the Table 2 show that the TFLM
algorithm gains considerably better results than other com-
pared algorithms especially for large problems. [9]

V. Conclusions

We have discussed a new approach to the permutation ogtio]
mization problems based on the population-based heuristic
algorithm. The usage of the population with fixed features
of local optima makes the performance of the method much

157

better than the iterative improvement approaches, such as in
tabu search and simulated annealing methods. The advantage
is especially visible for large problems.

n the future work we want to research an influence the pa-
ameters of the algorithm¥®andI') to values of obtaining
Solutions, especially variable values modified similarly like
éemperature parameter in the simulated annealing method.

References

T.S. Abdul-Razaqg, C.N. Potts, L.N. Van Wassenhove,
A survey of algorithms for the single machine total
weighted tardiness scheduling problem, Discrete Ap-
plied Mathematics, 26, pp. 235-253, 1990.

S.M. Akturm, B.M. Yildirim, A new dominance rule for
the total weighted tardiness problem, Production Plan-
ning & Control, Vol. 10, No. 2, pp. 138-149, 1999.

J.E. Beasley, OR-Library: distributing test problems by
electronic mail, Journal of the Operational Research
Society, 41, pp. 1069-1072, 1990.

R.K. Congram, C.N. Potts, S.L. Van de Velde, An it-
erated dynasearch algorithm for the single-machine to-
tal weighted tardiness scheduling problem, INFORMS
Journal on Computing, Vol. 14, No. 1, pp. 52-67, 2002.

H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove,
Local Search Heuristics for the Single machine Total
Weighted Tardiness Scheduling Problem, INFORMS
Journal on Computing, Vol. 10, No. 3, pp. 341-350,
1998.

M. Den Basten, T. $itzle, M. Dorigo, Design of Iter-
ated Local Search Algorithms An Example Application
to the Single Machine Total Weighted Tardiness Prob-
lem, J.W. Boers et al. (eds.) Evo Worskshop, LNCS
2037, pp. 441-451, 2001.

H. Emmons, One machine sequencing to Minimize
Certain Functions of Job Tardiness, Operations Re-
search, 17, pp. 701-715, 1969.

M.L. Fisher, A Dual Algorithm for the One Machine
Scheduling Problem, Mathematical Programming, 11,
pp. 229-252, 1976.

M.R. Garey, D.S. Johnson, R. Seti, The complexity of
flowshop and jonshop scheduling, Mathematics of Op-
erations Research, 1, pp. 117-129, 1976.

J.Grabowski, M. Wodecki, A very fast search algorithm
for the permutation flow shop problem with makespan
criterion, Computers & Operations Research, 31, pp.
1891-1909, 2004.

158

Wojciech Baejko and Mieczystaw Wodecki

[11] A. Grosso, F. Della Croce, R. Tadei, An enhancef5] M. Wodecki, W. Baejko, Solving the flow shop prob-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

dynasearch neighborhood for single-machine total
weighted tardiness scheduling problem, Operation Re-
search Letters, 32, pp. 68-72, 2004.

M. Hasegawa, T. Ikeguchi, K. Aihara, K. Itoh, A novel
chaotic search for quadratic assignment problems, Eu-
ropean Journal of Operational Research, 139, pp. 543-
556, 2002, .

H. Ishibuchi, S. Misaki, H. Tanaka, Modified Simulated
Annealing Algorithms for the Flow Shop Sequencing
Problem, European Journal of Operational Research,
81, pp. 388-398, 1995.

S.M. Johnson, Optimal two and three—stage production
schedules with setup times included, Naval Research
Logistic Quertely, pp. 61-68, 1954.

B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, A
General Bouding Scheme for the Permutation Flow-
Schop Problem, Operations Research, 26, pp. 53-67,
1978.

J.K. Lenstra, A.G.H. Rinnoy Kan, P. Brucker, Com-
plexity of Machine Scheduling Problems, Annals of
Discrete Mathematics, 1, pp. 343-362, 1977.

M. Navaz , E.E. Enscore Jr, |. Ham, A heuristic algo-
rithm for them-machinen-job flow-shop sequencing
problem, OMEGA, 11/1, pp. 91-95, 1983.

E. Nowicki, C. Smutnicki, A fast tabu search algorithm
for the permutation flow-shop problem, European Jour-
nal of Operational Research, 91, pp. 160-175, 1996.

F. Ogbu, D. Smith, The Application of the Simulated
Annealing Algorithm to the Solution of the|m|C),q.
Flowshop Problem, Computers and Operations Re-
search, 17(3), pp. 243-253, 1990.

I. Osman, C. Potts, Simulated Annealing for Permuta-
tion Flow-Shop Scheduling, OMEGA, 17(6), pp. 551-
557, 1989.

C.N. Potts, C.N. Van Wassenhove, A Branch and
Bound Algorithm for the Total Weighted Tardiness
Problem, Operations Research, 33, pp. 177-181, 1985.

C.N. Potts, L.N. Van Wassenhove, Single Machine Tar-
diness Sequencing Heuristics, IIE Transactions, 23, pp.
346-354, 1991.

E. Taillard, Benchmarks for basic scheduling problems,
European Journal of Operational Research, 64, pp. 278-
285, 1993.

Ch.F. Tsai, C.W. Tsai, Ch.Ch. Tseng, A new hybrid
heuristic approach for solving large traveling salesman
problem, Information Sciences, 166, pp. 67-81, 2004.

lem by parallel simulated annealing, Lecture Notes in
Computer Science, 2328, Springer, pp. 236-247, 2002.

