
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.2, No.2 (2006), pp. 151–158
c© Research India Publications http://www.ijcir.info

Population-Based Heuristics for Hard
Permutational Optimization Problems

Wojciech Bożejko1 and Mieczysław Wodecki2

1Wrocław University of Technology
Institute of Computer Engineering, Control and Robotics

Janiszewskiego 11-17, 50-372 Wrocław, Poland
wojciech.bozejko@pwr.wroc.pl

2University of Wrocław
Institute of Computer Science

Przesmyckiego 20, 51-151 Wrocław, Poland
mwd@ii.uni.wroc.pl

Abstract: In this paper we present a population-based algo-
rithm for solving permutational optimization problems. It con-
sists in testing the feasible solutions which are the local minima.
This method is based on the following observation: if there are
the same elements in some positions in several permutations,
which are local minima, then one can suppose that these ele-
ments can be in the same positions in the optimal solution. The
presented properties and ideas can be applied to two classical
strongly NP-hard scheduling problems:

1. single machine total weighted tardiness problem

2. flow shop problem with goal functionCmax.

Computational experiments on the benchmark instances
from the OR-Library [3] are presented and compared with
the results yielded by the best algorithms discussed in the
literature. These results show that the algorithm proposed
allows us to obtain the best known results for the benchmarks
in a short time.

Keywords: algorithm, metaheuristics, scheduling, optimization,
population, local search

I. Introduction

Discrete optimization methods are applied to time-dependent
systems if there are problems of production management and
job’s scheduling. One can encounter such problems with
preparing the travel itineraries for tourists, the optimal ways
(e.g. traveling salesman’s way), the schedule planning and
the expert systems connected with taking optimal decisions.
Many of these deal with determining optimal scheduling
(permutation of some objects) and usually they are NP-hard.
They also have irregular goal functions and very many local
minima. Classic heuristic algorithms (tabu search, simulated

annealing and genetic algorithm) quickly converge to a lo-
cal minimum and the diversification of its search process is
difficult. We present a general population-based method ap-
proach that can be used to find the approximate solutions of
the hard combinatorial optimization problems. These prob-
lems can be described as follows: for a given finite set of
feasible solutions,X , the goal functionF is defined as a
mappingF : x → R+. The optimization problem aims at
finding the optimal solutionx∗ ∈ X with

F (x∗) = min{F (x) : x ∈ X}.
Some representative examples of the permutation problems
are the Traveling Salesman Problem [24], the Quadratic As-
signment Problem [12] and the single [1] and multi-machine
[10] scheduling problems. Although these problems present
simple formulations, they are very troublesome, because in
most cases they belong to the NP-hard problems class. For
many of these problems a natural solution representation
constitutes a permutation. Because of their inherent na-
ture, the permutation optimization problem (POP) has a huge
number of various local optima. Therefore, to solve these
problems the approximate methods mainly used are:

1. constructive methods,

2. improvement methods.

Constructive heuristics are essentially single pass methods
which construct a permutation by fixing at each step the po-
sition of an element in the permutation. They are very fast,
easily implementable, however the performance of the gener-
ated solutions is rather poor. The second group of the meth-
ods deals with improving a given solution. An important
member of this group is the local search method. These al-
gorithms usually finish calculations after finding a few local

152 Wojciech Bȯzejko and Mieczysław Wodecki

optima. Thus nowadays many approaches, not so ”sensitive”
to detecting local optima – especially artificial intelligence
methods, are applied to solvePOP.
In this paper we present a method which belongs to the
improvement approaches for solvingPOP, and which con-
sists in determining and researching the local minima. This
(heuristics) method is based on the following observation. If
there are the same elements in some positions in several per-
mutations, which are local minima, then these elements are
in the same position in the optimal solution.
The basic idea is to start with an initial population (any subset
of the solution space). Next, for each element of the popula-
tion, a local optimization algorithm is applied (e.g. descend-
ing search algorithm or metaheuristics, see [22]) to determine
a local minimum. In this way we obtain a set of permutations
– local minima. If there is an element which is in the same
position in several permutations, then it is fixed in this posi-
tion in the permutation, and other positions and elements of
permutations are still free. A new population (a set of per-
mutations) is generated by drawing free elements in free po-
sitions (because there are fixed elements in fixed positions).
After determining a set of local minima (for the new pop-
ulation) we can increase the number of fixed elements. To
prevent finishing the algorithm’s work after executing some
number of iterations (when all positions are fixed and there
is nothing left to draw), in each iteration ”the oldest” fixed
elements are set as free.
The proposed here method is especially helpful in solving
large-sized instances of very difficult problems with irregu-
lar goal functions. One can encounter such problems, among
others, in very efficient control strategies of the discrete pro-
duction Just-In-Time systems which are often elements of
production’s recommending systems.
We have adopted and tested our approach for two NP-hard
permutational scheduling problems:

1. single machine total weighted tardiness problem

2. flow shop problem with goal functionCmax.

We use the benchmark tests taken form the OR-Library [3].
We compare the obtained solutions with the best known ones
published in the literature. We obtain the same solutions by
executing a considerably smaller number of iterations and
shortening the total calculation time.
This paper is organized as follows: in the next section we in-
troduce the notation, the elements of population-based algo-
rithm and the local search algorithms. The Section 3 includes
the results of the computational experiments for two classical
strong NP-hard problems of scheduling. The obtained results
are compared with the best known in the literature. The final
conclusions are presented in Section 4.

II. Population-based algorithm

Let Π be a set of all permutations of elements from the set
N = {1, 2, . . . , n} and the function:

F : Π → R+ ∪ {0}.

We consider the problem which consists in determining op-
timal permutation̂π ∈ Π.
To solve this problem we propose the heuristic algorithm
which examines local minima of the functionF . To deter-
mine local minimum a local improvement algorithm is used.
We use the following notation:

π∗ : sub-optimal permutation determined by the
algorithm,

η : number of elements in the population,

P i : population in the iterationi of the algorithm,
P i = {π1, π2, ... , πη},

LocalOpt(π) : local optimization algorithm to de-
termine local minimum, whereπ is
a starting solution,

LM i : a set of local minima in iterationi,
LM i = {π̂1, π̂2, ... , π̂η},
π̂j = LocalOpt(πj),
πj ∈ P i, j = 1, 2, ... , η

FSi : a set of fixed elements and position in
permutations of populationP i.

We also use the following functions connected with popula-
tion’s evolution:

FixSet(LM i, FSi) : a procedure which determines a
set of fixed elements and posi-
tions in the next iteration of the
algorithm,
FSi+1 = FixSet(LM i, FSi),

NewPopul(FSi) : a procedure which generates
a new population in the next
iteration of algorithm,
P i+1 = NewPopul(FSi).

In any permutationπ ∈ P i positions and elements which
belong to the setFSi (in iterationi) we callfixed, other ele-
ments and positions we callfree.
The algorithm begins by creating an initial populationP 0

(and it can be created randomly). We set a sub-optimal solu-
tion π∗ as the best element of the populationP 0,

F (π∗) = min{F (β) : β ∈ P 0}.

A new population of iterationi + 1 (a setP i+1) is gener-
ated as follows: for current populationP i+1 a set of local
minimaLM i is determined (for each elementπ ∈ P i exe-
cuting procedureLocalOpt(π)). Elements which are in the
same positions in local minima are established (procedure

Population-Based Heuristics 153

FixSet(LM i, FSi)), and a set of fixed elements and posi-
tionsFSi+1 is generated. Each permutation of the new pop-
ulationP i+1 contains the fixed elements (in fixed positions)
from the setFSi+1. Free elements are randomly drawn in
the remaining free positions of permutation.
If permutationβ ∈ LM i exists andF (β) < F (π∗), then
we updateπ∗ (π∗ ← β). The algorithm finishes after a fixed
number of generations.
The general structure of the population-based heuristic al-
gorithm for the permutation optimization problem is given
below.

Algorithm 1. Testing of Feasible Local Minima (TFLM)

Initialization:
P 0 ← {π1, π2, . . . , πη}; random creation of the

initial population
F (π∗) =min{F (β) : β ∈ P 0}; the best element of the

populationP 0

i ← 0; the number of iteration
FS0 ← ∅; a set of fixed elements and positions

repeat
Determine a set of local minima

LM i ← {π̂1, π̂2, . . . , π̂η},
where
π̂j ←LocalOpt(πj), πj ∈ P i;

for j ← 1 to η do
if F (π̂j) < F (π∗) then
π∗ ← π̂j ;
end if;

end for;
Determine a set

FSi+1 ← FixSet(LM i, FSi)
and generate a new population
P i+1 ← NewPopul(FSi);
i ← i + 1;

until not Stop Criterion.

The algorithm stops (Stop Criterion) after executing the
Max iter iterations or exceeding a fixed time.
ProceduresLocalOpt, FixSetandNewPopulare described in
further parts of the paper.

A. Local optimization (LocalOpt procedure)

A fast method based on the local improvement is applied
to determine the local minima. The method begins with an
initial solutionπ0. In each iteration for the current solution
πi the neighborhoodN (πi) is determined. TheN (πi) is
a subset of the set of feasible solutions. The neighborhood
is generated by moves that are fixed transformations of the
solution πi into another permutation from the set of the
feasible solutionΠ. Next, from the neighborhood the best
elementπi+1 is chosen which is the current solution in the
next iteration.

Algorithm 2. Neighborhood Search (NS)

Select a starting pointx;
xbest ← x;
repeat

chose an elementy from the neighborhoodN (x)
according to a given criterion based on the
goal function’s valueF (y);
x ← y;
if F (y) < F (xbest) then
xbest ← y;

until some termination condition is satisfied.

A crucial ingredient of the local search algorithm is the defi-
nition of the neighborhood function in combination with the
solution representation. It is obvious that the choice of a good
neighborhood is one of the key elements of the neighborhood
search method’s efficiency.
Traditionally a neighborhood of the solutionπ is a search
space which can be defined as a set of new solutions that can
be reached fromπ by exactly one move (a single perturbation
of π). During the iterative process, the current solution of
the algorithm ”moves” through the solution spaceΠ from
neighbor to neighbor. A move is evaluated by comparing the
goal function’s value of the current solution to each single
one of its neighbor.
The evolution of the solutionπi, i = 1, 2, ..., draws a tra-
jectory in the search spaceΠ. There exist many criteria for
selecting the next solutionπi+1 in the neighborhood ofπi.
If the current solution is not worse thatπi, i.e. F (πi+1) ≤
F (πi), then this strategy is usually called a steepest descent
strategy. The main weakness of the descent algorithm is its
inability to escape from local minima (all elements in the
neighborhoodN (πi) are worse thanπi).
For any iteration of the local search algorithm a subset of
moves applicable to it is defined. This subset of moves gen-
erates a subset of solutions – the neighborhood. Each move
transforms a permutation (current solution) into another per-
mutation fromΠ.
Let k andl (k 6= l) be a pair of positions in a permutation:

π = (π(1), π(2), ... , π(k − 1), π(k), π(k + 1), ... ,

π(l − 1), π(l), π(l + 1), ... , π(n)).

Among many types of moves considered in the literature, two
of them appear prominently:

1. Insert move (i-move) consists in removing the jobπ(k)
from the positionk and next insert it in a positionl.
Thus the move generates a new permutationπk

l in the
following way:

πk
l = (π(1), . . . , π(k − 1), π(k + 1), . . . , π(l − 1),

π(l), π(k), π(l + 1), . . . , π(n)),

if k < l, and

πk
l = (π(1), . . . , π(l − 1), π(k), π(l), π(l + 1), . . . ,

154 Wojciech Bȯzejko and Mieczysław Wodecki

π(k − 1), π(k + 1), . . . , π(n)),

if k > l.

2. Swap move (s-move) in which the jobs ifπ(k) andπ(l)
are swapped among some positionsk andl. The move
generates the following permutation:

πk
l = (π(1), π(2), . . . , π(k − 1), π(l),

π(k + 1), . . . , π(l − 1), π(k), π(l + 1), . . . , π(n)).

Computational complexity of executingi−move isO(n) and
O(1) of executings−move.
In an implementation of theLocalOpt(πj) πj ∈ P i proce-
dure there is applied a very quickimprovement searchalgo-
rithm. The neighborhood is generated by swap and insert
moves (bothi-moves ands-moves) which consist in taking
an element from some position in the permutation and in-
serting it to another position and moving elements between
these positions. Such a neighborhood has(n− 1)(3n/2− 2)
elements, wheren is the length of permutation.

B. A set of fixed elements and position (FixSet procedure)

The setFSi (in iterationi) includes quadruples(a, l, α, ϕ),
wherea is an element of the setN = {1, 2, . . . , n}, l is
a position in the permutation (1 ≤ l ≤ n) and α, ϕ are
attributes of a pair(a, l).
A parameterα means ”adaptation” and decides on inserting
to the set, andϕ – ”age” – decides on deleting from the set.
Parameterϕ enables to set free a fixed element after making a
number of iterations of the algorithm. However a parameter
α determine such a fraction of local minima, in which an
elementa is in positionl.
Both of these parameters are described in a further part of this
chapter. The maximal number of elements in the setFSi is
n. If the quadruple(a, l, α, ϕ) belongs to the setFSi, then
there is an elementa in the positionl in each permutation
from the populationP i.
In each iteration of the algorithm, after determining local
minima (LocalOptprocedure), a new setFSi+1 = FSi is
established. Next, aFixSet(LM i, FSi) procedure is in-
voked in which the following operations are executed:

(a) changing of the age of each element (ϕ parameter),

(b) deleting the oldest elements,

(c) inserting the new elements.

There are two functions of acceptanceΓ(i) and Φ(i) con-
nected with the operations of inserting and deleting. Both of
them can be determined experimentally.

1) Modification of element’s age

In each iteration of the algorithm the age of each element
which belongs toFSi is increased by 1, that is

∀(a, l, α, ϕ) ∈ FSi,

FSi+1 ← FSi\{(a, l, α, ϕ)} ∪ {(a, l, α, ϕ + 1)}.
The age parameter makes it possible to delete an element
from the setFSi.
Each fixed element is free after some number of iterations
and can be fixed again in any free position.

2) Inserting elements

Let P i = {π1, π2, . . . , πη} be a population ofη elements
in the iterationi. For each permutationπj ∈ P i, applying
the local search algorithm (LocalOpt(πj) procedure), a set of
local minimaLM i = {π̂1, π̂2, . . . , π̂η} is determined. For
any permutation

π̂j = (π̂j(1), π̂j(2), ... , π̂j(n)), j = 1, 2, ... η,

let be

nr(a, l) =
∣∣{π̂j ∈ LM i : π̂j(l) = a}

∣∣ .

It is a number of permutations from the setLM i in which
the elementa is in the positionl.
If a ∈ N is a free element and

α =
nr(a, l)

η
≥ Φ(i),

then the elementa is fixed in the positionl; ϕ = 1 and the
quadruple(a, l, α, ϕ) is inserted to the set of fixed elements
and positions, that is

FSi+1 ← FSi+1 ∪ {(a, l, α, ϕ)}.
Acceptance functionΦ should be defined so that

∀i, 0 < Φ(i) ≤ 1.

3) Deleting elements

To test many local minima each fixed element is released af-
ter executing some number of iterations.
Let be

ES = {(a, l, α, ϕ) ∈ FSi+1 :
α

ϕ
≤ Γ(i)}.

It is a set of some elements and positions which are fixed in
all permutations of the populationP i.
If ES 6= ∅, then elements of this set are deleted fromFSi+1,
that is

FSi+1 ← FSi+1\ES,

otherwise (whenES = ∅), let

δ = (a′, l′, α′, ϕ′) ∈ FSi+1

be such that
α′

ϕ′
= min{α

ϕ
: (a, l, α, ϕ) ∈ FSi+1}.

The elementδ is deleted from the setFSi+1, that is

FSi+1 ← FSi+1\δ.
FunctionΓ(i) should be defined in such a way that each ele-
ment of the setFSi is deleted after executing some number
of iterations.

Population-Based Heuristics 155

C. A new population procedure

If a quadruple(a, l, α, ϕ) ∈ FSi+1, then in each permuta-
tion of a new populationP i+1 there exists an elementa in a
positionl. Randomly drawn free elements will be inserted in
remaining (free) positions. PopulationP i+1 is generated as
follows:

Algorithm 3. New Population (NewPopul(FSi+1))

P i+1 ← ∅;
Determine a set of free elements
FE ← {a ∈ N : ¬ ∃ (a, l, α, ϕ) ∈ FSi+1}
and a set of free positions
FP ← {l : ¬ ∃ (a, l, α, ϕ) ∈ FSi+1};
for j ← to η do {Inserting fixed elements}

for every (a, l, α, ϕ) ∈ FSi+1 do
πj(l) ← a;

end for;
W ← FE;
{Inserting free elements}
for s ← 1 to n do

if s ∈ FP then
πj(s) ← w, where
w ← random(W) and W ← W\{w};

end for;
Pi+1 ← Pi+1 ∪ {πj}.

end for.

Function randomgenerates an element of the setW from
the uniform distribution. Computational complexity of the
algorithm isO(η · n).

III. Implementations of the method

In this section an application of the TFLM algorithm for two
classical scheduling problems:

• single machine total weighted tardiness problem,

• flow shop problem,

is presented. We have compared the results of TFLM algo-
rithm (for the test instances from OR-Library [3]) with other
algorithms from the literature.
The algorithm was coded in C++ and implemented on a Sun
Enterprise 4x400MHz computer. The algorithm starts with a
feasible solutionπj ∈ P i, and it tries to improve this solution
making small changes in it. Values of functionsΓ and Φ
were set toΓ(i) = 0.15 andΦ(i) = 0.6 (after preliminary
experiments).
Let AH be an heuristic algorithm used to solve the consid-
ered problem. For each group of test instances we have col-
lected the following values:

FAH – the cost found by theAH algorithm,
δAH – percentage relative deviation of the cost

functionFAH found by algorithmAH
from the optimal (or best known) solution
valueOPT ,

δAH = FAH−OPT
OPT ∗ 100%,

δAHAPRD – the average (for group of test instances)
percentage relative deviation (δAH) of the
cost functionFAH found by algorithmAH,

tAH – the time of execution of theAH algorithm
(in seconds).

A. Single machine scheduling problem

In the single machine total weighted tardiness problem, de-
noted as1‖∑

wiTi, a set of jobsN = {1, 2, . . . , n} has to
be processed without an interruption on a single machine that
can handle only one job at a time. All jobs become available
for processing at time zero. Each jobi ∈ N has an integer
processing timepi, a due datedi, and a positiveweightwi.
For a given sequence of the jobs and (the earliest) comple-
tion timeCi, thetardinessTi= max{0, Ci − di} and the cost
fi(Ci) = wi · Ti of job i ∈ N can be computed. The goal is
to find a job sequence (permutation) that minimizes the sum
of the costs given by

F (π) =
n∑

i=1

fπ(i)(Cπ(i)) =
n∑

i=1

wπ(i) · Tπ(i),

whereπ ∈ Π, andΠ is a set of all permutation
The problem is NP-hard (Lenstra et all [16]). A large num-
ber of studies has been devoted to the problem. Emmons
[7] proposes several dominance rules that restrict the search
process for an optimal solution. These rules are used in many
algorithms. Enumerative algorithms that use dynamic pro-
gramming and branch and bound approaches to the problem
are described by Fischer [8], Potts and Van Wassenhove [21].
These and other algorithms are discussed and tested in a re-
view paper by Abdul-Razaq et al. [1]. Algorithms consi-
tute a significant improvement to the exhaustive search, but
they remain laborious and are applicable only to relatively
small problems (with the number of jobs not exceeding 50).
The enumerative algorithms require considerable computer
resources both in terms of the computation times and the core
storage. Therefore, many algorithms have been proposed to
find near optimal schedules in a reasonable time. These al-
gorithms can be broadly classified into construction and im-
provement methods.
The construction methods use dispatching rules to come up
with a solution by fixing a job in a position at each step. Sev-
eral constructive heuristics are described by Fischer [8] and
in a review paper by Potts and Van Wassenhove [22]. They
are very fast, but their quality is not good.
The improvement methods start from an initial solution
and repeatedly try to improve the current solution by local

156 Wojciech Bȯzejko and Mieczysław Wodecki

changes. The interchanges are continued until a solution that
cannot be improved is obtained. Such a solution is a lo-
cal minimum. To increase the performance of local search
algorithms, there are used metaheuristics like Tabu Search
(Crauwels et al. [5]), Simulated Annealing (Potts and Van
Wassenhove [22]), Genetic Algorithms (Crauwels et al. [5]),
Ant Colony Optimization (Den Basten et al. [6]). A very
effective local-search method was proposed by Congram et
al. [4] and next improved by Grosso et al. [11]. The key as-
pect of the method is its ability to explore an exponential-size
neighborhood in polynomial time, using a dynamic program-
ming technique.

1) Experimental results

An implementation of the TFLM algorithm was tested on
problems withn=40, 50 and 100 jobs of benchmark in-
stances taken from the OR-library [3]. The benchmark set
contains 125 instances for each size of then value. There are
results obtained by TFLM which are compared with the best
known results from the literature in the Table 1 and in the
Figure 1. For comparison, also the results of the construc-
tive algorithm META (composition of SWPT, EDD, AU and
COVERT algorithms, the best constructive ones, see [2]) and
parallel simulated annealing (SA) algorithm based on [25]
are presented. The selected measure constituted relative dis-
tance (in percent) to the best known solution’s goal function.

Table 1: Results for the single machine total tardiness prob-
lem (the average percentage relative deviationδAHAPRD and
average times of executiontAH).

n TFLM SA META

δT FLMAPRD tT FLM δSAAPRD tSA δMETA
APRD

40 0,03% 0.17 1.20% 0.89 15.92%

50 0.06% 0.44 0.86% 1.68 14.69%

100 0.26% 1.31 1.78% 2.90 16.64%

average 0.09% 0.64 1.28% 1.82 15.75%

As we can see in the Table 1 and in the Figure 1, the aver-
age results of the TFLM algorithm are much better than the
results of the parallel SA and the constructive META algo-
rithms. We can additionally improves TFLM results by the
replacement of the simple descent search algorithm by an ad-
vanced local search algorithm.

B. Flow shop problem

The classic flow shop problem, denoted asF‖Cmax, can
be described as follows. There is a set of enumerated jobs
J={1,2,. . . ,n} and a set ofm machinesM={1,2,. . . ,m}. A
job j ∈ J is a sequence ofm operationsOj1, Oj2,. . . ,Ojm.
OperationOjk corresponds to the processing of jobj on a
machinek during an uninterrupted processing timepjk. We

0

2

4

6

8

10

12

14

16

18

TFLM SA META

re
la

ti
ve

 d
is

ta
n

ce
 [

%
]

n=40
n=50
n=100

 Figure. 1: Relative distance to the best known solutions for

the single machine scheduling.

want to find a schedule such that the maximum completion
time is minimal.
Let π = (π(1), π(2), . . . , π(n)) be a permutation of jobs
{1, 2, . . . , n} andΠ be the set of all permutations. Each per-
mutationπ ∈ Π defines a processing order of jobs on each
machine. We want to find a permutationπ∗ ∈ Π that:

Cmax(π∗) = min
π∈Π

Cmax(π),

whereCmax(π) is the time required to complete all jobs on
the machines in the processing order given by the permuta-
tion π. Completion time of jobπ(j) on a machinek can be
found using the recursive formula:

Cπ(j)k = max{Cπ(j−1)k, Cπ(j)k−1}+ pπ(j)k,

where

π(0) = 0, C0k = 0, k = 1, 2, . . . , m,

and
Cj0 = 0, j = 1, 2, . . . , n.

It is well known thatCmax(π) = Cπ(n)m (see [10]).
Johnson [14] provides with anO(nlogn) algorithm for two
machines (F |2|Cmax), Garey, Johnson and Seti [9] show that
F |3|Cmax is strongly NP-hard. The best available branch
and bound algorithms are those of Lageweg, Lenstra and
Rinnooy Kan [15]. Their performance is not entirely sat-
isfactory, as they experience difficulty in solving instances
with 20 jobs and 5 machines. Various local search methods
are available for the permutation flow shop problem. Tabu
search algorithms are proposed by Nowicki, Smutnicki [18]
and Grabowski, Wodecki [10]. Sequential simulated anneal-
ing algorithms are proposed by Osman, Potts [20], Ogbu,
Smith [19], Ishibuchi, Misaki and Tanaka [13]. A parallel
simulated annealing algorithm is proposed by Wodecki and
Bożejko [25].

Population-Based Heuristics 157

1) Experimental results

Similarly as in the previous problem, the implementation
of the TFLM algorithm was tested on benchmark instances
taken from the OR-library [3] proposed by Taillard [23] and
compared with the best known results from the literature. To
make a comparison, also the results of the best constructive
approximate algorithm NEH [17] and the parallel simulated
annealing (SA) algorithm from [25] are presented in the Ta-
ble 2 and in the Figure 2.

Table 2: Results for the flow shop problem (the average per-
centage relative deviationδAHAPRD and average times of exe-
cutiontAH).

n×m TFLM SA NEH

δT FLMAPRD tT FLM δSAAPRD tSA δNEHAPRD

20× 5 0,04% 0.22 1.39% 1.10 2,87%

20× 10 0.89% 0.44 2,32% 1.50 4,74%

20× 20 0.76% 1.19 2.06% 2.75 3,69%

50× 5 0,12% 4.57 0,15% 11.20 0,89%

50× 10 1.26% 17.02 1.68% 19.10 4,53%

average 0,61% 4.69 1,62% 7.13 3,34%

0

1

2

3

4

5

TFLM SA NEH

re
la

ti
ve

 d
is

ta
n

ce
 [

%
]

20 x 5
20 x 10
20 x 20
50 x 5
50 x 10

Figure. 2: Relative distance to the best known solutions for
the flow shop scheduling

The results presented in the Table 2 show that the TFLM
algorithm gains considerably better results than other com-
pared algorithms especially for large problems.

IV. Conclusions

We have discussed a new approach to the permutation opti-
mization problems based on the population-based heuristic
algorithm. The usage of the population with fixed features
of local optima makes the performance of the method much

better than the iterative improvement approaches, such as in
tabu search and simulated annealing methods. The advantage
is especially visible for large problems.
In the future work we want to research an influence the pa-
rameters of the algorithm (Φ andΓ) to values of obtaining
solutions, especially variable values modified similarly like
temperature parameter in the simulated annealing method.

References

[1] T.S. Abdul-Razaq, C.N. Potts, L.N. Van Wassenhove,
A survey of algorithms for the single machine total
weighted tardiness scheduling problem, Discrete Ap-
plied Mathematics, 26, pp. 235-253, 1990.

[2] S.M. Akturm, B.M. Yildirim, A new dominance rule for
the total weighted tardiness problem, Production Plan-
ning & Control, Vol. 10, No. 2, pp. 138-149, 1999.

[3] J.E. Beasley, OR-Library: distributing test problems by
electronic mail, Journal of the Operational Research
Society, 41, pp. 1069-1072, 1990.

[4] R.K. Congram, C.N. Potts, S.L. Van de Velde, An it-
erated dynasearch algorithm for the single-machine to-
tal weighted tardiness scheduling problem, INFORMS
Journal on Computing, Vol. 14, No. 1, pp. 52-67, 2002.

[5] H.A.J. Crauwels, C.N. Potts, L.N. Van Wassenhove,
Local Search Heuristics for the Single machine Total
Weighted Tardiness Scheduling Problem, INFORMS
Journal on Computing, Vol. 10, No. 3, pp. 341-350,
1998.

[6] M. Den Basten, T. Stützle, M. Dorigo, Design of Iter-
ated Local Search Algorithms An Example Application
to the Single Machine Total Weighted Tardiness Prob-
lem, J.W. Boers et al. (eds.) Evo Worskshop, LNCS
2037, pp. 441-451, 2001.

[7] H. Emmons, One machine sequencing to Minimize
Certain Functions of Job Tardiness, Operations Re-
search, 17, pp. 701-715, 1969.

[8] M.L. Fisher, A Dual Algorithm for the One Machine
Scheduling Problem, Mathematical Programming, 11,
pp. 229-252, 1976.

[9] M.R. Garey, D.S. Johnson, R. Seti, The complexity of
flowshop and jonshop scheduling, Mathematics of Op-
erations Research, 1, pp. 117-129, 1976.

[10] J.Grabowski, M. Wodecki, A very fast search algorithm
for the permutation flow shop problem with makespan
criterion, Computers & Operations Research, 31, pp.
1891-1909, 2004.

158 Wojciech Bȯzejko and Mieczysław Wodecki

[11] A. Grosso, F. Della Croce, R. Tadei, An enhanced
dynasearch neighborhood for single-machine total
weighted tardiness scheduling problem, Operation Re-
search Letters, 32, pp. 68-72, 2004.

[12] M. Hasegawa, T. Ikeguchi, K. Aihara, K. Itoh, A novel
chaotic search for quadratic assignment problems, Eu-
ropean Journal of Operational Research, 139, pp. 543-
556, 2002, .

[13] H. Ishibuchi, S. Misaki, H. Tanaka, Modified Simulated
Annealing Algorithms for the Flow Shop Sequencing
Problem, European Journal of Operational Research,
81, pp. 388-398, 1995.

[14] S.M. Johnson, Optimal two and three–stage production
schedules with setup times included, Naval Research
Logistic Quertely, pp. 61-68, 1954.

[15] B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan, A
General Bouding Scheme for the Permutation Flow-
Schop Problem, Operations Research, 26, pp. 53-67,
1978.

[16] J.K. Lenstra, A.G.H. Rinnoy Kan, P. Brucker, Com-
plexity of Machine Scheduling Problems, Annals of
Discrete Mathematics, 1, pp. 343-362, 1977.

[17] M. Navaz , E.E. Enscore Jr, I. Ham, A heuristic algo-
rithm for them-machine,n-job flow-shop sequencing
problem, OMEGA, 11/1, pp. 91-95, 1983.

[18] E. Nowicki, C. Smutnicki, A fast tabu search algorithm
for the permutation flow-shop problem, European Jour-
nal of Operational Research, 91, pp. 160-175, 1996.

[19] F. Ogbu, D. Smith, The Application of the Simulated
Annealing Algorithm to the Solution of then|m|Cmax

Flowshop Problem, Computers and Operations Re-
search, 17(3), pp. 243-253, 1990.

[20] I. Osman, C. Potts, Simulated Annealing for Permuta-
tion Flow-Shop Scheduling, OMEGA, 17(6), pp. 551-
557, 1989.

[21] C.N. Potts, C.N. Van Wassenhove, A Branch and
Bound Algorithm for the Total Weighted Tardiness
Problem, Operations Research, 33, pp. 177-181, 1985.

[22] C.N. Potts, L.N. Van Wassenhove, Single Machine Tar-
diness Sequencing Heuristics, IIE Transactions, 23, pp.
346-354, 1991.

[23] E. Taillard, Benchmarks for basic scheduling problems,
European Journal of Operational Research, 64, pp. 278-
285, 1993.

[24] Ch.F. Tsai, C.W. Tsai, Ch.Ch. Tseng, A new hybrid
heuristic approach for solving large traveling salesman
problem, Information Sciences, 166, pp. 67-81, 2004.

[25] M. Wodecki, W. Bȯzejko, Solving the flow shop prob-
lem by parallel simulated annealing, Lecture Notes in
Computer Science, 2328, Springer, pp. 236-247, 2002.

