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Abstract: A cooperative team of agents may perform many
tasks better than isolated agents. The question is how coopera-
tion among self-interested agents may be achieved. It is impor-
tant that, while we encourage cooperation among agents to form
a team, we maintain autonomy of individual agents as much as
possible, so as to maintain flexibility and generality. This paper
presents an approach toward this goal, based on bidding utiliz-
ing reinforcement values acquired through reinforcement learn-
ing. The result is a simple and straightforward method that is
generic and works in a variety of task domains. We further
apply evolutionary computation to enhance cooperation among
agents of a team, through selecting and reproducing those teams
that are able to cooperate. We tested and analyzed this ap-
proach, MARLBS, in a variety of task domains, and demon-
strated that a team of self-interested agents indeed performed
better than the best single agent as well as the average of the
single agents. In particular, Backgammon players trained us-
ing this approach outperformed PubEval (a publicly available
benchmark player). These results validated our approach.

I. Introduction

Multi-agent systems (MAS) have become an important fo-
cus of artificial intelligence, and useful in many emerging
application areas of AI. However, there are many significant
research issues concerning the coordination and cooperation
of multiple agents. These issues are somewhat analogous
to issues studied in distributed systems (including distrib-
uted AI), such as those concerning task decomposition and
solution synthesis. In distributed systems, typically, sub-
problems are not completely independent, but they may be
separately solved to obtain sub-solutions. Then these sub-
solutions can be synthesized into a solution of the original
problem. In multi-agent systems, different from typical dis-
tributed systems, such “decomposition” and “synthesis” are
not centralized, but accomplished through emergent means

(Castelfranchi 2001), which makes the issues more difficult.
Increasingly, machine learning is being used as a vital com-
ponent of multi-agent systems. Solutions to many tasks are
envisioned with teams of agents (e.g., robots) learning to
cooperate to achieve global objectives. In addition, some
machine learning techniques (such as evolutionary compu-
tation) may be applied to designing large populations of self-
interested agents that interact with each other to solve prob-
lems.
Multi-agent learning, however, poses significant theoretical
challenges, particularly in understanding how agents can
learn and adapt in the presence of other agents that are si-
multaneously learning and adapting. Fairly recently, there
have been significant theoretical developments relevant to
learning in MAS, in fields such as Bayesian, game-theoretic,
decision-theoretic, evolutionary, and reinforcement learning.
Co-learning involving multiple agents has been studied in a
few different disciplines under various guises for quite some
time. For example, the issue has been addressed by distrib-
uted artificial intelligence, parallel distributed computing, so-
cial psychology, game theory and other areas of mathemati-
cal economics, sociology, anthropology, and many other re-
lated disciplines. These approaches and techniques need to
be tested in more challenging multi-agent applications.
In multi-agent settings, a key theoretical issue is: How can
a multi-agent system be developed in which agents cooper-
ate with each other to collectively accomplish complex tasks
without being externally dictated to do so? For example, the
game theoretic notion of a “coalition” has been applied in
this area (Kahan and Rapoport 1984). Although game theory
provides analyses of variously defined states of equilibria in
coalition formation that may be achieved by self-interested
agents pursuing their own interests, it does not study suffi-
ciently how these equilibria can be achieved computationally
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(e.g., through learning). It usually makes the assumption of
completely rational agents that can examine all the aspects
of a coalition (although limited rationality models have been
looked into). The problem of optimal coalition formation
could be NP-complete (Kahan and Rapoport 1984). There
are also significant philosophical issues concerning the re-
lationship between individual self-interested actions and the
collective function that they achieve, which is yet to be fully
understood (Sun 2001, Castelfranchi 2001). Therefore, there
is a need for more experimental work in model building and
idea testing that can shed additional light on the issues, as
they may lead to better theoretical models in the future as
well as more successful applications.
We are interested in the following research issues relevant
to multi-agent learning: (1) how self-interested agents learn
to cooperate with each others (under bounded rationality);
(2) what a minimum mechanism should be for establishing
cooperation among self-interested agents; (3) what the role
of social interaction, such as bidding and negotiation, is in
co-learning; (4) how we can integrate individual learning and
collective evolution in fostering cooperation.
The goal of the present paper is to develop a general-purpose
multi-agent learning model. Although we do not yet have
rigorously derived theoretical answers to these above ques-
tions (which, we believe, will not be adequately achieved for
a long time to come), we present here our learning model that
represents our attempt at experimentally addressing some of
these issues. This learning model incorporates reinforcement
learning, bidding algorithms, and genetic algorithms.
The model, named MARLBS (standing forthe Multi-Agent
Reinforcement Learning Bidding System), deals with a spe-
cial case of forming a “coalition” (or a “team”), without
the high cost of forming game theoretical coalitions. In
the process, we mix two mechanisms, reinforcement learn-
ing and bidding, completely. That is, the learning of indi-
vidual self-interested agents and the learning of cooperation
among these self-interested agents are simultaneous and thus
interacting. This model extends existing work, in that it is
not limited to bidding alone, for example, not just bidding
alone for forming coalitions (as in Rosenschein and Zlotkin
1994) or bidding alone as the sole means for learning (as in
Baum and Durdanovic 2000). Neither is it a model of pure
reinforcement learning, without explicit interaction among
agents (such as Shoham and Tennenholtz 1994, Hu and Well-
man 1998, Littman 2001). It addresses the combination and
the interaction of the two aspects: reinforcement learning and
bidding. On top of that, evolution is used for further enhanc-
ing cooperation among agents. Learning and evolution are
also interacting in this multi-agent model.
It is important to note that here we are talking about form-
ing a coalition (or team) of self-interested agents. These
agents do not start out with a mutual commitment to team-
work. Rather, their cooperation is formed through a learning
process and out of their self interest. They are not dictated
to do so. We do not rely on BDI frameworks to capture team

cooperation. In other words, this work is about learning to
form teams, rather than usual pre-determined team models.

II. The Model

A. Basic Ideas

In a multi-agent system, an agent is an autonomous and self-
interested entity that has the power to act on its own initiative.
The environment usually contains other agents, which is one
of the reasons why the world is dynamic. A multi-agent sys-
tem is a dynamic system in which the performance and the
learning of an agent depends on the actions (and the learning)
of other agents. Agents in a multi-agent system may (or may
not) communicate with each other (explicitly or implicitly).
We developed a multi-agent learning model MARLBS (Sun
and Sessions 1999, 2000; Qi and Sun 2003). In this model,
a team is composed of a number of member agents. Each
member receives environmental information (full or partial
observations) and can make action decisions based on it. In
any given state, only one member of the team is in control.
The team’s action is the active (controlling) member’s action.
Each team member learns how to take actions in its environ-
ment through reinforcement learning when it is active (i.e.,
when it is in control of the actions of the team).
In each state, the member in control decides whether to con-
tinue to be in control or relinquish control. If it decides to
relinquish control, another member will be chosen to be in
control through a bidding process. That is, once the current
member in control relinquishes its control, to select the next
agent, it conducts a bidding process among members of the
team (who are required to bid their best Q values; more later).
Based on the bids, it decides which member should take over
next from the current point on (as a “subcontractor”). Gener-
ally speaking, the member who submits the highest bid will
likely be chosen as the new member in control. The current
member in control then takes the bid as its own payoff. Thus,
the member who is more likely to benefit from being in con-
trol, and to benefit the other agents on its team, is likely to be
chosen as the new member in control. A snapshot of a team
with 5 member agents is shown in Figure 1.
The member in control receives payoffs from the environ-
ment based on its actions. This constitutes a form of commu-
nication between an agent and its environment. During the
control exchange process (with bidding), the current mem-
ber in control also receives payoffs from the next one (in the
amount of the accepted bid). This is, in fact, an implicit form
of communication among members. Since all members of
a team have the same structure and the same ability to re-
ceive environmental information, a team is a homogeneous
communicating system. Since bidding is used to distribute
control among team members, distribution of control is com-
petitive in this system.
Each member agent of the team has two modules: the Q mod-
ule and the CQ module. Each member agent may select an
action to be performed at a step, which is done by its Q mod-
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Figure. 1: A snapshot of a team with 5 members. Only one
member is active (i.e., in control) at each step. The members
communicate with each other through bidding.

ule. The controller module CQ determines whether the agent
should continue or relinquish its control whenever the agent
is in control. The structure of a member agent is shown in
Figure 2.
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Figure. 2: The structure of a team member (an agent) in
MARLBS.

The Q-learning algorithm of Watkins (1989) is modified for
our multi-agent teams (cf. Claus and Boutilier 1998, Sun and
Qi 2000). Both the Q module and the CQ module learn
through Q-learning. The values resulting from Q-learning
are used not only for guiding the actions of an agent, but also
for bidding (see details later).
Evolution is used to enhance multi-agent teams via a process
of team generation and competition. It produces successive
generations by repeatedly mutating and recombining some of
the best teams of the current generation. The best teams are
those that are capable of cooperation through bidding (more
discussions of this point later). That is, genetic algorithms
are applied for the co-evolution of a team of agents: There
is selective pressure for agents to cooperate. Agents in a

team must learn to cooperate in order to survive the selec-
tion process. Thus, evolution helps to form multi-agent co-
operative teams. In addition, as agentslearn to cooperate
with each other, the results of learning affect evolution. Thus,
there is a strong coupling between learning and evolution.

B. Model Details

Let us look into details. Let states denote the observation
(full or partial) by a team at a particular moment. We assume
reinforcement (payoffs and costs) is associated with the cur-
rent state, denoted asg(s).

Agent structures. In each member agent, there are the fol-
lowing two modules:

• Individual action module Q: Each Q module selects and
performs actions, and each learns through Q-learning
(Watkins 1989). Each Q module tries to receive as much
payoff (and incur as little cost) as possible before it is
forced to give up (including the payoff it receives at the
last step, in the form of the expected value of the ac-
cepted bid; more later).

• Individual controller module CQ: Each CQ module
learns when the agent should continue and when it
should relinquish control. The learning is accomplished
through Q-learning (separate from that of the Q mod-
ule). Each CQ tries to determine whether it is more
advantageous to terminate the control by the agent or
to let it continue, in terms of maximizing its total rein-
forcement.1

The overall algorithm for a team of agents is as follows:

1. Observe the current states.

2. The current active agent on the team (the current agent
in control) takes control. If there is no active agent
(when the team first starts), go to step 5.

3. The CQ module of the active agent selects and performs
a control action based onCQ(s, ca) for different ca
(i.e., “continue” or “end”). If the action chosen by CQ is
end, go to step 5. Otherwise, the Q module of the active
agent selects and performs an action based onQ(s, a)
for differenta.

4. The active agent (both of its Q and CQ modules) per-
forms learning based on the reinforcement received (see
the learning rules later). Go to step 1.

5. The bidding process (which is based on current Q values
of agents) determines the next member agent to be in

1Technically, we can merge Q and CQ. But we keep them separate, for
the following reasons: (1) to make function approximators simpler, (2) to
make the scheme conceptually clearer, (3) to address possible extensions to
more than two levels (Sun and Sessions 2000), or to using different input
representations at different levels (even in the case of two levels).
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control. The agent that relinquished control performs
learning taking into consideration the expected winning
bid (which is its payoff for giving up control; see the
learning rules later).

6. Go to step 1.

Bidding is conducted as follows: Each member of the team
submits its bid, and the one with the highest value wins.
However, during learning, for the sake of exploration, a sto-
chastic selection of bids is conducted based on the Boltz-
mann distribution:

prob(k) =
ebidk/τ

∑
l e

bidl/τ

whereτ is the temperature that determines the degree of ran-
domness in bid selection. The higher a bid is, the more likely
the bidder will win. The winner will then subcontract from
the current member in control. The current member in con-
trol takes the chosen bid as its own payoff.2

As mentioned before, one crucial aspect of this bidding
process is that the bid a team member submits must be its
best Q value for the current state; in other words, each mem-
ber agent is not free to choose its own bids. A Q value re-
sulting from Q-learning (see Watkins 1989 and the discus-
sion of learning rules later) represents the total (discounted)
reinforcement that an agent may receive based on its own
experience. Thus, a bid is fully determined by a member’s
experience with regard to the current state: how much rein-
forcement (payoff and cost) the member will accrue from this
point on, if it does its best. Moreover, an agent, in submit-
ting a bid (the best Q value for the current state), takes into
account both its own gains and the gains from subsequent
subcontracting to other agents (because it takes the accepted
bid as its own payoff when subcontracting).
We call this an “open-book” bidding process, in which there
is no possibility of intentional over-bidding or under-bidding.
(However, due to lack of sufficient experience, an agent may
have a Q value that is higher or lower than the correct Q
value, in which case unintentional over-bidding or under-
bidding can occur).
The learning rules. The Q-learning algorithm of Watkins
(1989) is modified for team reinforcement learning, for the
sake of establishing cooperation among agents (cf. Claus and
Boutilier 1998, Sun and Qi 2000). The learning rules may be
described as follows:

• For the activeQk, the learning rule when neither the
current action nor the next action by the corresponding
CQk is end is the usual Q-learning rule:

∆Qk(s, a) = α(g(s) + γ max
a′

Qk(s′, a′)−Qk(s, a))

2We do not allow the current member in control who decided to relin-
quish control to participate in bidding itself, so as to avoid unnecessary calls
for bidding.

wheres′ is the new state resulting from actiona in state
s, a′ is any action in the new states′, g(s) is the rein-
forcement for the current states, α is the learning rate,
andγ is the discount rate (which prefers reinforcement
received sooner rather than later). Thus, the agent ac-
cumulates reinforcement along the way. The Q value of
a state-action pair represents the expected (discounted)
total reinforcement that the agent will receive from that
point on (Watkins 1989).3

When the next action byCQk is end, theQk module
receives as payoff the value ofCQk (which represents
the expected value of the chosen bid at this point):

∆Qk(s, a) = α(g(s) + γCQk(s′, end)−Qk(s, a))

where s′ is the new state (resulting from actiona
in states) in which control is relinquished byCQk.
CQk(s′, end) represents the expected value of the bid
that the agent will accept (from subcontractors), if it
gives up control at this point. This value is given to
the Q module so that it can take this payoff into account
when deciding on its course of action (e.g., whether to
reach one giving-up point or another).4

Therefore, summarizing the above two learning rules, a
Q value of an agent (for a particular state-action pair)
is the expected (discounted) total reinforcement that the
agent will receive from that point on. The Q module of
an agent then decides the actions of the agent based on
maximizing the expected (discounted) total reinforce-
ment that the agent will receive.

• For the correspondingCQk, there are also two separate
learning rules, for the two different actions. When the
current action byCQk is continue, the learning rule is
the usual Q-learning rule:

∆CQk(s, continue) =

α(g(s) + γ max
ca′

CQk(s′, ca′)− CQk(s, continue))

wheres′ is the new state resulting from actioncontinue
in states andca′ is any control action by the CQ (i.e.,
“continue” or “end”). That is , when theCQk decides
to continue, it accumulates reinforcement generated by
the actions of the correspondingQk.

When the current action by theCQk is end, the learning
rule is:

∆CQk(s, end) = α(max
a

Ql(s, a)− CQk(s, end))

whereQl denotes the Q value of the next member in
control (the chosen bidderl) andmaxa Ql(s, a) is the

3Only the member in control performs learning at each step. Other
agents do not. In this way, agents become specialized.

4Alternatively, we may use directly the winning bid here. Using the
expected bid value tends to speed up learning.
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chosen bid. That is, when a CQ ends, it takes the chosen
bid as its payoff, which gives it incentive to take higher
bids. It learns the expected value of bids through this
rule.

So, summarizing the above two learning rules, in effect,
the CQ module makes its continue/end decisions based
on comparing whether relinquishing control or contin-
uing control will lead to higher expected (discounted)
total reinforcement from the current point on. Agents
are rational in this regard.

As we can see from the learning rules above, a Q value of
an agent includes all the reinforcement it expects to receive,
including the bid from the next agent. The bid submitted by
the next agent is its (best) Q value, so it includes all the re-
inforcement the next agent expects to receive, including the
bid by the third agent following it. The bid submitted by the
third agent includes all the reinforcement the third agent ex-
pects to receive, including the bid by the fourth agent. This
process goes on. Eventually, a Q value of an agent includes
all the reinforcement expected to be received by the agent it-
self and by all the subsequent agents (subcontractors). Sim-
ilarly, a CQ value also represents all the reinforcement ex-
pected to be received by the agent itself and by all the subse-
quent agents (subcontractors). In an agent, both the Q mod-
ule and the CQ module decide their actions based on the total
(discounted) reinforcement achieved from the current point
on by the team, not just by the original agent itself. There-
fore, agents of a team are incentivized to cooperate with each
other, in order to achieve higher total reinforcement. See Sun
and Sessions (2000) for more detailed analyses of these rein-
forcement learning rules.
In any multi-agent systems, each agent participates in some
way to accomplish a task. When an episode (e.g., a game) is
over, each member is assigned a portion of the total payoff.
This raises an issue: How do we properly and fairly assign
payoffs to each team member? This is the well known credit
assignment problem. Bidding resolves the credit assignment
problem here, as it passes on reinforcement from one agent to
another, in accordance with the role of each in obtaining the
reinforcement (in terms of their actions or control actions).
Cooperation among members is forged through sharing of
reinforcement. An agent calls upon another team member
when such an action leads to higher reinforcement for itself
(and for other upstream or downstream agents at the same
time). This bidding scheme encourages rational and cooper-
ative actions that maximize the total reinforcement from the
world (while minimizing the number of steps through dis-
counting).
While members of a team interact and cooperate with each
other through bidding, at the same time, they also perform
individual reinforcement learning. With this dual process,
the whole multi-agent team learns to form “mixed” action
sequences carried out by multiple agents alternately in coop-
eration with each other.

Note that each (Q or CQ) module is implemented with a
backpropagation (BP) network. Each BP network consists
of three layers of units: input, hidden, and output, as usual.
The numbers of input and output units are determined by do-
main characteristics and encoding requirements. The number
of hidden units is set as a parameter, along with other para-
meters such as learning rate and momentum.
Action selectionby an active member agent (the member in
control) is conducted based on Boltzmann distributions con-
structed from Q values. That is,

prob(k) =
evk/τ

∑
l e

vl/τ

whereτ is the temperature that determines the degree of ran-
domness in action selection. That is, the higher the value of
an action is, the more likely the action will be selected. For
a Q module,k ranges over all possible actions for the cur-
rent states, and the valuevk is simply the Q value for action
k in the current states. For a CQ module,k may be either
continue or end, and the valuevk is the CQ value for action
k in the current states.
Evolution may be used to enhance cooperation. We start
with an initial population of teams of (random) agents. Af-
ter a period of training, a genetic algorithm is applied to the
population of these teams. A new population (i.e., a new
generation) of teams is then formed. The cycle repeats itself.

1. Randomly generate a population ofn teams.

2. Train each team in the current population for a certain
number of episodes.

3. Perform crossover and mutation to generate new teams:

(a) Selectm best teams by using tournament selec-
tion.

(b) Generaten −m new teams by crossover (weight
exchange across two teams). The crossover rate
(the percentage of the weights that are exchanged)
is β1. 5

(c) Apply mutation to these newly generated teams.
The mutation rate (the probability of a weight
changing to a random value) isβ2.

4. Replace the current population with the selectedm
teams and the newly generatedn−m teams.

5. Go to step 2.

In tournament selection, the more fit an individual is, the
more likely it will be selected. Tournament selection usu-
ally goes as follows: Randomly divide all teams into groups
of a certain size. In each group, evaluate the fitness of each

5γ percent of all crossover is based on the weight exchange at corre-
sponding positions of the two teams. 100-γ percent of all crossover is based
on the weight exchange at random pairs of positions.
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team by playing them against each other. Select the best per-
forming team in each group to form a new set. Repeat the
above steps untilm teams (or less) remain (wherem is the
desired number). In our experiments, however, for the sake
of simplicity, we instead played each team against a common
benchmark agent and made selections on that basis.6

Using the genetic algorithm allows teams to escape local op-
tima more easily. With the algorithm, knowledge not only
is exchanged between members in a team, but also is ex-
changed between teams, so as to allow more exploration.
Note that, although their constitutions are essentially the
same, different agents, and different teams, may perform
differently because of (1) the intrinsic stochasticity of the
model, and (2) the likely stochasticity of the domain the
model is applied to. The model is intrinsically stochastic
because of the randomness in selecting an action and in se-
lecting an agent within a team (see the specifications above).
Some domains may also introduce stochasticity; for exam-
ple, in Backgammon, the roll of a dice produces random out-
comes.

III. Experiments

In this section, we apply MARLBS to a number of domains.
These domains are well known and have been tackled before.
Therefore, the use of these domains enables us to compare
our approach with existing approaches in a quantitative way.
There are very few domains used in multi-agent research
that are intrinsically multi-agent. Most multi-agent problems
may be tackled with one single agent. Viewed from this per-
spective, the choice of the following domains is justified.

A. Experiments with Learning Backgammon

We applied MARLBS to learning Backgammon, in order to
evaluate the model — the usefulness and the performance
of MARLBS in complex problem solving (i.e., in complex
sequential decision tasks; Qi and Sun 2003). One of the re-
search areas and the application domains of artificial intelli-
gence is the programming of computers to play board games,
such as Chess, Checker, GO, and Backgammon. Each of
these games has a finite state space with a well-defined set
of rules. However, it is usually impossible to search exhaus-
tively a state space. AI research in board game domains has
primarily focused on finding satisficing solutions, not opti-
mal solutions.
Backgammon is a board game for two players. See Figure 3
for a depiction of a Backgammon board. Briefly, each player
has 15 checkers on a board consisting of 24 spaces. The
checkers are moved according to rolls of a dice. Each player
tries to bring his/her own checkers home and bears them off
before the opponent does, hitting and blocking the enemy
checkers along the way. The game has generally been viewed

6Although tournament selection costs running time, the time spent can
be counted as part of the training time.

as highly complex, and thus is a good domain for evaluating
our learning model.

Figure. 3: A Backgammon Board with the checkers in their
initial positions.

PubEval is a publicly available computer player (Tesauro
1992). It is a moderately good player, commonly used as
a benchmark. We used it as an evaluator of our model.7

To evaluate various model components, we also tested them
against another benchmark agent — the best single agent
chosen from 15 agents after 4000-game training.
Our experimental setup was as follows. The BP net-
works needed a simple scheme to encode information. TD-
Gammon’s simple encoding scheme (Tesauro 1992) was
adopted. (We tested various encoding schemes but we will
describe only one of them, as they did not make any signifi-
cant difference in terms of results.)
First, let us look into the encoding scheme for input to both
Q and CQ modules. For each side of a game, for each po-
sition on the board, an encoding with four units was used.
The first three units were used to indicate whether there was
one checker, two checkers, or three checkers at a position,
while the fourth unit indicated that the number of checkers
at a position was more than 3. A total of 96 units was used
to encode the information at locations 1-24. In addition, for
each side, 2 units were used to encode the number of check-
ers on the bar and off the board. This encoding scheme thus
used 98 units for each side. In addition, 12 units were used to
encode dice numbers, and additional 16 units to encode one’s
own first move in a round. Thus, we used a total of 224 input

7Tesauro (1992) developed the best available machine learning program
for Backgammon. However, it is not publicly available.
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units. 8 9 Next, the output encoding scheme for Q modules
used 16 units. Among these units, 1 to 15 were the checker
numbers. A “1” indicated a move by that piece, while “0”
meant no action. The output encoding of a CQ network was
straightforward, with each option (“end” or “continue”) en-
coded by one unit. The number of hidden units of the BP
network for an action module (Q) were 40 and the number of
hidden units of the BP network for a controller module (CQ)
were 16.
The parameter settings were as follows: the Q value discount
rate was 0.95, the learning rate was 0.5, and the tempera-
ture was 0.50. The initial weights of BP networks were ran-
domly generated. There were 15 teams in each generation.
Each team consisted of 5 agents. Each team of each gener-
ation was trained for 200 games. Then a new generation of
agents was produced using crossover and mutation. The mu-
tation rate (as defined earlier) was 0.05 and the crossover rate
(as defined earlier) was 0.20.10 The training of teams was
done through a mixture of playing against oneself (more than
2/3 of all the games) and playing against PubEval (less than
1/3 of all the games, for the purpose of evaluating MARLBS
against PubEval).11

A player received payoffs at the end of a game. The payoffs
were as shown in Table 1. If the losing side has borne off at
least one checker, the rewards for the winner and the loser
will be 0.3 and -0.3, respectively. If the loser is “gammoned”
(i.e., has not borne off any of the checkers), the rewards for
the winner and the loser will be 0.6 and -0.6, respectively. If
the loser is “backgammoned” (has not borne off any of the
checkers and still has a checker on the bar or in the winner’s
home board), the rewards for the winner and the loser will be
1.0 and -1.0, respectively.

Winner Loser
Backgammoned +1.0 -1.0
Gammoned +0.6 -0.6
Other +0.3 -0.3

Table 1: The payoff table for the backgammon game

We played MARLBS against PubEval. The result of 400,000
iterations was as shown in Figure 4, where an “iteration” is

8The reason we needed to encode a player’s first move is that, at each
round of the game, a player needs to move twice. However, the network
only output one move each time. When the player makes its second move in
a round, it should consider its first move at the current round. So we encode
the player’s first move as input into the network.

9Other complications in Backgammon, such as doublets, can all be han-
dled within this framework.

1080 percent of crossover was done by the weight exchange at corre-
sponding positions of two corresponding BP networks and 20 percent by
the weight exchange at randomly chosen pairs of positions.

11Playing against PubEval may lead to exploiting specific weaknesses of
PubEval. However, since PubEval was used less than 1/3 of the time, the
resulting players should be fairly general. Those episodes were originally
conducted for the purpose of generating performance measures of teams
against PubEval and we did not want to discard the results of learning during
those episodes in order to avoid waste.

defined as training each of the teams by one game. The maxi-
mum, average, and minimum winning percentages were cal-
culated from the 15 teams in each generation. To generate
these numbers, each team of each generation played against
PubEval for 50 games. The average winning percentage of
MARLBS (averaged over all 15 teams) reached 54.8. The
maximum winning percentage of MARLBS reached 62.
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Figure. 4: The winning percentages of MARLBS over time,
played against PubEval.

We tested the performance of different teams at different
points. The results were as shown in Table 2. In the table,
the best/worst teams were those with the highest/lowest per-
formance from a population of 15 teams. The numbers were
the winning percentages of a team playing against PubEval
for 50 games. The result of the best team playing against the
worst team was also included.
As shown in the table, the performance of all the teams im-
proved over the course of training and evolution. Also shown
in the table was the fact that the difference between the best
team and the worst team decreased over time. At iteration
100,000, the winning percentage of the best team playing
against the worst team was 76, while the winning percent-
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Iteration
Best 5 teams All Teams
Avg Best Worst Avg Best Worst

100,000 0.32 0.36 0.28 0.30 0.36 0.20
200,000 0.42 0.46 0.36 0.41 0.46 0.28
300,000 0.50 0.54 0.46 0.47 0.54 0.40
400,000 0.51 0.60 0.48 0.49 0.60 0.42

Iteration Best vs. Worst
100,000 0.76
200,000 0.72
300,000 0.62
400,000 0.58

Table 2: Team Performance in the Backgammon game, mea-
sured by winning percentages out of 50 games. Except the
data of the best team versus the worst team, all data are for a
team playing against PubEval.

age decreased to 58 after iteration 400,000. This reduction
of differences was what one would expect, taking into con-
sideration the use of GA here, which selected good teams and
discarded bad ones.12

The performance of individual team members was also
tested. Recall that each member is an autonomous agent and
can play the game by itself. The results are in Table 3 and
Table 4. Table 3 shows the team member performance, in
terms of the best member, the worst member, and the av-
erage of all the members, of the best team (that is, the team
that had the highest winning percentage when playing against
PubEval). The column “Best vs. Worst” records the perfor-
mance of the best member of the team playing against the
worst. For the sake of comparison, the performance of the
best team is also listed there. All the numbers are winning
percentages of playing against PubEval for 50 games, except
the column “Best vs. Worst”. Table 4 shows the performance
of the members of the worst team. The numbers there are
similar.

Iteration
Members in the best team

TeamAvg Best Worst Best vs. Worst
100,000 0.32 0.34 0.28 0.66 0.36
200,000 0.42 0.46 0.38 0.54 0.46
300,000 0.49 0.52 0.44 0.52 0.54
400,000 0.50 0.56 0.46 0.52 0.60

Table 3: Member performance in the best team. All data are
winning percentages out of 50 games.

Iteration
Members in the worst team

TeamAvg Best Worst Best vs. Worst
100,000 0.20 0.24 0.16 0.72 0.20
200,000 0.36 0.38 0.30 0.62 0.28
300,000 0.40 0.42 0.34 0.62 0.40
400,000 0.42 0.46 0.36 0.58 0.42

Table 4: Member performance in the worst team. All data
are winning percentages out of 50 games.

12Note that the games played against PubEval for the sake of evaluation in
the process of applying GA (50 games each) have been taken into account.

We notice that at the end of training, the best team performed
better than any member of the best team, including the best
member of the best team. The best team also outperformed
its members on average. That is, there is a clear advantage in
having a multi-agent team, as opposed to choosing the best
agent out of them. Generally speaking, when given a set of
agents (each trained with some partial experience of games),
there are two ways of utilizing these agents: (1) choosing the
best agent and using only its decisions, or (2) trying to com-
bine the expertise of all the agents and using their combined
decisions (Breiman 1996). Our data show that the latter ap-
proach may be better.13 In some way, this fact shows why
multi-agent cooperation may be advantageous, which is due
to the synergy within a team, created by the emergent coop-
eration and coordination of team members. However, notice
also that the worst team did not perform better than all its
members. This fact suggests that the best teams were able
to learn to achieve good coordination among its members,
while the worst team failed to do so. It also suggests that
the best team was the best at least in part because it achieved
better cooperation among its members.

Iteration
Members vs. the best team
Avg Best Worst

100,000 0.45 0.62 0.38
200,000 0.46 0.52 0.36
300,000 0.45 0.50 0.38
400,000 0.44 0.48 0.40

Table 5: Members of the best team versus the best team. All
data are winning percentages of a member playing against its
team in 50 games.

Iteration
Members vs. the worst team
Avg Best Worst

100,000 0.48 0.56 0.32
200,000 0.47 0.58 0.42
300,000 0.46 0.54 0.38
400,000 0.46 0.52 0.36

Table 6: Members of the worst team versus the worst
team. All data are winning percentages of a member play-
ing against its team in 50 games.

We also tested the performance of a team playing against its
members. The results are in Table 5 and Table 6. For the
best team, the performance of the whole team was not better
than that of its best member at the beginning. But after a
sufficient number of iterations, the whole team outperformed
its best member (and all the other members as well). On
the other hand, for the worst team, the performance of the
whole team was never as good as its best member. Again,

13Of course, each agent experienced only a portion of all the games. Thus
here we are not comparing a team with an agent having the experience equal
to the sum total of all the experiences of the team members. Instead, we are
emphasizing the synergy resulting from the cooperation of multiple agents
(each with partial experience).
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this set of data suggests the following two points: (1) A good
team, due to the emergent cooperation of its members, had
the advantage of the synergy among agents, and as a result,
it performed better than the individual agents on the team;
(2) the best team was the best at least in part because of the
coordination and cooperation of the team members — these
agents learned to cooperate with each other and divided up
the task among themselves to achieve a better performance
than any individual agent did.
Note that team cooperation improved over time. As indi-
cated by Table 5, early on, the best member of the best team
outperformed the team. But after 400,0000 iterations, the
team outperformed the agents (including the best agent) on
the team. This fact indicated the increasing cooperation of
agents on the team over time, which led to the improved team
performance against its members (because, without increas-
ing cooperation, a team would never outperform its member
agents).
Why does cooperation lead to better performance? Divide-
and-conquer is generally a useful approach. In this case,
the division of labor among team members makes the learn-
ing task faced by each neural network (within each mem-
ber agent) easier, because each of them can focus on learn-
ing a subset of input/output mappings, rather than treating
all of them as equally important. In this way, each of them
may learn better and, through their cooperation, the whole
team may perform better as well. Cooperation in this model
emerges from the interaction of agents, and is not externally
determined.14

In further pursuance of the issue of the synergy of the whole
out of its parts, we would like to know, among the three
components of our system, GA, RL (i.e., Q-learning), and
bidding, which is important, and whether there is any syn-
ergy among these algorithms as well. In order to answer this
question, four variants (i.e., reduced versions) of MARLBS
were tested. First, 15 agents were separately trained for 4000
games each. Then, teams were formed by randomly choos-
ing agents from these (slightly) trained ones. All variants
were tested in the same way, by playing against a benchmark
agent, which was the best single agent chosen from the 15
agents (after separately training each for 4000 games).15

Data were then collected from one single run (for the algo-
rithms involving multiple teams, the best team was used).
In variant 1, GA was not applied. Only one team (with RL
and bidding) was used. In variant 2, GA and RL were ap-
plied, but there was no bidding. That is, each team was re-
duced to one agent. In variant 3, only GA was applied. Since

14An alternative way of describing the advantage that teams have is that
different Q functions handle different regions of the state space, which
makes the function approximation of each Q function simpler. As a result of
appropriate partitioning of the state space, the whole system performs better.
See Sun and Peterson (1999) for some analysis.

15The reason for using such a benchmark agent was because playing
against PubEval would require a lot more training of these variants, which
was hard to do given the severe limitation of our computational resources at
the time.

there was no RL in this variant, each BP network only had the
forward phase but not the backward phase (which meant that
there was no BP learning although there were BP networks).
In variant 4, only RL (with BP networks) was applied. The
results for variant 1, 2, 3, 4, and the full MARLBS model are
shown in Figure 5(a), 5(b), 6(a), 6(b), and 6(c), respectively.
16
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Figure. 5: The winning percentages out of 4,000 games play-
ing against the benchmark agent. (a) RL+bidding (without
GA) (b) GA+RL (without Bidding)

From Figure 5 and Figure 6, we can see that variant 4 had
the worst average winning percentage. This seemed to indi-
cate that GA and bidding, which forged cooperation among
agents of a team, were important in MARLBS. (Separately,
we tried running RL for a much longer period of time. There
was no significant improvement of performance. We also
conducted multiple runs under different initial conditions and
there was no significant improvement of performance either.)
When compared with MARLBS, all variants’ performance
was worse than that of MARLBS. All variants took longer to
achieve 80% winning (if ever). However, it appeared that all
components in our model were useful. Missing any compo-
nent led to worse performance.
The numerical comparison between MARLBS and its vari-
ants is shown in Table 7. Again, we see that variant 4 had the
worst average winning percentage. We also see that variant
2 had the best performance among the variants. However, it
was worse off than MARLBS. In the table, all variants’ av-
erage winning percentages and highest winning percentages

16The initial performance differences among these variants were in fact
not huge. At this point of training, they were all very week, and the differ-
ences among them were small (as measured by playing against PubEval).
The initial performance differences among these variants were inevitable.
For one thing, each game is stochastic (due to dice rolls), and reinforce-
ment learning is stochastic (in its action selection). Therefore, even identical
programs perform differently, let alone different programs. The way these
variants were formed, as described above, also contributed to the initial dif-
ferences.
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Figure. 6: The winning percentages out of 4,000 games play-
ing against the benchmark agent. (a) GA (without RL and
bidding) (b) RL (without GA and bidding) (c) the full sys-
tem of MARLBS

were lower than that of MARLBS, which indicated that all
three components in our system, GA, RL and bidding, were
useful. They were synergistic, in the sense that missing any
component led to worse performance. The comparison also
indicated an interaction between learning and evolution, in
the sense that learning enhanced evolution (e.g., by compar-
ing pure GA with GA+RL) and vice verse (by comparing
pure RL with GA+RL) (see more discussions of this point
later).

Methods Best Avg Avg-1000
RL+bidding (without GA) 0.76 0.64 0.69
GA+RL (without bidding) 0.86 0.71 0.75
GA (without RL/bidding) 0.76 0.64 0.67
RL (without GA/bidding) 0.50 0.34 0.47
MARLBS 0.90 0.80 0.83

Table 7: Comparisons of MARLBS with its variants. The
numbers are the winning percentages of playing against a
benchmark agent. Avg-1000 indicates the average winning
percentages during the last 1,000 games playing against a
benchmark agent.

MARLBS TD-Gammon HC-Gammon
Winning % 62 59.3 45
# Iterations 400,000 > 1, 000, 000 400,000

Table 8: Comparisons with other Backgammon players in
terms of winning percentage against PubEval.

We may also compare the result of our model with other
learning systems. The best known computer player is TD-
Gammon (Tesauro 1992). However, it incorporated a number
of hand-crafted expert-knowledge features, including con-
cepts such as the existence of a prime, probability of blots
being hit, and probability of escaping from behind the oppo-
nent’s barrier. Pollack and Blair (1998) used feed-forward
network representation with hill-climbing search to develop
yet another backgammon player (HC-Gammon).17

The result of experimental comparisons with these other
Backgammon learning systems, in terms of winning percent-
age against PubEval, is shown in Table 8. MARLBS com-
pares favorably with other Backgammon learning systems.
Compared with these other systems, our model achieved a
better performance than HC-Gammon, but a roughly com-
parable performance as TD-Gammon. However, note that
MARLBS was trained far less than TD-Gammon (as indi-
cated in Table 8).18

Overall, is the extra cost of forming a multi-agent team worth
the gain in performance? Note that cost-benefit trade-offs
are always tricky. Where the cutoff point on the cost-benefit

17Other related work includes Sanner et al (2000) and Darwen (2001).
18The process of training and evolution was time-consuming: It took a

total of a year and half on the outdated 200 MHz PC we used for the ex-
periments. Thus we had to stop training at the current point to wrap up the
project.
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curve should be is dependent on the specific goals and spe-
cific objectives one has for the system/algorithm in ques-
tion. There is, generally speaking, no uniform answer to such
questions, although we felt it was well worth it.

B. Experiments with TSP

In order to further validate our model beyond the Backgam-
mon domain, we needed to try it on other tasks. One task
that stood out was the traveling salesman problem (TSP),
which was used by many existing learning algorithms and
thus served as a good test domain (Qi and Sun 2005). In
our experiment, we chose to use Eilon50 (for 50 cities) and
KroA100 (for 100 cities) problems (see, e.g., Eilon et al
1969). The shortest known distance for Eilon50 is 425 and
for KroA100 21282. In this domain, through experiments,
we reached essentially the same conclusion as we discussed
earlier with regard to Backgammon.
We view this task as a sequential decision task, because
we may select one city to go to next at each step. Thus,
MARLBS (with Q-learning) may be applied. The input and
the output of MARLBS was as follows: 3 units were assigned
to represent each city. The first unit indicated if the city was
the starting city, the second unit indicated if the city was the
current city, and the third unit indicated whether the city had
been visited before or not. Each output unit represented a
city, indicating whether it should be visited next or not. This
is the simplest and most straightforward encoding scheme,
without any hand-crafted special features to make learning
easier.
For Eilon50 (involving 50 cities), a total of 150 input units
was thus used to encode the information about the cities. The
number of hidden units in the BP networks was 100. The
number of output units was 50. For KroA100 (involving 100
cities), a total of 300 input units were used to encode the
information about cities. The number of hidden units were
200. The number of output units was 100.
In learning this problem, MARLBS’ parameter settings were
essentially the same as in the Backgammon game. The Q
value discount rate was 0.95, the learning rate was 0.5, and
the temperature 0.50. The mutation rate was 0.05 and the
crossover rate was 0.20.19 There were 15 teams in each
generation. Each team consisted of 5 agents. A new genera-
tion was produced (using crossover and mutation) after every
team of the current generation was trained for 100 episodes.
The payoff in this case, given at the end of an episode, was
set as follows:

payoff = [Optimal/Ci]2

whereCi was the current distance computed at episodei and
Optimal was the shortest known distance.20

1980 percent of crossover was weight exchange at corresponding positions
and 20 percent at random position pairs.

20Although this payoff function involved task-specific information (i.e.,
Optimal), our experiments showed that such information was not neces-
sary. An arbitrary value worked just as well.

For Eilon50, all the teams trained with MARLBS reached the
shortest known distance (425), taking approximately 11,000
episodes. For KroA100, all the teams trained with MARLBS
reached the shortest known distance (21282), taking approx-
imately 200,000 episodes.
We tested the performance of different teams resulting from
MARLBS. The results were as shown in Table 9. (The re-
sults shown were distances of tours. In order to differen-
tiate the performance of these teams, we only listed their
pre-convergence performance, at episode 5,000 and 10,000.)
There were a total of 15 teams, with the best and the worst
being the ones with the shortest distance and the longest dis-
tance, respectively. As shown by the table, while the perfor-
mance of all teams went up over time (over training episodes,
along with evolution), the performance differences among
teams were not huge (although there were some differences).

Itn
Best 5 teams All teams

Avg Best Worst Avg Best Worst
5,000 642.6 568.4 721.2 674.9 568.4 748.3

10,000 496.5 468.2 568.4 564.3 468.2 621.2

Table 9: Team Performance for the TSP problem. The num-
bers are the distances of tours achieved.

To see the advantage of using teams of agents rather than sin-
gle agents, we compared the performance of a team with that
of its member agents. The results were as shown in Table 10
and Table 11. Performance was measured by tour distances.
Table 10 shows the performance of the members of the best
team. Table 11 shows the performance of the members of the
worst team.

Iteration
Members in the best team

Best teamAvg Best Worst
5,000 679.1 568.4 748.3 568.4

10,000 537.8 520.2 598.4 468.2

Table 10: The performance of the members of the best team
and the best team as a whole. The numbers shown are the
distances achieved.

Iteration
Members in the worst team

Worst teamAvg Best Worst
5,000 898.0 721.2 1,011.2 721.2

10,000 644.9 520.2 721.2 621.2

Table 11: The performance of the members of the worst team
and the worst team as a whole. The numbers shown are the
distances achieved.

As clear from the tables, at iteration 10,000, the performance
of the best team was better than that of its best member (and
all the other members). As in the Backgammon experiments,
this fact again demonstrated, in the context of the TSP prob-
lem, the advantage of cooperative teams with division of la-
bor among team members. The performance of the worst
team was no better than its members, which suggested that
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Figure. 7: A maze requiring segmentation and reuse of
agents. Each number indicates a unique observational state
as perceived by agents.

there was no good cooperation among its member agents. It
appears that cooperation and synergy among members were
the key for a good performance by a team.

C. Experiments in Dealing with POMDP

Sun and Sessions (1999) proposed the segmentation of ac-
tion sequences through the cooperation of a team of agents
in sequential decision tasks. A multi-agent team was formed
through bidding, without involving GAs. It segmented action
sequences, for the purpose of dealing with partially observ-
able Markov decision processes (POMDP). Segmentation
was based on reinforcement received during task execution,
with different agents communicating with each other through
sharing reinforcement estimates obtained by each other (i.e.,
through bidding), as in other applications of MARLBS. It did
not rely on a priori knowledge or a priori structure in dealing
with POMDP.
Let us examine an example. In one maze (Figure 7), there
is one starting location (“2”) at one end and one goal loca-
tion at the other. However, before reaching the goal location,
the agents have to reach the top of each of the three arms.
The agents receive local information concerning the four ad-
jacent cells at the current location regarding whether each
is an opening or a wall. Thus, each observational state is
made up of 4 bits. This is the simplest encoding one can
find. See Figure 7, where each number indicates an unique
observational state as perceived by agents. As indicated by
the numbers, several cells may be perceived to be the same
because they have the same adjacent cell (walls or openings)
configuration.
The team can make a move to any adjacent cell at each step
(either to go left, go right, go up, or go down). But if the
adjacent cell is a wall, it will remain in the original cell at
the end of the step. The payoff for reaching the goal location
(after visiting the tops of all the three arms) is 1.
In this domain, the shortest path consists of 19 steps. A min-
imum of two agents are needed on a team, in order to remove
non-Markovianness through segmentation and thereby to ob-
tain the shortest path. A single agent with atemporal repre-
sentation could not learn the task, because there was no con-
sistent, deterministic Markovian policy possible. With two
agents there is exactly one way of segmenting the sequence
(when only considering the shortest path to the goal): switch-
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Figure. 8: A segmentation using a team of only two agents.
The two agents of the team alternate.

ing to a different agent at the top cell of each arm (marked
as “4”) and switching again at the middle cell between any
two arms (marked as “10”). See Figure 8. This segmentation
involves repeated use of the same agents along the way to the
goal.21

The parameter settings were as follows: The Q value dis-
count rate was 0.97, the initial learning rate was 0.9, the
learning rate changed according toαt = α0/t1/5 (wheret
was the number of episodes completed), the initial tempera-
tures wereτ0

Q = 0.6 (for the Q modules) andτ0
CQ = 0.8 (for

the CQ modules), and the temperatures changed according
to τ t = τ0/t1/2. No GA was used. The number of steps
allowed in each episode during learning was 200 (an episode
ended when the limit was reached, or as soon as the goal was
reached after having reached the tops of all the three arms).
Training lasted for 10,000 episodes in each case, with a dif-
ferent number of agents on the team in each case.
In this domain, learning did not become easier when we
added more agents to the team. This was because there was
only exactly one way of segmentation that might lead to an
optimal path, and thus there was no advantage in using more
agents. An ANOVA analysis (number of agents x block of
training) confirmed this conclusion. Using two agents, we
achieved a 62% optimal path rate, after 10,000 episodes of
training. See Figure 9 for an example of the learned agents
of a team (their Q and CQ modules). See Figure 10 for the
performance data.
Experiments in this domain demonstrated the points re-
garding the feasibility of segmentation of action sequences
through a team dividing up a sequence. Furthermore, ex-
periments in this domain demonstrated the reuse of agents
(in several different places) in a sequence or, in other words,
the possibility of agents acting like subroutines that could be
called into use any number of times. Reuse of agents not
only led to the “compression” of action sequences, it also al-
lowed the handling of action sequences that could not be (ef-
ficiently) handled otherwise (cf. Wiering and Schmidhuber
1998). A POMDP was divided up into two MDPs (Markov
Decision Processes) (Sun and Sessions 2000). This is an-
other form of team cooperation, further extending the cases
we discussed earlier.

21However, when more agents are added, reuse might be reduced: a third
agent, for example, can be used in place of the second use of agent 1 (see
Figure 8).
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State 2
Agent #0 Q: UP(0.00) ** RIGHT(0.60) DOWN(0.00) LEFT(0.00)

CQ: ** CONTINUE(0.70) END(0.03)
Agent #1 Q: UP(0.00) ** RIGHT(0.30) DOWN(0.00) LEFT(0.00)

CQ: ** CONTINUE(0.04) END(0.03)
AQ: ** 0(0.72) 1(0.02)

State 4
Agent #0 Q: UP(0.00) RIGHT(0.00) ** DOWN(0.61) LEFT(0.00)

CQ: CONTINUE(0.70) ** END(0.74)
Agent #1 Q: UP(0.00) RIGHT(0.00) ** DOWN(0.66) LEFT(0.00)

CQ: ** CONTINUE(0.74) END(0.01)
AQ: 0(0.70) ** 1(0.74)

State 5
Agent #0 Q: ** UP(0.62) RIGHT(0.00) DOWN(0.61) LEFT(0.00)

CQ: ** CONTINUE(0.70) END(0.12)
Agent #1 Q: UP(0.64) RIGHT(0.00) ** DOWN(0.66) LEFT(0.00)

CQ: ** CONTINUE(0.67) END(0.10)
AQ: 0(0.04) ** 1(0.05)

State 10
Agent #0 Q: UP(0.00) ** RIGHT(0.75) DOWN(0.00) LEFT(0.60)

CQ: ** CONTINUE(0.80) END(0.04)
Agent #1 Q: UP(0.00) RIGHT(0.40) DOWN(0.00) ** LEFT(0.66)

CQ: CONTINUE(0.74) ** END(0.79)
AQ: ** 0(0.80) 1(0.03)

State 11
Agent #0 Q: ** UP(0.62) RIGHT(0.29) DOWN(0.00) LEFT(0.29)

CQ: ** CONTINUE(0.72) END(0.11)
Agent #1 Q: UP(0.64) ** RIGHT(0.68) DOWN(0.00) LEFT(0.29)

CQ: ** CONTINUE(0.77) END(0.09)
AQ: ** 0(0.15) 1(0.10)

Figure. 9: The Q and CQ modules of the resulting agents on
the team after learning. “**” indicates the best action in a
state.

# of % of % of Avg Path Pairwise
Agents Opt. Path Opt. Path Length t Test

τ = 0 τ = 0.001 τ = 0.001 T (> 2.33)

2 60% 52% 22.51
3 43% 38% 23.85 8.600
4 27% 20% 24.85 4.010
5 27% 22% 25.42 1.281

Figure. 10: The effect of number of agents on the perfor-
mance (after learning).

Note that other POMDP cases have been handled by
MARLBS before as well. See Sun and Sessions (1999, 2000)
for more details. As discussed earlier, the present work ex-
tends the method beyond dealing with POMDP, and also
adds evolution to further enhance cooperation among mem-
ber agents of a team.

IV. Discussions and Comparisons

Below, we will discuss a few issues that are highly relevant
to our model. In the process, we will review some relevant
prior work, and their relations to the work reported here.
Learning and evolution have been studied extensively in the
research communities of machine learning, neural networks,
and evolutionary computation. However, co-learning and
co-evolution, which are interesting research issues in multi-
agent systems, have been studied much less. More attention,
in the form of either theoretical or experimental studies (as in
this work), is needed. Furthermore, the interaction of learn-
ing and evolution is also interesting, given the fact that we
barely begin to explore such a phenomenon. Below, let us
look into some details.

A. Co-Learning from Reinforcement

Although co-learning using reinforcement learning algo-
rithms have had a fairly long history, the issue has proved
to be difficult.
Andy Barto and associates explored cooperativity in rein-
forcement learning very early on (see, e.g., Barto et al 1983).
Another piece of early work is Tan (1993), who conducted
multi-agent Q-learning experiments. In his task, there were
several prey and predator agents. Predators had limited vi-
sion so that they might not always know where preys were.
Thus the predators could help each other by informing each
other of their sensory input. They could also help each other
by exchanging reinforcement episodes and/or control poli-
cies. This was an example of using built-in cooperation
strategies in co-learning situations. In general, we may not
be able to assume any cooperative inclinations on the part of
agents. The general co-learning problem is more difficult.
Sandholm and Crites (1995) used Q-learning agents to play
the IPD game. In their experiments, Q-learning agents
learned the optimal strategy when playing against a fixed
strategy player. However, Q-learning agents had difficulty
when playing against other Q-learning agents. Sen and as-
sociates explored cooperation using reinforcement learning
and achieved some limited success (see e.g. Sen and Sekaran
1998). Sun and Qi (2000) explored the issue of rationality
assumptions on the part of agents and their effects on co-
learning. Littman (2001) presented some theoretical results
on multi-agent reinforcement learning in zero-sum games.
Bowling and Veloso (2002) also presented some theoretical
results on modified Q-learning algorithms. However, in gen-
eral, co-learning using Q-learning is difficult and lacks theo-
retical guarantees, which makes practical approaches such as
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the one developed in this paper useful.
Note that, relatedly, there are multi-agent reinforcement
learning algorithms in the literature that extend simple re-
inforcement learning (such as Q-learning). For example,
Sun and Peterson (1999) divided up complex reinforcement
learning tasks to accelerate learning. A state space was auto-
matically partitioned into multiple regions. Different agents
were assigned to these regions respectively. Some heuris-
tics were proposed to decide on how to partition spaces and
assign agents to subspaces. This partitioning approach re-
duced the learning complexity of each agent, and thus the
overall learning difficulty. Sun and Sessions (2000), as men-
tioned earlier, extended this approach by partitioning not
state spaces but action sequences. These approaches are lim-
ited in terms of their scopes and performance.22

B. Bidding

Algorithms for bidding constitute a key issue in auction the-
ory. Generally speaking, an auction is a market mechanism
with (explicit or implicit) rules for allocating resources and
determining prices on the basis of bids from market partici-
pants (see Hendriks and Paarsh 1995, McMillan and McAfee
1987). In typical auctions, there are one seller and a group
of competing buyers who bid to possess the auction objects.
Procurements, on the other hand, refer to situations in which
a buyer wishes to purchase objects from a set of potential
suppliers. There are various forms of auctions (for example,
the English auction, the Dutch auction, the first-price sealed-
bid auction, the second-price sealed-bid auction, and so on).
Based on the idea of bidding, Baum and Durdanovic (2000)
developed a system of artificial economy (namedHayek) to
learn to solve the block world problem (as well as other prob-
lems). It consisted of a collection of agents, each consisting
of a program with an associated numeric wealth. The sys-
tem embodied two economics principles: property rights and
conservation of money. Useful agents received payoffs (from
the external world or from other agents) and thus accumu-
lated wealth, while less useful ones lost their wealth and dis-
appeared. In this way, the system evolved into a solution for
the problem.
Bidding algorithms may also be an efficient method for al-
locating resource, applicable to distributed computing and
networking. For example, Gagliano et. al. (1995) applied
bidding to allocate decentralized network resources. There
are many other similar proposals related to information tech-
nology.
In MARLBS, bidding is used to distribute expertise (capa-
bilities of individual agents) within a team. Bidding is made
simpler in MARLBS, because of the restriction that each

22Note that there have also been a host of hierarchical reinforcement
learning models that are somewhat similar to these multi-agent reinforce-
ment learning algorithms. But in these models, external interventions (e.g.,
in terms of dividing up a state space, or assigning agents to subtasks) are
necessary. Thus, these models are not adequately addressing co-learning
issues.

agent can only bid its best Q value. Thus there is no in-
tentional under-bidding or over-bidding. Basically, a simple
form of a first-price auction is used here, but with a twist:
Stochasticity in bid selection allows “exploration” (trial-and-
error learning) within a team. Furthermore, each agent is
capable of learning and thus, different from Baum and Dur-
danovic’s model, agents do no simply live or die, but adapt
to niches individually. There are also advantages in mixing
learning and evolution as in MARLBS, in the form of en-
hanced performance (as demonstrated in the Backgammon
domain by comparing GA+RL with pure RL and with pure
GA; see also the discussion later on learning/evolution inter-
action).

C. Evolutionary Approaches

There has been some interesting work on evolution of coop-
erative teams. Salustowicz et al (1998) applied co-evolution
to a simulated soccer game. In their model, the agents of each
team shared the same action set and policy, but might behave
differently because of position-dependent inputs. All agents
of a team were rewarded or punished collectively. They com-
pared several algorithms, and found that the evolutionary ap-
proach achieved the best performance. Nolfi and Floreano
(1998) investigated the role of co-evolution in the context of
predator and prey games. Such settings may be viewed as a
form of “cooperation” in an extended sense.
These results were generally in line with our findings that
evolution enhanced team cooperation and thus the over-
all performance of a team. Although each of the afore-
mentioned models adopted a different evolutionary algo-
rithm, they achieved the same desired effect — enhancing
cooperation among team members.
In terms of mixing evolutionary computation and neural net-
works, there have been a variety of models in the literature.
For example, Gomez and Miikkulainen (1999) implemented
a neuro-evolutionary system to evolve a controller for the
standard double pole task (as well as other non-Markovian
control tasks). They showed that their neuro-evolution was
faster than other methods. Fogel (2000) used the evolution-
ary computation and neural networks for learning to play
checkers.
Compared with MARLBS, these methods did not use multi-
agent teams. It is possible that their performance could be
enhanced by adopting a multi-agent approach on top of evo-
lution. We demonstrated experimentally earlier that team co-
operation with evolutionary computation is better than the
latter alone.

D. Learning/Evolution Interaction

Let us look into an interesting issue — the interaction be-
tween learning and evolution in the formation of cooperative
teams. Ackley and Littman (1992) was one of the earlier
computational studies of this issues. They developed an al-
gorithm with combined evolution and learning, and applied
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it to an artificial environment populated with adaptive and
non-adaptive agents. They found that learning and evolution
together were more successful than either alone.
Nolfi and Floreano (1999) argued that adaptation in dynamic
environments gained a significant advantage by the combi-
nation of learning and evolution. The interaction between
learning and evolution altered both evolution and learning
processes. In MARLBS, this advantage was confirmed —
We showed that the combination of learning and evolution
led to better overall performance.
Note that in MARLBS, the effect of learning was propagated
to offsprings through Lamarckian evolution (that is, through
evolution that directly used the result of prior learning). An
alternative is to avoid using such a form of evolution by
avoiding using the result of learning in evolution. Instead, we
may only use the learning ability and the starting condition
in evolution. With this alternative, we can still explore the in-
teraction between learning and evolution, albeit through the
Baldwin effect in an indirect way (Arita and Suzuki 2000).
However, the overall training and evolution process would be
much longer in this way.

E. Other Issues

There are other ways of establishing and/or enhancing coop-
eration among agents. Let us discuss a few of these ways,
and their respective advantages and shortcomings, in relation
to MARLBS.
Built-in cooperation. There are many multi-agent models
with build-in (hard-wired) cooperation. In that case, agents
are not completely autonomous — They are dictated to coop-
erate with each other in some pre-destined ways (as opposed
to emergent cooperation out of self interest).
For example, in Korf (1992), a policy was introduced for
each predator agent based on an attractive force to the prey
and a repulsive force from other predators. Thus the preda-
tors tended to approach the prey from different sides. The co-
operation was thus built into the agents. Also, as mentioned
earlier, in Tan (1993), agents were forced to communicate
with each other and thus his model was also a case of built-in
cooperation.
Obviously, this approach may establish cooperation among
agents more easily. But this approach is not generally ap-
plicable. It only works in certain special circumstances in
which pre-destined cooperation is feasible. In MARLBS, we
tried to minimize such built-in requirements, and thus agents
in MARLBS are more autonomous, with a minimum level of
pre-determination for cooperation. MARLBS can certainly
be applied to these above task domains, where cooperation
may emerge from the interaction of agents based on their self
interest.
Models of other agents. In Nadella and Sen’s (1997) ex-
periments conducted in a soccer simulator, an agent learned
about teammate and opponent capabilities through repeated
trials of specific actions. Each player had an assigned effi-
ciency (e.g., in the range [0,1]) for the execution of an action

(such as passing, tackling, and dribbling) corresponding to
the probability that the action would succeed. Agents did
not start with knowledge of the abilities of themselves, their
teammates, or their opponents. Instead, they learned to es-
timate these based on repeated trials. The agents could then
base their actions on learned parameters.
Hu and Wellman (2001) considered various levels of recur-
sive models for dynamic multi-agent systems. Their exper-
iments showed that the learning agents on average outper-
formed the non-learning agents that did not use information
about others. Wellman and Hu (1998) proposed the notion
of a conjectural equilibrium, which was concerned with the
situations in which all agents’ expectations were realized and
each agent responded optimally to its expectations. Agents
execute learning strategies with the building of models of re-
sponses of other agents.
Sun and Qi (2000) also looked into building models of other
agents. They conducted experimental comparisons between
the agents who did build models and did make the assump-
tion that other agents were rational and the agents who did
not. The comparisons showed that models of (and rationality
assumptions about) other agents were often helpful in reach-
ing a more rational outcome (see also Claus and Boutilier
1998).
This approach is useful in terms of establishing cooperation
among multiple agents. It, however, incurs a higher cost, due
to additional learning about other agents. MARLBS avoided
this approach: With Q values as bids, there is no need for
learning models of other agents, because Q values represent
an accurate picture of what other agents are currently capable
of.

V. Concluding Remarks

This paper presents an approach toward forming coopera-
tive multi-agent teams, from the interaction of self-interested
agents, based on bidding utilizing reinforcement values ac-
quired through reinforcement learning. The result is a
straightforward method that is generic and works in a vari-
ety of task domains.
The results and discussions so far illustrated our main point:
That is, a cooperative team is advantageous compared with
the single agents (including the best of the single agents)
making up the team. Our approach toward building coopera-
tive teams has been validated through learning Backgammon,
solving TSP, and dealing with POMDP.
In our approach, we make sure that the autonomy and the
self interest of individual agents are maintained as much as
possible, so that flexibility and generality are ensured, while
cooperation among self-interested agents of a team is facili-
tated.
The key practical question concerning forming a coopera-
tive team of agents is how such cooperation may be achieved
among self-interested agents. In this work, we presented our
own approach and empirically demonstrated it. Our experi-
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mental results thus far appear to indicate the validity and the
advantage of the approach.
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