
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.1, No.1 (2005), pp. 68–76
c© Research India Publications http://www.ijcir.info

Aiding Classification of Gene Expression Data with
Feature Selection: A Comparative Study

Changjing Shang and Qiang Shen

Department of Computer Science
University of Wales, Aberystwyth, UK

Abstract: This paper presents an application of supervised
machine learning approaches to the classification of the yeast
S. cerevisiae gene expression data. Established feature selec-
tion techniques based on information gain ranking and princi-
pal component analysis are, for the first time, applied to this
data set to support learning and classification. Different clas-
sifiers are implemented to investigate the impact of combining
feature selection and classification methods. Learning classi-
fiers implemented include K-Nearest Neighbours (KNN), Naive
Bayes and Decision Trees. Results of comparative studies are
provided, demonstrating that effective feature selection is essen-
tial to the development of classifiers intended for use in high-
dimension domains. In particular, amongst a large corpus of
systematic experiments carried out, best classification perfor-
mance is achieved using a subset of features chosen via infor-
mation gain ranking for KNN and Naive Bayes classifiers. Naive
Bayes may also perform accurately with a relatively small set of
linearly transformed principal features in classifying this dif-
ficult data set. This research also shows that feature selection
helps increase computational efficiency while improving classi-
fication accuracy.

I. Introduction

Recently developed DNA microarray experiment technol-
ogy has resulted in expression levels of thousands of genes
being recorded over just a few tens of different samples
[3, 4, 9, 13, 16]. Such massive expression data gives rise
to a number of new computational challenges. In particu-
lar, automated classification of gene expressions has become
the subject of much research in order to determine the func-
tionality of known or unknown genes [15, 24]. For example,
significant work has been reported in the literature on clas-
sification of yeast S. cerevisiae gene expression vectors [4].
Amongst such work, an initial experiment was reported in
[9, 10], with a conclusion that genes of a similar function
yield similar expression patterns in microarray hybridization
experiments. The results of this work showed that each of
the five different predicted classes in [4] more or less forms
a natural cluster. This and subsequent research (e.g. through

the use of support vector machines [20] and linear discrimi-
nant analysis [17]) has shown that the yeast data set may be
automatically classified if appropriate methods are exploited.
Indeed, the existing literature has demonstrated that finding
sets of genes with expression levels that allow class separa-
tion can be achieved, potentially, by the use of supervised
or unsupervised learning mechanisms, including classifiers
such as Naive Bayes, logistic regression, neural networks,
and Gaussian mixture models [14, 18]. Although these meth-
ods are all candidates to perform pattern recognition tasks in
general and yeast gene classification in particular, each has
its own strengths and limitations. It is difficult, if not impos-
sible, to predict which would give the best result. Therefore,
it is useful to build different classifiers and to validate their
performance on a common data set and subject to common
criteria.
For the yeast data set that is under consideration in this pa-
per, an important problem facing the development of a prac-
tically usable classifier is that there are a large number of
genes with too many features included in the original data.
Yet, some of these features may be irrelevant to the classifi-
cation due to measurement redundancies or noise. Thus, se-
lecting discriminatory genes can be critical to improving the
accuracy and speed of the classification systems. This prob-
lem of curse of dimensionality, common in machine learn-
ing and pattern recognition, can be reduced via the assis-
tance of dimensionality reduction, which is a process that
chooses a smaller set of features from the set of original fea-
tures or their transformed versions, according to certain cri-
teria [6, 7, 22, 24]. For example, recent work of [24, 25]
employed principal component analysis (PCA) [6, 8] to re-
duce the dimensionality of a different gene data set, showing
that using only the first few so-called principal features to
identify the most predictive genes works effectively.
Although PCA helps remedy the sensitivity of a classifier to
high dimensionality, the transformation process of features
involved irreversibly destroys the underlying meaning of the
feature set. Further reasoning about the derivation from
transformed principal features is almost always humanly im-
possible. As an alternative to transformation-based dimen-
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sionality reduction, feature selection offers a means of choos-
ing a smaller subset of original features to represent the orig-
inal data set. This approach has drawn much recent attention
in data mining and knowledge discovery [12, 14]. For exam-
ple, the work on prediction of molecular bioactivity for drug
design [22] shows that feature selection without transforma-
tion may also help improve classification performance. It is,
therefore, very interesting and necessary to investigate the
impact of utilising strict feature selection techniques upon
the task of classification. So is to reveal the additional ben-
efits of reducing data dimensionality in the simplification of
structural complexity of the learned classifiers. For these rea-
sons, this paper presents a novel comparative study of dif-
ferent combinations of these dimensionality reduction tech-
niques with popular pattern classifiers, in the context of gene
expression vector classification.
The rest of this paper is organised as follows. Section 2 in-
troduces the yeast data set, which both justifies the need for
the kind of research carried out in this study and sets the
scene for the experimental investigations reported later. Sec-
tion 3 briefly reviews the dimensionality reduction and fea-
ture selection techniques used, namely, principal component
analysis (PCA) and information gain-based feature ranking
[18]. Section 4 presents the specification of three (super-
vised) learning algorithms adopted to build the classifiers in
this work, namely, K-Nearest Neighbours [8], Naive Bayes
[6, 8] and Decision Trees [18, 19]. Section 5 shows the
results of applying the different classifiers, in conjunction
with the use of dimensionality reduction and feature selec-
tion techniques, to the yeast data set. The comparative study
of the experimental results is made: a) against the classifi-
cation using the full set of original features, b) between the
use of PCA and that of information gain-based feature se-
lection, and c) between the three types of classifier, both in
terms of overall classification accuracy and of classification
performance at individual class level. Section 6 concludes
the paper and points out further research.

II. Problem Case

The data set used for this research is obtained from the pub-
licly available expression profiles maintained by Brown’s
group at Stanford University [4]. It consists of yeast S. cere-
visiae gene expression vectors, involving 79 experiments on
2467 genes. As indicated in [4, 9, 15], this data set is quite
noisy and contains a rather high number of missing values.
That is, not all genes have the entire set of the 79 measure-
ments because each experiment was performed on a different
subset of genes. Within this paper, these missing experimen-
tal values are represented by 0.0 (as with what is done in the
literature, see [15]). The database only defines a total of 224
gene functional classes and thus, most of them (about 90%)
are undefined. As such, the data set is very unbalanced, there
are only a few positive examples for each of the 6 classes (Hi-
stones, Proteasome, Cytoplasmic Ribosomal Proteins, Res-

piration Chain Complexes and Tricarboxylic-acid Pathway),
and most of the genes do not belong to any of these six. Fur-
thermore, there are some genes that belong to a certain class,
but have different expression levels; and there are genes that
do not belong to the class which they share prediction level
patterns with. These cases will unavoidably lead to false neg-
atives and false positives in classification. It is because of
such difficulties possessed by this data set that it has been
chosen to carry out the present study, with an aim to check
the potential of combining different classification and feature
selection techniques. A more detailed overview of this data
set can be found in [4, 15].
Table 1 lists the definition of those defined six functional
classes and the corresponding class labels for the first five
classes (that are to be used by the classifiers later). The first
five classes are selected for this work because they represent
categories of genes that are expected, on biological grounds,
to exhibit similar expression profiles. They count for a total
of 208 functional defined genes. Along with those undefined
classes, the sixth functional class of Helix-turn-helix is re-
moved from the data set due to the fact that it does not con-
stitute an actual function class [4, 15]. Otherwise, with these
biased data being present, there would be little chance for
any classification algorithm to obtain a good classification
performance [21]. This would make comparative studies as
carried out later pointless. Therefore, only 208 genes (in-
terchangeably treated as attributes or features hereafter) that
have 79 experimental values, which jointly involve 5 func-
tional classes (the first 5 classes of Table 1), are used.

Functional classes Class labels for classifiers

Histones 1
Proteasome 2

Cytoplasmic ribosomal proteins 3
Respiration chain complexes 4
Tricarboxylic-acid pathway 5

Helix-turn-helix
Undefined functional classes

Table 1: Functional classes and their corresponding class la-
bels.

III. Feature Selection and Dimensionality Re-
duction

Feature selection refers to the process of selecting descrip-
tors that are most effective in characterising a given domain.
It addresses the specific task of finding a subset of given fea-
tures that are useful to solve the domain problem, without
disrupting the underlying meaning of the selected features.
In this regard, it is related to, but different from, the processes
of variable dimensionality reduction and of parameter prun-
ing, although its effect to data set dimensionality is the same
as that of the latter. Below is a brief introduction to feature
selection via information gain-based ranking [18] and dimen-
sionality reduction via principal component analysis (PCA)
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[6, 8], both of which are employed in the comparative studies
later.

A. Information Gain Based Feature Ranking

Let X be an attribute andC be the class variable. The fol-
lowing equations define the entropy of the class before and
after observing the attribute, respectively:

H(C) = −
∑

c∈C

p(c)log2p(c)

H(C|X) = −
∑

x∈X

p(x)
∑

c∈C

p(c|x)log2p(c|x)

where x is a feature value and c is a class label.
The amount by which the entropy of the class decreases af-
ter observing an attribute reflects the additional information
about the class provided by that attribute and is called in-
formation gain:IG = H(C) − H(C|X). In other words,
it measures how well a given feature separates the observed
instances according to their given class categories. Without
losing generality, suppose that there areN attributes (or fea-
tures):X1, X2, ..., XN . Each attributeXi, i = 1, 2, ..., N , is
assigned a score based on the information gain over the class
entropy due to observing itself:

IGi = H(C)−H(C|Xi)

The ranking of the attributes is then done with respect to the
values ofIGi in a descending order, reflecting the intuition
that the higher anIG value, the more information the cor-
responding attribute has to offer regarding the class. Note
that to compute the information gain, data sets with numeric
features are required to be discretised (with continuous vari-
ables quantified using real-valued intervals). Many alterna-
tive methods can be applied for this. In the present work, the
method given in [11] is used.

B. Principal Component Analysis (PCA)

Principal component analysis is a standard statistical tech-
nique that can be used to reduce the dimensionality of a
data set. This is done by projecting the data of a dimen-
sionalityN onto the eigenvectors of their covariance matrix
with, usually, the largestM eigenvalues taken (M < N ).
More formally, each so-called principal componentPCi, i =
1, 2, ..., M , is obtained by linearly combining the original at-
tributes (or features) such that

PCi =
M∑

j=1

bijXj

whereXj is the jth original attribute, andbij are the lin-
ear factors (eignvectors) which are chosen so as to make the
variance of the correspondingPCi as large as possible.
In implementation, the transformation from the original at-
tributes to principal components is carried out through a

process by first computing the covariance matrix of the origi-
nal attributes and then, by extracting its eigenvectors to act as
the principal components. The eigenvectors specify a linear
mapping from the original attribute space of dimensionality
N to a new space of sizeM in which attributes are uncorre-
lated. The resulting eigenvectors can be ranked according to
the amount of variation in the original data that they account
for. Typically, the first few transformed attributes account for
most of the variation in the data set and are retained, while
the remainder are discarded.
Note that in contrast with the information gain-based feature
ranking, PCA is an unsupervised method which makes no
use of information embodied within the class variable. Also,
what the PCA returns are linear combinations of the origi-
nal features. Therefore, the meaning of the original features
is not preserved. As opposed to this, selecting a subset of
top-ranked features based on information gain ranking will
preserve the original meaning of those features selected, per-
forming feature selection in its strict sense.

IV. Classification Algorithms

As indicated previously, three supervised learning algorithms
are adopted here to build models in order to perform gene
classification, namely, K-Nearest Neighbours (KNN) [8],
Naive Bayes [6, 8], and Decision Tree [18, 19]. This is
workable because class labels of the training examples are
available for use in the search for separating genes. To be
self-contained, this section gives a brief overview of these
algorithms.

A. K-Nearest Neighbour (KNN)

KNN is one of the simplest learning/classification algo-
rithms, and has been successfully applied to a broad range
of problems [15]. To classify an unclassified vectorX, the
KNN algorithm ranks the neighbours ofX amongst a given
set ofN data (Xi, ci), i = 1, 2, ..., N , and uses the class la-
belscj (j = 1, 2, ..., K) of the K most similar neighbours
to predict the class of the new vectorX. In particular, the
classes of these neighbours are weighted using the similarity
betweenX and each of its neighbours, where similarity is
typically measured by the Euclidean distance metric (though
any other distance metric may also do). Then,X is assigned
the class label with the greatest number of votes among the
K nearest class labels.
The KNN classifier works based on the intuition that the clas-
sification of an instance is likely to be most similar to the
classification of other instances that are nearby to it within
the vector space. Compared to other classification methods
such as Naive Bayes’, KNN does not rely on prior probabil-
ities, and it is computationally efficient if the data set con-
cerned is not very large. If, however, the data sets are large
(with a high dimensionality), each distance calculation may
become quite expensive. This reinforces the need for em-
ploying PCA and information gain-based feature ranking to
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reduce data dimensionality, in order to reduce the computa-
tion cost.

B. Naive Bayes

A Naive Bayes classifier can achieve relatively good perfor-
mance on classification tasks [7, 18], based on the elementary
Bayes’ Theorem. It greatly simplifies learning by assuming
that features are independent given the class variable. More
formally, a Naive Bayes classifier is defined by discriminant
functions:

fi(X) =
N∏

j=1

P (xj |ci)P (ci)

whereX = (x1, x2, ..., xN ) denotes a feature vector and
cj , j = 1, 2, ..., N , denote possible class labels.
The training phase for learning a classifier consists in esti-
mating conditional probabilitiesP (xj |ci) and prior proba-
bilities P (ci). Here, P (ci) are estimated by counting the
training examples that fall into classci and then dividing the
resulting count by the size of the training set. Similarly, con-
ditional probabilities are estimated by simply observing the
frequency distribution of featurexj within the training sub-
set that is labelled as classci. To classify a class-unknown
test vector, the posterior probability of each class is calcu-
lated, given the feature values present in the test vector; and
the test vector is assigned to the class that is of the highest
probability.

C. Decision Trees

Different methods exist to build decision trees, which sum-
marise given training data in a tree structure, with each
branch representing an association between attribute val-
ues and a class label. The most famous and representative
amongst these is, perhaps, the C4.5 algorithm [19, 24]. It
works by recursively partitioning the training data set accord-
ing to tests on the potential of attribute values in separating
the classes. The core of this algorithm is based on its orig-
inal version, named the ID3 [18, 19]. So, to have a basic
understanding of how this algorithm works, the ID3 method
is outlined below.
The decision tree is learned from a set of training examples
through an iterative process, of choosing an attribute (i.e. fea-
ture) and splitting the given example set according to the val-
ues of that attribute. The key question here is which of the
attributes is the most influential in determining the classifica-
tion and hence should be chosen first. Entropy measures or
equivalently, information gains (see section 3.1) are used to
select the most influential, which is intuitively deemed to be
the attribute of the lowest entropy (or of the highest informa-
tion gain). In more detail, the learning algorithm works by:
a) computing the entropy measure for each attribute, b) par-
titioning the set of examples according to the possible values
of the attribute that has the lowest entropy, and c) for each

subset of examples repeating these steps until all attributes
have been partitioned or other given termination conditions
met. In order to compute the entropy measures, frequencies
are used to estimate probabilities, in a way exactly the same
as with the Naive Bayes approach. Note that although at-
tribute tests are chosen one at a time in a greedy manner,
they are dependent on results of previous tests.

V. Experimental Results

A large corpus of experiments has been carried out. To bet-
ter organise the presentation of the results the experimental
background is first given below, a comparative analysis of the
results is then presented.

A. Experimental Background

Different classifiers are used to accomplish classification by
mapping feature patterns of a different dimensionality onto
their underlying functional class types. There are a total of
five output classes for the present problem case (see Table 1).
The classification performance is measured using three-fold-
cross-validation. That is, the gene expression vectors are ran-
domly partitioned into three equally-sized subsets, and each
subset is used as a test set for a classifier trained on the re-
maining two subsets. The empirical accuracy is given by
the average of these three subset classifiers. A specific point
worth noting is that for the KNN classifiers, the results on
the use of a varying number K of nearest neighbours are ob-
tained, with K set to 1, 3, 5, 8, 10, 12 and 15. The actual K
value of a certain classifier is selected amongst those which
leads to the best classification performance.

B. Comparison with the Use of Unreduced Features

It is important to show that, at least, the use of those features
selected does not significantly reduce the classification accu-
racy as compared to the use of the full set of original features.
This forms the first part of this experiment-based investiga-
tion. For the given data set, the information gain ranking-
based feature selector returns the original 79 features, ranked
in the descending order of the size of their corresponding
information gain. In particular, the top-most ranked feature
is the original feature of index 79, which has the largest in-
formation gain compared with the others; and the original
feature of index 73 is of the lowest rank.
Figure 1 illustrates the classification performance using
KNN, Naive Bayes and Decision Tree classifiers, in conjunc-
tion with the use of information gain ranking-based feature
selection method. Each bar indicates the classification ac-
curacy using a different classifier and a different number of
selected original features. In this figure, for example, the
left-most case involves the use of five original features (79,
57, 61, 78 and 68, listed in order of their ranks), and the
right-most case shows the results from the use of the original
full feature set (a total of 79 features). For comparison, Fig-
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ure 2 shows the classification performance of using the same
classification methods, with respect to the sets of features re-
turned by PCA.
Clearly, different feature sets significantly affect the classi-
fication performance. The best performance for each type
of classifier with its corresponding feature set is summarised
in Table 2 (where for the case of combining Naive Bayes
and information gain ranking, parts of the feature indices se-
lected are omitted due to space limit). It is very interesting
to note that the classification performance using selected fea-
tures can be better than that of using the full feature set. In
particular, for KNN and Naive Bayes classifiers, much better
results can be obtained if careful selection of a subset of fea-
tures is carried out. For instance, the employment of the top-
ranked 13 features for KNN classifier beats the case when
the full set of features is used by around 1.5% in terms of
classification rate. Similarly, the use of the first 11 principal
components allows approximately 1.5% improvement over
the classification rate of using the full feature set.
Importantly, this improvement of performance is obtained by
structurally much simpler classifiers, as compared to a clas-
sifier that requires the full feature set. The best KNN and De-
cision Tree classifiers only need 13 and 7 features to achieve
the equivalent performance, and the best Naive Bayes classi-
fier only requires 11 transformed features to outperform the
classifier that uses the full set of features.
The above results are indicative of the power of feature se-
lection in helping to reduce redundant feature measures and
also the noise associated with such measurement (as fewer
features may even lead to higher classification accuracy).
This, in combination with the observation that the informa-
tion gain-based feature selection preserves the underlying
meaning of the selected features, also shows that informa-
tion loss can be minimised and even avoided in building the
classifiers if feature selection is carefully carried out.

C. Comparison between the Use of Information Gain-based
and PCA-based Features

This study aims at examining the performance of using dif-
ferent dimensionality reduction techniques. Results given in
Figures 1 and 2 and in Table 2 are reused for this analysis.
The fundamental advantage of preserving attribute mean-
ings through the use of a strict feature selection approach
like the information gain-based ranking, over the use of
a transformation-based approach such as PCA, has been
pointed out earlier. Here, experimentally, the effects of us-
ing either approach are evaluated in terms of classification
accuracy. Overall, using a subset of original features seems
to perform better than that of a set of transformed features.
This can be seen by comparing Figures 1 and 2, noting the
scale differences between the two figures. In general, both
methods considerably reduce the computation cost for the
classifiers (except for the integration of Decision Tree and
PCA). When examined across the whole range of simulation
results, Table 2 confirms that the classifiers using the features

selected via information gain ranking have a higher classifi-
cation accuracy. Additionally, it is worth recalling that PCA
alters the underlying meaning of the original features dur-
ing its transformation process. That is, for example, those
features marked with 1, 2, ..., 5, with regard to the case of
conjunctive use of KNN and PCA in Table 2, are not part of
the original features, but their linear combinations.
Note that when the number of principal components be-
comes larger than 11, there is virtually no further improve-
ment across all classifiers. This is different for classifiers that
use features selected by the information gain-based method,
although when the dimensionality of the feature subsets in-
creases to a large number, say 40 (see Figure 1), the variation
between the effects of selected features upon the individual
classifiers also becomes less obvious.
The locally best classification results of Table 2 (with re-
spect to individual types of classifier) reinforce the obser-
vation that using the information gain-based approach gen-
erally leads to a better classification. For instance, compar-
ing with classifiers that use the original full feature set, the
Naive Bayes classifier with 60 features results in the best per-
formance (95.19%), and so does locally the KNN classifier
which utilises only 13 originals (93.27%). However, for the
local best amongst those classifiers which use PCA-returned
features, the classifiers use an even smaller number of prin-
cipal features (5 and 11, respectively). The reason that more
selected features are needed for classification when working
with the information gain-based method is probably because
each of the principal components is itself a linear combi-
nation of all the original features already. Hence, the use
of a seemingly smaller set of principal components actually
includes information contributed by many original features.
This of course shows the power of PCA, despite the fact that
it irreversibly destroys the underlying meaning of the original
features.

D. Comparison between Classifiers

This final part of the comparative study is set to investigate
the differences between different classifiers, in terms of their
classification ability. It is clear from Figures 1 and 2 that
on average, over the large corpus of experiment carried out,
Naive Bayes and KNN classifiers tend to significantly out-
perform the Decision Tree classifiers. This is probably due to
the fact that the former two types of classifier work directly
on numerically-valued data without the need for discretisa-
tion, whilst Decision Tree learning requires partitioning the
underlying domain into a set of symbolic values (even though
they may be represented as real-valued intervals).
More particularly, the very best classification result (95.19%)
using features chosen by either information gain ranking or
PCA are achieved by Naive Bayes’. This, together with the
above observed overall performance, demonstrates the effec-
tiveness of Naive Bayes classifiers. In addition to having a
higher classification rate, this kind of classifier in general has
a computational advantage over its KNN and Decision Tree
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Figure. 1: Performance of KNN, Decision Tree and Naive Bayes over a different number of information gain-based features.
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counterparts in terms of complexity. However, there is “no
free lunch”. Such a superior performance requires the use of
many more features.
No matter which type of classifier to use, employing a
smaller number of selected features significantly reduces
the computational cost, for both training and classification
phases. This is especially important to the KNN classifiers
since they require measuring distances between a new in-
stance and the existing data points. Fortunately, as discussed
previously, dimensionality reduction does not necessarily re-
duce the accuracy of learned models. For the present data
set, reduced feature sets actually can lead to higher classifi-
cation rates. As a matter of fact, the locally best classification
results are all obtained using reduced feature sets for Naive
Bayes and KNN classifiers. Even for the relatively poor clas-
sifiers obtained by Decision Tree learning, using a mere 7 se-
lected features can equal the performance of using the full 79
features.
The discussion above has considered the overall classifica-
tion performance using different classifiers and feature se-
lection methods. It is, however, useful to investigate the clas-
sification performance on each class in further detail. For
this, Table 3 lists the classifiers’ performance over each class
(only the locally best results for a particular type of classifier
are given). To facilitate comparison, the results using the full
set of original features are also listed in this table.
Clearly, at individual class level, except for class 3, Deci-
sion Tree-based classifiers had the worst performance (which
jointly led to the worst overall performance observed ear-
lier). For classes 2 and 4, KNN classifiers gave the best re-
sults (94.23% and 100.0%). Both KNN and Naive Bayes
classifiers provided the same best result for class 1 (90.9%).
KNN and Decision Tree gave quite poor results for class 5,
but Naive Bayes (with 60 selected features using information
gain) provided a 100.0% correct classification rate. Finally, it
is worth noting that the classifiers with full original features
only perform as well as the classifiers that employ a smaller
set of features for classes 1 and 3. Incidentally, these results
also help to reveal the relative difficulties in classifying in-
stances which may belong to different classes of a data set.

VI. Conclusion

This paper has presented an experiment-based comparative
study of three classification methods applied to the yeast S.
cerevisiae gene expression data set. The work is itself novel
as feature selection methods are, for the first time, employed
in conjunction with the learning process of each classifier
considered to address the difficulties in handling real prob-
lems represented by this data set. It has shown that in gen-
eral, attribute selection is beneficial for improving the per-
formance of these common learning algorithms. It has also
shown that, as with the learning algorithms, there is no sin-
gle best approach for all situations involving dimensionality
reduction or feature selection. This investigation has helped

to reinforce the fact that when building a practical classifier,
what is needed is not only an understanding of how different
learning algorithms work, but also when they work the best
with what kind of support attainable from feature selection,
as well as what background knowledge is available about the
data in the given domain.
In particular, this work has investigated the following three
classification algorithms: K-Nearest Neighbours, Naive
Bayes and Decision Trees; and the following two meth-
ods for making choice of features: information gain-based
ranking and linear transformation-based principal compo-
nent analysis. Comparative studies have been performed be-
tween the use of full feature set and that of a subset; between
the employment of different types of learning algorithm in
building classifiers; and of course, between the utilisation of
dimensionality reduction techniques that choose features in
the strict sense (i.e. not altering any form of the original fea-
tures) or through transformation (i.e. changing the represen-
tation of original features).
Amongst a large corpus of systematic experimental studies
carried out, the best classification accuracy is achieved by
using a subset of features chosen by information gain-based
method for KNN and Naive Bayes classifiers. Naive Bayes
can also do well with a relatively small set of features lin-
early transformed by PCA, in performing classification of
this difficult data set. This may be due to the use of PCA; by
transferring features into linear combinations of original at-
tributes, PCAhelps to alleviate the independence assumption
made by this type of classifier. Another point worth noting is
that not only classification accuracy but also computational
efficiency is improved through dimensionality reduction or
feature selection. Results of such studies from this realistic
application show the success of this research.
This work, nevert.5heless, only considered three types of
classifier and two types of feature selection method (even
though the choice of the latter two techniques have been care-
fully done such that one follows the strict feature selection
approach and the other works via variable transformation).
There are many possible alternatives (e.g. SVM [4, 20]) that
have been applied to this data set among others, though no
feature selection was involved. It is very interesting, and
would be potentially very beneficial to the relevant research
communities, to investigate such alternatives and compare
their performance with the ones studied here, including the
use of most recently developed feature selection techniques
(e.g. [12]). In addition, the present work is focussed on a
highly specific and unbalanced data set. It would also be
useful to examine this data set more carefully, in terms of
missing values and inconsistent relationships. This will help
extend the useful findings to other problem domains.
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Classification Selection Dimension Feature Classification
Method Method -ality Index Rate

KNN(K=1) InfoGain 13 79,57,61,78,68,60,58,49,50,67,56,62,51 94.71%
KNN(K=1) PCA 5 1, 2, 3, 4, 5 93.27%
KNN(K=1) Full 79 From 1 to 79 93.27%
DEC. Tree InfoGain 7 79,57,61,78,68,60,58 92.31%
DEC. Tree PCA 5 1, 2, 3, 4, 5 87.98%
DEC. Tree Full 79 From 1 to 79 92.31%
NaiveBayes InfoGain 60 79,57,61,78,68, ..., 20, 28, 27, 7, 65 95.19%
NaiveBayes InfoGain 30 79,57,61,78,68, ..., 3, 9, 40, 25, 14 94.23%
NaiveBayes PCA 11 From 1 to 11 95.19%
NaiveBayes Full 79 From 1 to 79 93.75%

Table 2: Classification rate vs. feature sets.

Classification Selection Dimen- Overall
Method Method sionality c1 c2 c3 c4 c5 Rate

KNN(K=3) InfoGain 13 90.9% 94.3% 100.0% 100% 42.9% 94.71%
KNN(K=1) Full 79 81.8% 94.3% 100.0% 85.2% 57.1% 93.27%
DEC. Tree InfoGain 7 81.8% 88.6% 100.0% 81.5% 64.3% 92.31%
DEC. Tree Full 79 81.8% 88.6% 100.0% 85.2% 57.1% 92.31%
NaiveBayes InfoGain 60 90.9% 88.6% 98.3% 88.9% 100.0% 95.19%
NaiveBayes PCA 11 90.9% 85.7% 100.0% 96.3% 78.6% 95.19%
NaiveBayes Full 79 90.9% 88.6% 97.5% 85.2% 92.9% 93.75%

Table 3: Classification rates over individual classes.


