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Abstract: In this paper, the problem of unsupervised feature
selection and its formulation as a multiobjective optimization
problem are investigated. Two existing multiobjective methods
from the literature are revisited and used as the basis for an
algorithmic framework, encompassing both wrapper and filter
methods of feature selection. Anumber of alternative algorithms
implemented within this framework are then evaluated using an
extensive data test suite; the main effect investigated is that of
the choice of a primary objective function (a secondary objective
function is used only to militate against an inherent cardinality
bias affecting all methods of feature subset evaluation). Partic-
ular attention is paid in the study to high-dimensional data sets
in which the number of features is much larger than the number
of data items.
Keywords:

I. Introduction

Feature selection, or subset selection, is a process com-
monly used for dimensionality reduction in machine learn-
ing. Dimensionality reduction in learning tasks can be cru-
cial for a number of reasons. First, for large feature sets, the
processing of all available features may be computationally
infeasible. Second, many of the available features may be
redundant, noise-dominated or irrelevant to the classification
task at hand. Consequently, the inclusion of all features will
be detrimental and the subset most relevant for the learning
task at hand needs to be identified. Third, high-dimensionality
is also a problem if the number of variables is much larger
than the number of data points available. In such a scenario,
dimensionality reduction is crucial in order to overcome the
curse of dimensionality [2] and allow for meaningful data
analysis.

For the above reasons, feature selection is important both
in supervised and unsupervised data analysis. The prob-
lem has been well-studied in the supervised scenario but
only little research to date has dealt with the unsupervised
problem (for a recent overview of research efforts in both

areas, see [24]). Yet, several of the challenges faced in the
unsupervised problem are very different to those encountered
in a supervised scenario: in particular the assessment of the
quality of an individual feature or a feature subset becomes
even more intricate in unsupervised classification.

In this paper, the benefits of treating unsupervised feature
selection as a multiobjective optimization problem are dis-
cussed and variations of this formulation are considered. In
particular, the main contributions of this work are as follows.
(1) A critical review of two seminal evolutionary multiobjec-
tive approaches to unsupervised feature selection [22, 31] is
given. Experimental examples are used to highlight some of
the limitations of these approaches.
(2) A common algorithmic framework is developed to enable
us to test different choices of objective function(s) whilst
maintaining the same optimizer, pre-processing, initializa-
tion, encoding and clustering modules. We also devise a
method to select solutions from the Pareto front by compari-
son with control distributions so that no external knowledge
is needed.
(3) The framework is then used to undertake an extensive
experimental analysis using a total of 125 different data sets.
Altogether, four alternative MOEA approaches are evaluated,
together with three baseline methods: two provide estimates
of an upper and lower bound on feature selection performance
and the third shows the performance of a greedy optimizer.
Our analysis pays particular attention to the performance of
the algorithms on high-dimensional data, for which the num-
ber of dimensions greatly exceeds the number of data items.
Such data is encountered in many data-mining tasks (for ex-
ample in biological and chemical data analysis [19]), but has
not been considered in previous work on unsupervised feature
selection [13, 22, 31].

The remainder of this paper is structured as follows. Sec-
tion II introduces a definition of feature selection and gives an
overview of previous research related to both supervised and
unsupervised versions of the problem. It also sets out the mo-
tivation for tackling feature selection from a multiobjective
perspective and summarizes previous research efforts in this
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respect. Next, Section III gives a more detailed analysis of
two existing multiobjective approaches to the unsupervised
problem. In Section IV, we introduce the algorithmic frame-
work that allows us to analyze several alternative objective
function choices, while maintaining many common compo-
nents. Section V describes the experimental setup used and
gives results on the performance of a number of algorithms
implemented within our framework. Section VI discusses the
findings of the study, and, finally, Section VII concludes.

II. Related Work on Feature Selection

As outlined in the introduction, dimensionality reduction is an
important processing step in many data-mining scenarios. In
general, two different types of dimensionality reduction can
be distinguished.

The first group consists of methods that are based on a
transformation of the original feature space. In these meth-
ods, features in the transformed feature space consist of linear
or non-linear combinations of the original variables; usually,
a limited number of these transformed features are selected
in order to obtain a representation of the data in a lower di-
mensional data manifold. Both unsupervised and supervised
methods of this type exist and examples include principal
component analysis (which is unsupervised) [27] and dis-
criminant function analysis (which is supervised) [27]. These
transformation-based approaches are potentially powerful, as
they can capture complex relationships between variables, al-
though the main focus of most of these methods is not on re-
trieving cluster structure. Further disadvantages include their
computational expense and the difficulty to interpret results
in terms of the original input variables.

The second group comprises those methods that are based
on subset selection, also referred to as feature selection [17].
Here, a lower dimensional projection of the data is obtained
by selecting a subset of the original features and discarding
the remaining ones. Hence, in this approach all features in the
reduced feature space directly correspond to a single feature
in the original high-dimensional feature space. Both unsu-
pervised and supervised methods for feature subset selection
exist and we will survey these in the following sections. The
main advantage of the approach lies in its ease of interpreta-
tion: the method directly returns the variables that are relevant
for a given classification task.

A. Definition of Feature Selection

The general feature selection problem (Ω, P ) can be defined
formally as a single-objective optimization problem: deter-
mine the feature set F ∗ for which

P (F ∗) = min
F∈Ω

P (F, E), (1)

where Ω is the set of feasible feature sets, F is a feature subset
and P : Ω × Ψ → R is a criterion function that assesses the
quality of a given feature subset in terms of its utility for

classifying the set of data points, E ∈ Ψ. That is to say,
the elements of E, which are vectors in a metric space of
dimension d are projected into the subspace of dimension
dF = |F | ≤ d defined by F and the quality of this subspace
is estimated by P .1

In a supervised scenario, the correct class memberships
for all data points within E are additionally known and the
utility of F is usually measured in terms of the performance
of a classifier at predicting the memberships of all data points
within E when applied to their projections in feature space
F . This can either be measured directly with respect to a
given classifier or it can be estimated using ‘proxy’ measures
that consider how well the known classes are reflected by the
distribution of feature values.

In an unsupervised scenario, utility is usually measured in
terms of the performance of a clustering method when ap-
plied to E in feature space F . Analogously to the supervised
case, this can either be measured directly with respect to a
given clustering algorithm or it can be estimated using proxy
measures that consider the degree to which the distribution of
feature values exhibits cluster structure in the subspace F .

Feature selection methods that assess feature utility with
respect to a given classifier or clustering method, are referred
to as ‘wrapper’ approaches. In contrast, those feature selec-
tion methods that make use of a proxy measure to estimate
utility are termed ‘filter’ approaches.

The search space of the feature selection problem is of
size 2d (each feature can be either selected or not). There-
fore, exhaustive search becomes infeasible even for moder-
ate d and heuristic search strategies need to be employed.
Possible choices for such search strategies include branch-
and-bound [4], sequential search methods (such as forward
selection [1], backward selection [1] or floating search [35])
and randomized search strategies (such as simulated anneal-
ing [25] or evolutionary algorithms [39]). An alternative and
computationally cheaper approach is that of feature ranking:
here, the utility of individual features is studied in isolation
only and those features with the highest utility (e.g. those
exceeding a certain threshold level) are selected.

B. Supervised Feature Selection

Feature selection is a well-studied problem in the area of su-
pervised classification [17]. Performance in supervised clas-
sification is typically measured as the ability of a classifier
to classify all data within a data set E correctly, even when
only a subset of E is used for ‘training’ the classifier. This is
termed cross-validation and the performance of a classifier is
quantified by the cross-validation error.

In the training of a classifier, the most straightforward
choice of input variables is the set of all available features.
While this may appear to be the most powerful and general
approach, as all available information is taken into account,

1Note: since we are minimizing, strictly, P is a cost or error term; if a
utility measure is used for P , we shall minimize its negative value.
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research in the machine learning literature has shown that this
is usually not the case in practice [3]. Real data frequently
contain variables that are redundant or have a low information
content; their consideration during the classification process
introduces noise and may cause high cross-validation errors.
The exclusive use of the most discriminative variables may
therefore yield significant gains in terms of classification per-
formance.

Wrapper methods for supervised classification [23] inter-
act directly with (are ‘wrapped around’) a specific classifier.
The usefulness of a particular feature set can then be assessed
directly by the performance (cross-validation error) of a clas-
sifier that is trained on this set of variables only. Wrapper
methods are very effective at decreasing the dimensionality
of the feature space and increasing classification accuracy.
Their disadvantages include their computational expense and
their susceptibility to overtraining [25].

Filter approaches to supervised classification typically se-
lect variables based on their discriminatory power with re-
gard to the target classes. Popular methods in this respect
include distance, dependency, information and consistency
measures [24]. As filter methods are independent of the classi-
fier applied subsequently, they have good generalization prop-
erties, but may be less effective at decreasing the dimension-
ality of the feature space and boosting classification accuracy.
Generally, they are computationally cheaper than wrapper ap-
proaches, albeit their computational expense varies largely
dependent on whether feature ranking or a search for feature
subsets is used.

C. Unsupervised Feature Selection

Unsupervised feature selection has been addressed only rela-
tively recently in the literature [8, 13, 16, 22, 30, 31, 34, 41,
42]. Performance in unsupervised classification is typically
measured as the ability of a clustering to reveal ‘interesting’
groupings (clusters) in a given data set E. This is where a
fundamental difference between unsupervised and supervised
feature selection lies: while the overall objective is relatively
clearly defined in a supervised scenario (usually as the min-
imization of the cross-validation error), the definition of a
suitable objective for unsupervised feature selection is more
ambiguous and involved. This arises from the difficulty of
defining the notion of a good cluster and of objectively eval-
uating clustering quality in the absence of known class la-
bels [29].

Wrapper approaches to unsupervised classification evalu-
ate feature subsets in the context of a specific clustering al-
gorithm. More specifically, a clustering algorithm is applied
to a given feature subspace and the quality of the resulting
clustering solution is evaluated using internal cluster valida-
tion techniques [19]. Here, the term “internal” signifies the
fact that no external information, that is, information about
the class memberships of individual data items, is used for
the evaluation of individual clustering solutions. A range
of such internal validation techniques exist in the clustering

literature, each of which has its own biases, strengths and lim-
itations. The choice of this cluster validation technique may
potentially have a major impact on the overall performance
of an unsupervised feature selection scheme. Furthermore,
the best choice for the validation technique is not necessarily
independent of the clustering algorithm used and the combi-
nation of the two must therefore be chosen carefully. A third
choice faced in wrapper approaches to unsupervised feature
selection concerns the number of clusters that the data are
partitioned into: most clustering algorithms require the spec-
ification of the number of clusters as an input parameter and
this parameter can be kept constant or dynamically deter-
mined within a wrapper approach. Previous research by Dy
and Brodley [13] has demonstrated that a dynamic number
of clusters is preferable because different feature subspaces
may contain different numbers of clusters.

Filter approaches typically select variables based on the dis-
tribution of their values across the set of data vectors available.
In contrast to wrapper approaches, the most common filter
strategies are based on feature ranking. In this context, two
opposite strategies have been proposed in the literature: those
that aim at the removal of redundant features [30] and those
that focus on the removal of irrelevant features [41, 34, 42].
Both, redundancy and irrelevance can be determined, for ex-
ample, by the mutual information or the correlation between
pairs of features. However, redundancy-based approaches
are based on the assumption that dependent features should
be discarded, whereas irrelevance-based approaches stipulate
the opposite (i.e. the preservation of dependent features and
the removal of independent ones). This apparent contradic-
tion demonstrates some of the difficulty of deriving ranking
techniques that are appropriate in all data-mining scenarios.
Recently, a number of filter approaches have been introduced
that select feature subsets containing areas of high density.
This can be measured, for example, by the entropy of the dis-
tribution of data points [16] or the entropy of the distribution
of dissimilarities between data items [8].

In supervised feature selection, wrapper approaches are
thought to offer performance advantages although there is
also a danger of overfitting with them. In the unsupervised
context, however, the advantages and disadvantages of filter
versus wrapper approaches are less well understood, and we
consider both in the experimental sections that follow.

1) Feature Cardinality Bias

We have mentioned above that wrapper methods for unsuper-
vised feature selection rely on the use of an internal technique
of cluster validation. Cluster validation techniques have been
designed specifically in order to allow for the selection of the
best clustering solution out of a set of partitionings obtained
on the same set of data but generated by different algorithms
or corresponding to different numbers of clusters. However,
they are not originally aimed at accurately comparing par-
titionings obtained on different sets of data or in different
feature subspaces.
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In fact, internal cluster validation techniques are gener-
ally based on some form of distance computation in feature
space and this is problematic for their use in feature selec-
tion, as it automatically induces a bias of these measures
with respect to the dimensionality of the feature space. The
existence of this bias is related to the fact that, when mov-
ing to high dimensions, the histogram of distances between
items in data space changes: the mean of the histogram tends
to increase and the variance of the histogram tends to de-
crease. In other words, the distances between all pairs of
points tend to become highly similar and (dependent on the
specific form of the validation technique) this causes a bias
to low or high dimensions. For example, many cluster vali-
dation techniques consider ratios between intra-cluster com-
pactness and inter-cluster separation, the values of which
draw closer for high dimensions. Consequently, these val-
idation techniques are biased towards low dimensions and
clustering solutions in higher-dimensional space that are actu-
ally better than solutions in lower-dimensional space, may be
overlooked.

Such biases complicate the validation of clustering results
across subspaces of different dimensionalities. If the natu-
ral dimensionality-bias is not accounted for, a wrapper-based
feature selection method will always favour extreme feature
spaces (i.e. the lowest- or highest-dimensional feature spaces
available). Similar limitations hold for filter approaches that
compare subspaces of different dimensionality and whose
evaluation is based on distance computations.

In the literature, three different approaches have been pro-
posed to tackle the issue of bias. The first approach is a simple
ad-hoc normalization of the evaluation function by means of
an appropriate scaling factor (usually expected to be a func-
tion of the feature cardinality dF ) [13, 22]. This type of nor-
malization may reduce the bias or overcompensate for it, but
will not usually remove it cleanly. An alternative approach
is the cross-projection technique proposed by Dy and Brod-
ley [13], which attempts to reduce the cardinality-specific bias
by considering pairs of clustering solutions, each derived in
a different feature subspace, and comparing each of them in
both of these subspaces. This relation can be used for pair-
wise comparisons between features sets but it is not transitive,
which makes its use in global optimization techniques prob-
lematic. Finally, two recent papers [22, 31] have suggested
dealing with the bias by considering feature cardinality as a
separate objective and applying a Pareto multiobjective op-
timization algorithm. Of the three approaches, we consider
the latter the most general and promising and will focus on it
in the remainder of this paper.

D. Multiobjective Approaches to Feature Selection

A number of papers in the literature have investigated multi-
objective approaches to feature selection. It is worth noting
that the motivations for the use of multiobjective techniques
in supervised and unsupervised feature selection are quite
different.

In the supervised problem, the literature has focused pre-
dominantly on wrapper approaches, where the performance
of a classifier is to be maximized, while minimizing the cardi-
nality of the feature set [12, 14, 32]. This approach is largely
motivated by the problem of overtraining. In a supervised
context, larger feature sets will usually result in a higher clas-
sification accuracy on the training data. Yet, these solutions
will be prone to overfitting and will have a low generalization
performance. The simultaneous maximization of the accu-
racy of a classifier and minimization of the cardinality of the
feature space is therefore favoured in order to explore different
bias-variance trade-offs: given two feature sets of different
cardinality that result in the same classification accuracy, the
smaller of the two is expected to result in a better generaliza-
tion (this is also known as Occam’s Razor [38, 40, 44]). Im-
plementations of multiobjective supervised feature selection
directly capture this intuition (and discard the larger solution)
by means of the concept of Pareto optimality.

The above type of overfitting is not an issue in an unsu-
pervised scenario. Instead, in unsupervised feature selec-
tion, multiobjective approaches are of interest as a flexible
approach to counter-balance the dimensionality-bias of clus-
ter validation techniques. Note that this represents a major
difference between supervised and unsupervised feature se-
lection: while obtaining a low-dimensional feature set is often
desirable (as it facilitates the interpretation of the final clus-
tering result), a preference for smaller solutions should not
generally be used: given two feature sets of different car-
dinality that result in the same clustering performance (as
measured by a cluster validation technique/filter method with
a bias to low dimensionalities), the larger of the two is ex-
pected to correspond to the better clustering result. Imple-
mentations of multiobjective unsupervised feature selection,
we suggest, should therefore minimize or maximize the num-
ber of features as appropriate to counteract the specific bias
of the cluster validation technique/filter method employed.

Multiobjective approaches to unsupervised feature selec-
tion have been studied in only two papers [22, 31] to our
knowledge, both of these suggesting wrapper-approaches. In
the following section, we will discuss and analyze this work
in some detail.

III. Analysis of Previous Work on
Multiobjective Unsupervised
Feature Selection

A. Kim et al.’s Algorithm

In 2002, Kim et al. [22] presented the first wrapper approach to
multiobjective unsupervised feature selection, which is based
on the multiobjective algorithm ELSA (Evolutionary Local
Selection Algorithm, [28]). The k-means algorithm [26] is
used to obtain a clustering for a given feature subset, and
both good feature subsets and the corresponding numbers of
clusters are evolved. Four different clustering objectives are
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Figure. 1: Two-dimensional projections of the ‘Kim’ data set. From left to right, top to bottom: (a) Dimension 1 × 2. The
five 10-dimensional Gaussian clusters can be discerned in this projection to two dimensions. (b) Dimension 13×13. The two
Normal Distributions used for noise generation in this dimension happen to be spatially separated. This results in an artefact
in this subspace. (c) Dimension 3×4. Only two clusters can be discerned in this projection to two dimensions. (d) Dimension
16 × 18. The Normal Distributions used for noise generation in dimensions 16 and 18 overlap. This subspace therefore
contains no cluster structure. (e) Dimension 26 × 28. Dimensions 26 and 28 are sampled from uniform distributions. This
subspace therefore contains no cluster structure. (f) Dimension 12×22. Dimension 22 is sampled from a uniform distribution.
However, the two Normal Distributions used for noise generation in dimension 12 happen to be spatially separated. This
results in an artefact in this subspace.

optimized simultaneously, which measure (some function of)
the number of features, the number of clusters, intra-cluster
compactness and between-cluster separation.

The approach was evaluated on one synthetic (‘Kim’) and
one real world data set (Wisconsin Prognostic Breast Cancer,
‘WPBC’), which can both be characterized as relatively low-
dimensional in the sense that the number of data items is
much larger than the number of features. For the synthetic
data, the correct solution is known, so we will use it here to
discuss certain aspects of Kim et al.’s approach. This data
set consists of 500 data points described by 30 features each.
Out of these, only the first 10 dimensions are designed to
contain structure in the form of five Gaussian clusters that
are embedded in this 10-dimensional space. The remaining
20 dimensions are noise dimensions: features 11 to 20 are
each sampled from two Gaussian distributions (independently
generated for each feature); features 21 to 30 are each sampled
from a Uniform distribution. This data contains a number
of interesting patterns, as shown by several two-dimensional
projections in Figure 1.

While the general idea proposed by Kim et al. seems very
promising, their results on the ‘Kim’ data, as well as our own
analysis, suggest a number of pitfalls of their particular ap-
proach.
(P1) Efficiency of the optimization
Four objectives are a large number of objectives, in par-
ticular, if Pareto-based ranking is used. Recent results by

Hughes [21] suggest that the performance of Pareto-based
ranking MOEAs can be quite poor for this number of ob-
jectives and we therefore would expect deficiencies in the
optimization performance of Kim et al.’s method. This ex-
pectation seems to be confirmed by the results provided by
Kim et al. for the ‘Kim’ data set: the feature sets identified by
their method include a significant fraction of noise features
and the embedded clustering algorithm does not succeed in
correctly retrieving the five clusters inherent to the data.
(P2) Dependencies between objectives
The values returned by the two internal clustering validation
techniques (i.e. compactness and separation) are biased with
respect to the cardinality of the feature space and the number
of clusters in the partitioning. Kim et al. attempt to counter-
balance the latter of these biases through a division of both
measures by the cardinality of the feature space. Given that
the cardinality of the feature space is also an objective, this
division may be problematic: a transformation of this kind
will usually affect the Pareto optimal set. We will discuss the
implications of this type of transformation in more detail in
Section III-B.
(P3) Interpretability of the results
Kim et al.’s algorithm generates a four-dimensional Pareto
front. Consequently, an interpretation of this front and the dis-
covery of promising solutions from within it, becomes highly
involved. This is illustrated in Figure 2, which shows re-
sults reproduced from Kim et al.’s paper. These results are
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Figure. 2: Slices of the Pareto front identified by Kim et al. (reprinted from [22] with permission from IOS Press). Fcomplexity
denotes the objective related to the cardinality of the feature space. Fwithin denotes the objective related to intra-cluster com-
pactness. Fbetween denotes the objective related to between-cluster separation. These three objectives are to be maximized.
k denotes the number of clusters. These plots are quite difficult to interpret for a decision maker. Kim et al. suggest that the
slices for k = 5 and k = 6 can be identified as promising due to the high scores obtained for Fwithin and the large range of
Fcomplexity values covered.

evidently difficult to interpret, which is caused by two fac-
tors: first, it is generally harder to interpret Pareto fronts in
four dimensions, as only two- or three-dimensional slices of
the Pareto front can be investigated at a time; secondly, the
interpretation is exacerbated by the different biases of the
objectives as well as the dependencies between individual
objectives.

Problems (P1) and (P3) can best be appreciated if con-
trasted with the performance of an alternative method on the
same data set. Figure 3 shows the result obtained using our
algorithmic framework (described later in Section IV) on the
‘Kim’ data set. The method optimizes two objectives only:
a measure of cluster validation (Silhouette Width, see Sec-
tion IV-B) and the cardinality of the feature subspace dF . As
the output of this method, a simple two-dimensional Pareto
front is obtained, which is straightforward to interpret. The
method identifies the correct 10-dimensional feature subspace
and the correct number of clusters. Furthermore, this best so-
lution is located at a clearly discernible ‘knee’ in the Pareto
front and can therefore be found easily by a decision maker.

In addition, this simple two-dimensional Pareto front re-
veals some interesting insights into the structure of the data
set that have not been highlighted in [22]. In particular, a
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Figure. 3: Pareto front identified on the ‘Kim’ data set using
Silhouette Width as the primary objective (both objectives
being minimized). This two-dimensional Pareto front reflects
the main trends in the data and is straightforward to interpret.
Specifically, the correct dF = 10 solution is situated at a
‘knee’ in the Pareto front and is easy to detect by a decision
maker. A control front obtained for random data is shown to
indicate the dimensionality bias of the primary objective used
(see Section IV-D).



Feature Subset Selection in Unsupervised Learning 223

Pareto optimal solution is identified for dF = 1. It con-
sists of a feature (feature 13) that is not originally considered
‘significant’ and is also not included in the larger feature sub-
sets (i.e. the solutions for dF ∈ {2, 3, 7, 8, 9, 10}). A plot
of the subspace spanned by feature 13 (see Figure 1) reveals
the reasons for this result: as an artefact of the method of
noise-generation (in particular the use of two Gaussian clus-
ters per dimension), this subspace contains very clear cluster
structure, which, for this feature cardinality, is more distinct
than any of the one-dimensional projections of the five Gaus-
sian clusters. However, due to the fact that this artefact is
not correlated with any of the structure in the other features,
it is discarded when higher-dimensional subspaces are con-
sidered. Furthermore, four Pareto-optimal solutions can be
identified in the range dF ∈ {7, . . . , 10}, for which k-means
identifies the correct k = 5 clustering solution. This indicates
that not all of the first ten features are required to correctly
discern the five-cluster structure of the data.

B. Morita et al.’s Algorithm

Morita et al. [31] present an alternative multiobjective
wrapper approach to unsupervised feature selection. Like
Kim et al. [22] they use the k-means algorithm for the gener-
ation of candidate partitionings and keep the number of clus-
ters dynamic. A different multiobjective evolutionary algo-
rithm (the Non-dominated Sorting GA-II, NSGA-II, [11]) is
used and just two clustering objectives are employed, namely
the number of features and the Davies-Bouldin-Index (DB-
Index, [9]).

The Davies-Bouldin-Index is a popular internal validation
technique from the literature that captures both intra-cluster
compactness and between-cluster separation (in a non-linear
combination). It is defined as

IDB =
1
k

k∑

i=1

Ri, (2)

where

Ri = max
j,j �=i

Si + Sj

Bij

is the ratio of the sum of within-cluster scatter

Si =
1

|Ci|
∑

x∈Ci

||x − Zi|| (3)

to the between-cluster separation

Bij = ||Zi − Zj ||. (4)

Here, Zi denotes the cluster centre of cluster Ci. IDB takes
values in the interval R

+
0 and is to be minimized.

The use of the DB-Index has some strong advantages over
Kim et al.’s approach [22]. First, it reduces the number of
objectives that need to be considered. Second, the DB-Index
is unbiased with respect to the number of clusters. Values

returned by the DB-Index are therefore easier to interpret,
which makes the final Pareto front easier to analyze. Also, it
removes the need for the use of the number of clusters as an
additional objective.

However, the DB-Index is biased with respect to feature
cardinality and improves for small feature subspaces. As out-
lined previously, a possible approach to deal with this bias
is to treat feature cardinality as an individual objective. This
can be done in two different ways:

(S1) Minimization of the DB-Index and maximization of the
number of features. The bias of the DB-Index can be counter
balanced by maximizing the number of features instead of
minimizing it. This approach has not been considered in the
literature, presumably for the reason that a maximization of
the number of features seems somewhat counter-intuitive to
the idea of feature selection.
(S2) Normalization of the DB-Index to reverse the bias toward
small feature subspaces. Once the DB-Index has been ‘nor-
malized’ in this way, a minimization of both the normalized
DB-Index and the number of features is possible. This is the
approach chosen by Morita et al., who divide the DB-Index
by the cardinality of the feature space

I∗
DB =

1
dF

1
k

k∑

i=1

Ri. (5)

The resulting index is biased towards high-dimensional fea-
ture spaces and this is then counter-balanced through the min-
imization of feature cardinality as a second objective. While
this minimization of the number of features seems more ‘nat-
ural’, there are two potential pitfalls with this approach. First,
the exact form of the bias is not known and the division by dF

is a heuristic normalization only. It is not clear whether this
normalization properly removes the bias for all feature cardi-
nalities. Second, the DB-Index (which is the real objective) is
divided by the feature cardinality, which is, at the same time,
used as the second objective. The division of one objective
by another is not usual in Pareto optimization and may yield
a different Pareto optimal set than the one desired.

In previous work [22, 31], strategy (S2) has been applied
without any investigation of its possible side-effects. Here,
we will try to highlight some of the effects of this transforma-
tion step and discuss the advantages and disadvantages of both
strategies. For this purpose, Figure 4 shows the Pareto fronts
obtained on the ‘Kim’ data set for the two different strate-
gies (which, essentially, correspond to different optimization
problems). Some distinct differences between the Pareto op-
timal sets obtained can be identified. Evidently, strategy (S1)
obtains Pareto optimal solutions for the range of feature set
cardinalities up to dF = 20, with the exception of dF = 3
and dF = 6. In contrast, strategy (S2) obtains Pareto optimal
solutions for dF = 1 and dF ∈ 4, . . . , 10 only. The solutions
for dF = 2, dF = 3 and dF > 10 are dominated and do not
form a part of the Pareto optimal set.
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Figure. 4: Solutions explored and Pareto fronts obtained for two different bi-objective optimization tasks. (Left) Minimiza-
tion of the DB-Index and maximization of the number of features. (Right) Minimization of the normalized DB-Index and
minimization of the number of features. Control fronts obtained for random data are shown to indicate the dimensionality
bias of the primary objectives used (see Section IV-D).

This example highlights one potential advantage of
Morita et al.’s approach: if very good low-dimensional clus-
tering solutions exist, these solutions tend to dominate the
solutions in all higher-dimensional subspaces. For data sets
with very clear structures, the exploration of the solution
space can therefore focus on low-dimensional feature sub-
spaces, which may enable a more efficient optimization.
However, the example also highlights a potential pitfall of
the approach: the Pareto optimal set is changed and, in the
process, interesting solutions may be lost. For the ‘Kim’ data
set, an example of this is the dF = 2 solution, which cor-
responds to a very clear cluster structure (see Figure 3), but,
nevertheless, becomes dominated by the dF = 1 solution.
More generally, all solutions that are situated upstream of
any distinct ‘knees’ in the Pareto front (in the optimization
problem corresponding to strategy (1)), are lost in the trans-
formed optimization problem. Apart from the loss of these
solutions, this has a second serious implication: the resulting
Pareto front becomes less structured and no clear ‘knees’ are
discernible. This complicates the analysis and interpretation
of the final Pareto fronts and the selection of good solutions.

Despite these differences, it may be argued that both ap-
proaches still succeed in finding the ‘best’ dF = 10 solutions
on the ‘Kim’ test set. In our more extensive experimental
section to follow, we revisit this issue in greater depth and
find that this choice has a significant effect on the outcome
for other data sets.

IV. An Algorithmic Framework for Multiobjec-
tive Unsupervised Feature Selection

In the previous sections, we have discussed the need for
unsupervised feature selection and have highlighted why a
multiobjective approach to the problem seems particularly
promising. Our review of previous research in this respect
has indicated that the two algorithms developed to date seem
generally promising, but it has also pinpointed a number of
potential limitations of that work. In this section, we de-
scribe a framework for multiobjective unsupervised feature
selection, within which some of the limitations we have iden-
tified can be isolated and analyzed and which will also allow
us to investigate other alternatives. The architecture of this
framework is illustrated in Figure 5.

A. MOEA Optimizer

Evolutionary algorithms are well-suited for multiobjective
optimization as their use of a population enables the whole
Pareto front to be approximated in a single algorithm run.
Thus, in recent years there has been a growing effort in
applying evolutionary computing methods in multiobjective
optimization, giving rise to many different algorithms (see,
e.g. [6, 10, 15] for reviews of the state of the art and [5] for
an extensive list of references on this field). One example of
a multiobjective evolutionary algorithm (MOEA), the Pareto
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PartitioningEvaluation

Optimizer

Initialization Solution selection

Number of clusters
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Additional wrapper components

Figure. 5: The main components of our framework for mul-
tiobjective unsupervised feature selection. After an initializa-
tion phase, the main loop of the algorithm is started. A search
algorithm/optimizer constructs candidate solutions that spec-
ify a feature subset and the number of clusters. In a wrapper
approach, each solution serves as the input to a clustering al-
gorithm, which, in the given feature subspace, partitions the
data into the number of clusters specified. The resulting par-
titioning is evaluated and the resulting objective values are
fed back to the optimizer. In a filter approach, the feature set
is evaluated independently of a clustering algorithm and the
resulting objective values are fed back to the optimizer. The
main cycle is iterated for a pre-specified number of iterations.
The final output of the algorithm is the set of Pareto optimal
solutions, which is subjected to a final post-processing step
that selects promising solutions from the Pareto front.

envelope-based selection algorithm version 2 (PESA-II) [7],
forms the basis of our feature selection method. The choice of
this particular MOEA is motivated by our familiarity with the
algorithm and is not believed to yield any particular advantage
compared to other state-of-the-art MOEAs.

PESA-II follows the standard principles of an evolution-
ary algorithm with the difference that two populations of so-
lutions are maintained: an internal population (IP ) of fixed
size and an external population (EP ) of non-fixed but limited
size. The purpose of the external population is to exploit good
solutions: to this end it implements a form of elitism by main-
taining a large and diverse set of the nondominated solutions
discovered during search. The internal population’s job, on
the other hand, is to explore new solutions and achieves this
by the standard EA processes of reproduction and variation
(i.e., recombination and mutation). Selection occurs at the
interface between the two populations, both in the update of
the external population and in the construction of the inter-
nal population, which is done anew each generation. This
means that difficult parameter tuning is avoided, and objec-
tive functions that have very different ranges can be readily
used. PESA-II can also handle any number of objective func-

tions. For further details on PESA-II, the reader is referred
to [7].

For the internal population size of PESA-II we use a stan-
dard setting of 10. In our experiments, we then set the number
of evaluations effected by the MOEA (including the initial-
ization phase) equal to the number of evaluations taken by a
greedy forward selection algorithm described in Section V-A.
Thus, PESA-II is run for a total of dmax·16·d−d

10 generations,
where d is the number of features available and dmax is the
maximum feature set cardinality that the MOEA considers
(see Section IV-A.2).

1) Encoding and Variation Operators

The application of PESA-II to feature selection requires the
choice of an appropriate encoding and operators. In a wrapper
approach, there are two components of a solution that need
to be coded: the actual feature subset, and the number of
clusters. In a filter approach, only the feature subset is needed.

A simple binary encoding is used to select/deselect fea-
tures: the genome comprises one bit for every feature, with
a value of 1 indicating the activation of a feature and a value
of 0 indicating its deactivation. The variation operators ap-
plied to this part of the genome are uniform crossover (with
a standard crossover probability of 0.7) and bit-flip mutation
(with a mutation probability of 1

d where d is the total number
of features available).

Four-bit Gray coding is used to encode the number of clus-
ters, constrained to the range k ∈ {2, . . . , 17}. The variation
operator applied to this part of the genome is bit-flip mutation
(with a mutation probability of 0.25).

2) Constraints

We have seen previously that the size of the full search space
of the feature selection problem grows exponentially with the
numbers of features. Yet, in most applications, researchers
are predominantly interested in finding partitionings in fea-
ture subspaces that involve a relatively small number of vari-
ables only. In order to allow for an efficient search by the
algorithm through these low-dimensional subspaces, a con-
straint on the maximum cardinality of the feature subspaces
considered is imposed, which reduces the size of the search
space to O(ddmax). In all of the experiments presented in this
paper, this constraint is set to dmax = min(20, d).

B. Objective Functions: Wrapper and Filter Methods

Our framework enables us to exchange the objective func-
tions used to evaluate the candidate feature subsets. We have
three alternative primary objective functions that are based on
a wrapper method and one primary objective function based
on a filter method. The secondary objective in each case is
always the feature set cardinality dF and is minimized or max-
imized depending on the bias of the primary objective. For
the wrapper methods, the same clustering algorithm, k-means
is always used; for the filter method no clustering algorithm
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is needed. Details of all the alternative objective functions
follow, but first we detail the k-means algorithm.

Clustering algorithm (for all wrapper methods): In certain
respects, the ideal choice for the clustering algorithm would
be a powerful clustering method that is capable of detecting
clusters of very different types (such as cluster of arbitrary
shape, clusters with overlapping clusters or unequally sized
clusters). Unfortunately, the clustering algorithm needs to be
run for every single evaluation and the use of an algorithm
with high computational complexity is therefore undesirable.
In our experiments, we decide on the use of k-means, which
seeks compact clusters, but whose time complexity is only
linear in the number of data items.

The k-means algorithm starts from a random partitioning
of the data into k clusters (where k is an input parameter). It
repeatedly (i) computes the current cluster centres (that is, the
average vector of each cluster in data space) and (ii) reassigns
each data item to the cluster whose centre is closest to it. It
terminates when no more reassignments take place. By this
means, the intra-cluster variance, that is, the sum of squares of
the differences between data items and their associated cluster
centres, is locally minimized.

Our implementation of the k-means algorithm is based on
the batch version of k-means, that is, cluster centres are only
recomputed after the reassignment of all data items. Random
initialization (which is known to be an effective initialization
method [33]) is used.

1) Wrapper Method: Silhouette Width

The clustering literature provides a number of internal clus-
tering validation techniques that can be used to evaluate the
quality of a candidate partitioning for a given feature space.
The DB-Index, used by Morita et al. [31] has the advan-
tage of linear time complexity (in the number of data items).
However, a disadvantage of this index is its use of cluster
centres for the computation of intra-cluster compactness and
between-cluster separation. The use of cluster representatives
can affect the accuracy of the resulting quality estimates, in
particular if small, high-dimensional data sets are tackled. We
therefore decide to investigate an alternative, popular valida-
tion technique from the literature: the Silhouette Width [37].

The Silhouette Width can potentially provide more accurate
and smoother ‘search guidance’, as it does not use cluster rep-
resentatives, but considers dissimilarities between individual
data items. Its increased accuracy comes at a computational
cost, however: the Silhouette Width has quadratic complexity
in the number of data items.

The Silhouette Width for a partitioning is computed as the
average Silhouette value over all data items. The Silhouette
value for an individual data item i, which reflects the confi-
dence in this particular cluster assignment, is computed as

S(i) =
bi − ai

max(bi, ai)
, (6)

where ai denotes the average distance between i and all data
items in the same cluster and bi denotes the average distance
between i and all data items in the closest other cluster (which
is defined as the one yielding the minimal bi). The Silhou-
ette Width returns values in the interval [−1, 1] and is to be
maximized.

Similarly to the DB-Index, the Silhouette Width is largely
unbiased with respect to the number of clusters and it is com-
monly used to select the best clustering out of a set of parti-
tionings containing different numbers of clusters. Yet, like the
DB-Index, the Silhouette Width is also biased towards low-
dimensional subspaces, that is, it increases (i.e. improves) for
a decreasing number of features. In order to counter-balance
this bias, we chose feature cardinality as a second objective,
which we maximize.

2) Wrapper Method: DB-Index

The DB-Index described in Section III-B is used as the pri-
mary objective (minimized). Because this index is biased
toward smaller feature subsets, it is used with a secondary
objective to maximize feature subset cardinality, dF .

3) Wrapper Method: Normalized DB-Index

The primary objective here follows Morita et al. [31], that is,
the normalized version of the DB-Index (see Equation 5) is
minimized and simultaneously the number of features is also
minimized.

4) Filter Method: Entropy

There are few objective functions in the literature that can
be used to evaluate feature subsets of arbitrary cardinality,
without resorting to the use of a clustering algorithm. The
filter method we choose is an entropy measure [8], which
considers the distribution of the dissimilarities between data
items. For a set of N data items, this entropy measure is given
as

E = −
N∑

i=1

N∑

j=1

(sij · log sij + (1 − sij) · log(1 − sij)) (7)

where
sij = e−α·distij (8)

and

α =
− log 0.5

dist
. (9)

Here distij is the Euclidean distance between data items
i and j for a given feature subspace and dist is the mean
dissimilarity between items in the data set for a given feature
subspace.

Like the DB-Index and the Silhouette Width, this entropy
measure is also biased towards small feature spaces. Conse-
quently, the optimization task at hand requires the minimiza-
tion of the entropy measure and the simultaneous maximiza-
tion of the number of features.
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Note that this method only returns feature sets, but does
not indicate the corresponding number of clusters. In order
to obtain clustering results for each solution within the final
Pareto optimal set (for the purpose of our experimental analy-
sis), the k-means algorithm is applied using the known correct
number of clusters.

C. Initialization

A heuristic initialization scheme is implemented that aims to
seed the optimization method with good initial feature sets.
This initialization phase works as follows. First, all possible
feature sets of cardinality 1 are constructed. All of these sin-
gleton feature sets are evaluated (for the wrapper approaches
k = 2 clusters are used) and sorted by the value of the pri-
mary objective in decreasing order. Initialiiy, dmax solutions
(recall that dmax is the constraint on the maximum cardinal-
ity of the feature space) are then generated as follows: For
i = 1, . . . , dmax, the ith solution within this population is
constructed by combining the i features with the highest in-
dividual scores under the primary objective (again, for the
wrapper approaches k = 2 clusters are used). The nondom-
inated solutions are identified and are stored in the external
population.

D. Solution Selection

The final output of the optimizer is a two-dimensional Pareto
front corresponding to feature subspaces of different cardinal-
ity that contain cluster structures of different qualities. The
size of the Pareto optimal set is constrained by dmax, that is,
at most one solution can be found for every feature cardinality
investigated. In the post-processing phase we are interested
in the possibility of automatically assessing the quality of in-
dividual solutions in the Pareto front and selecting the most
promising solutions.

Cluster validation techniques are subject to several biases,
which distort their results and hamper the comparison and
interpretation of clustering results. A standard approach to
this problem is the normalization of such measures by the ex-
pected performance on random ‘control data’(i.e. data with no
structure). While the expected performance can be computed
exactly for some types of external measures (e.g. the Rand
Index), it can only be estimated (by Monte-Carlo simulation)
for most internal measures.

This type of normalization has been successfully used to
abstract from k-specific biases in the choice of the best num-
ber of clusters [43] to use in a standard clustering scenario.
However, to the best of our knowledge, the use of random
control data has not been used previously to abstract from
feature-space cardinality biases, which is the approach we
investigate.

The methodology used for solution selection is detailed in
the following. First, the feature selection algorithm is ap-
plied to the data of interest in order to obtain a Pareto front,
which we term the ‘solution front’. Second, the minimum

and maximum bounds of the original data (in each feature)
are determined and uniformly random data is generated within
these bounds of the original data. This ‘control data’ is then
subjected to the same procedure of feature selection as the
original data. The resulting Pareto front is referred to as the
‘control front’. The solutions obtained in the solution and
in the control front for a given feature cardinality are then
directly comparable: we can therefore score solutions in the
solution front by their distance to the corresponding solution
in the control front. This score is then plotted as a function
of the cardinality of the feature set and the maximum value
(often corresponding to a ‘knee’ in the solution front) is se-
lected as the best solution. This methodology is illustrated in
Figure 6.

Note that, for reasons of computational expense, only a
single control front is used in this paper. A statistically more
rigorous approach would be the use of a larger number of
control fronts and the use of the mean of these fronts to obtain
a more accurate estimate of the expected performance. In
Figure 6 we illustrate the variation in the control fronts.

V. Experimental Comparison

In our experiments, we are interested in investigating a num-
ber of hypotheses related to multiobjective unsupervised fea-
ture selection.

(S1) We anticipate that feature selection based on the DB-
Index may potentially outperform an equivalent method based
on the normalized DB-Index. This is due to the fact that,
using the normalized version of the DB-Index, the Pareto
front is transformed and valid solutions may be overlooked
(as discussed in Section III).
(S2) Furthermore, feature selection based on the Silhou-
ette Width may potentially outperform an equivalent method
based on the DB-Index. This is because the Silhouette Width
uses no cluster representatives and therefore provides a more
accurate estimate of clustering quality. However, this poten-
tial increase in quality comes at a definitive increase in time
complexity, which, for the Silhouette Width, is quadratic in
the size of the data set.
(S3) Despite k-means’ failure to correctly retrieve elongated
clusters, our method of feature selection may potentially work
well on data with elongated cluster shapes. The reason for
this is the fact that feature selection only requires the per-
ception of structure (by means of the cluster validation tech-
nique), which in turn does not necessarily require the correct
retrieval of all individual clusters. For example, elongated
clusters may be subdivided into several spherical clusters by
the k-means algorithm and the resulting clustering solution
may still score highly under an appropriate validation tech-
nique. Such a property would have significant implications
for the development of an efficient wrapper approach to fea-
ture selection: it would allow for a cheap clustering method
(such as the k-means algorithm) to be used during feature
selection without major losses in terms of feature quality. A
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Figure. 6: (Top) Plot of Square3d, a 13-feature data set, con-
taining eight clusters arranged in a cube pattern in the first
three dimensions, and Gaussian noise in the remaining 10 di-
mensions. (Centre) Solution front and control front obtained
on this data. The distance between the solution and the con-
trol point obtained for a given feature cardinality can serve
as an indicator of quality. In our method of solution selec-
tion, the solution point with the maximum distance from its
control point is selected as the best solution. (Bottom) Com-
parison of the solution and control fronts generated in three
independent runs. The variation between the control fronts is
relatively small and the maximum distance between solution
and control front is consistently located at dF = 3. Note
that for dF ≥ 7, the solution front distinctly lies behind the
control front. This is due to differences in the distribution
of the original and the control data: the noise features in the
original data are normally distributed, whereas the features in
the control data are uniformly distributed.

more powerful but expensive clustering method could then
still be applied at a later stage (e.g. to the final feature set), in
order to improve the final classification performance.
(S4) In supervised feature selection, the effectiveness of wrap-
per approaches has been repeatedly demonstrated. However,

it is not intuitively clear whether their advantage over filter
methods directly carries over to unsupervised feature selec-
tion. In our experiments, we would like to investigate whether
a wrapper approach to unsupervised classification has advan-
tages over comparable filter approaches.

A. Comparison

In order to investigate the above issues, we compare the dif-
ferent primary objective functions available in our framework
(see Section IV-B). This gives four different multiobjective
algorithms in all.

To provide a baseline comparison we also run three further
feature selection methods, described below.

(P1) Greedy search strategy
Forward selection is a popular sequential search algorithm in
the feature selection literature. It is a greedy strategy which
starts with the best feature set of size one and, in every itera-
tion, adds the feature that will result in the highest value under
the given objective. In our implementation the k-means algo-
rithm is applied to the candidate feature set and the resulting
clustering solution is evaluated by means of the Silhouette
Width (comparably to one of our MOEAs). We repeat this
evaluation step for a range of different numbers of clusters
(k ∈ {2, . . . , 17}) in order to determine the number of clus-
ters best suited for a given feature cardinality (note that this
is different to the MOEA, where k is encoded as part of the
genotype). Forward selection is run to obtain features sets of
up to a size of dmax = min(20, d). Thus, the total number
of evaluations effected by forward selection is dmax · 16 · d,
whered is the number of available features. Forward selection
is a very effective search strategy for data sets with a simple
cluster structure. Comparison to this alternative search strat-
egy therefore permits us to draw conclusions on the difficulty
of the data sets considered and provides us with a realistic
assessment of the need for the use of more advanced search
methods such as an MOEA.

(P2) Lower bound method
In order to demonstrate the necessity and the advantages of
feature selection, results are compared to the results obtained
when applying k-means to the full set of variables, that is,
we consider the performance of k-means without any kind of
feature selection. Ideally, this should give us a lower bound on
the expected performance of any feature selection algorithm.
In this method, we provide k-means with the correct number
of clusters.

(P3) Upper bound method
Furthermore, we compare to the results obtained when ap-
plying k-means to the set of significant variables only, that
is, we consider the performance of k-means after ‘perfect’
feature selection. Given that our method uses k-means as
the embedded clustering algorithm (and assuming that all of
the significant variables are indeed helpful for the clustering
task), we would not expect our algorithm to exceed this per-



Feature Subset Selection in Unsupervised Learning 229

formance. In this method, k-means is again provided with
the known correct number of clusters.

B. Test Suite

Three different types of data sets are used in our experiments
and these are designed to study specific aspects of the algo-
rithms’ performance. All of these data sets are comprised of
two types of variables: significant variables, which are rele-
vant to the clustering task at hand and insignificant variables,
which correspond to Gaussian or uniformly random noise
variables.

(S1) The first two data sets are synthetic data sets from the
literature, which have been introduced by Kim et al. [22]
(‘Kim’) and Morita et al. [31] (‘Morita’). These data sets
can be considered as relatively simple data sets, as all of the
significant variables reveal clear cluster structure even when
considered in isolation.

(S2) The second group of data consists of three data sets
(‘Smile’, ‘Spiral’ and ‘Long’), which contain elongated clus-
ter shapes that cannot be correctly detected by the k-means al-
gorithm. Using these data sets, we aim to investigate whether
a wrapper-based method of feature selection can indeed per-
form well, even if the base clusters cannot be detected by the
clustering algorithm (here, k-means). These data sets have
400 data points and consist of two significant features and
100 additional Gaussian noise variables. Plots of the first two
dimensions containing the actual cluster structure are shown
in Figure 7.
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Figure. 7: The second group of experimental data contains
data sets with highly elongated cluster shapes. From left to
right: (a) The ‘Smile’ data set. (b) The ‘Spiral’ data set. (c)
The ‘Long’ data set.

(S3) The third group of data is designed to capture some of
the features of data typically encountered in real-world appli-
cations. This data is high-dimensional, contains many more
dimensions than data points and only few of the features are
actually relevant to the classification task at hand. We obtain
this data using a data generator for multivariate Gaussian clus-
ters whose data sets have been shown to be hard to solve for a
variety of different algorithms (including k-means) [18]. The
generator is applied to produce a number of small data sets
with k ∈ {2, 4, 10} and d1 ∈ {2, 10} (individual cluster sizes
are uniformly distributed within the interval {10, . . . , 50}).
We produce ten instances of each type. In our experiments,
all ten data sets that are of dimensionality d1 and contain
k clusters are then grouped and referred to as the group of
data d1d-kc. Finally, a number of Gaussian noise variables
d2 ∈ {100, 1000} are added to all types of data, resulting in
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Figure. 8: Two-dimensional projections of a 100-
dimensional data set with ten significant features and con-
taining two clusters. The data set contains very few data
items and very little data structure can be discerned in two-
dimensional projections of the data. (Top) Significant fea-
tures. (Bottom left) Mixture of insignificant and significant
features. (Bottom right) Insignificant features.

a total dimensionality d = d1 +d2. Hence, in total we obtain
12 different groups of data sets, which consist of 10 individ-
ual instances each. An example of such a data set is given in
Figure 8.

C. Data Pre-processing

Previous work by Dy and Brodley [13] has shown that the
standardization of all features is crucial in unsupervised fea-
ture selection. Our own preliminary experiments confirmed
this, and we use variables normalized to a mean of zero and
a standard deviation of one for all of the feature selection
algorithms discussed in this paper.

D. Performance Assessment

Results are evaluated using two different aspects: the quality
of the partitioning discovered and the quality of the feature
subset retrieved. Our evaluation is external, that is, we make
use of the known correct clustering solution and the known
significant features in order to quantify the performance of the
different algorithms. The advantage of this type of evaluation
is that it can be considered objective and is unbiased with
respect to the different algorithms.

1) Adjusted Rand Index

Clustering quality is objectively evaluated using the Adjusted
Rand Index, an external measure of clustering quality that is
a generalization of the Rand Index. The Rand indices are
based on counting the number of pair-wise co-assignments
of data items. The Adjusted Rand Index additionally intro-
duces a statistically induced normalization in order to yield
values close to 0 for random partitions. This normalization
removes the bias of the Rand Index with respect to differ-
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ent numbers of clusters, which is of particular importance in
our application, as results across a range of cluster numbers
are compared. Using a representation based on contingency
tables, the Adjusted Rand Index [20] is given as

R(U, V ) =
∑

lk(nlk

2 ) −
[∑

l(
nl.

2 ) ·
∑

k(n.k

2 )
]
/(n

2 )
1
2

[∑
l(

nl.

2 ) +
∑

k(n.k

2 )
]
−

[∑
l(

nl.

2 ) ·
∑

k(n.k

2 )
]
/(n

2 )
,

(10)

where nlk denotes the number of data items that have been
assigned to both cluster l and cluster k.

The Adjusted Rand Index returns values in the interval
[∼0, 1] and is to be maximized.

2) F-Measure

The fraction of significant features identified by a given
method can be referred to as its Sensitivity. Sensitivity is
computed as

Sensitivity =
#(significant features identified)

#(significant features)
. (11)

The quality of a feature subset identified by a given method
can also referred to as its Specificity. Specificity is computed
as

Specificity =
#(significant features identified)

#(of features identified)
. (12)

Both Sensitivity and Specificity return values in the interval
[0, 1] and are to be maximized.

Specificity and Sensitivity describe certain qualitative
properties of the feature sets, but, individually, they do not
provide comprehensive information on the quality of a fea-
ture set. This is because both Sensitivity and Specificity ob-
tain maximal values for trivial solutions, e.g. Sensitivity is
1, if all features have been selected and Specificity is 1, if a
single feature has been selected that happens to be significant.
In order to recognize genuinely good feature set we need to
simultaneously consider both Specificity and Sensitivity, and
we do so using the F-Measure [36].

The F-Measure has first been introduced in information re-
trieval and tries to capture the trade-off between precision
and recall. The concepts of precision and recall directly cor-
respond to those of Specificity and Sensitivity and the use
of the F-Measure for the assessment of feature set quality is
therefore straightforward:

F-Measure =
2 · Specificity · Sensitivity
Specificity + Sensitivity

.

The F-Measure returns values in the interval [0, 1] and is
to be maximized.

3) Selection of Solutions from the Pareto Front

All of the five feature selection methods in our study return
a range of solutions corresponding to different feature cardi-
nalities. Here, we do not analyze the entire distribution of
solutions, but are predominantly interested in the quality of
the best solution identified by each method. In order to an-
alyze this ‘peak’ performance, we therefore need to devise a
way to select the best solution from the Pareto front and we
use the F-Measure for this purpose. Using the F-Measure,
most of the results in the following section are obtained in the
following way: for a given Pareto front, the feature set with
the best F-Measure is selected. This solution is then analyzed
in terms of its feature cardinality, its F-Measure and the num-
ber of clusters and Adjusted Rand Index of the corresponding
clustering solution. Note that this way of selecting the best
solution from the Pareto front is external, that is, we use our
knowledge of the significant features to select the best solu-
tion from the Pareto front. This allows us to do an objective
comparison of the quality of the best solutions generated by
the different algorithms.

Evidently, external knowledge of this type is not usually
available in a data-mining scenario. When applying a feature
selection method to real data, we therefore need to find some
other ways to select good solutions from the Pareto front. The
post-processing method introduced in Section IV-D is a pos-
sible way to do this selection. In an additional experiment,
we will assess how well this ‘internal’ way of solution selec-
tion performs in comparison to the ‘external’ way based on
the F-Measure.

E. Results

1) Results Obtained on Synthetic Data Sets from
the Literature

Tables 1 and 2 summarize the experimental results on the two
synthetic data sets taken from the literature [22, 31]. Here,
we compare the solutions corresponding to the highest F-
Measure value. On both the ‘Kim’and the ‘Morita’data set, a
very similiar performance of all the MOEA-based algorithms
can be observed. Evidently, these two data sets are relatively
easy to analyze and more complex data sets are needed in
order to identify differences and trends in the performance
of the different validation techniques. However, the struc-
ture of the ‘Kim’ data is sufficiently complex to highlight one
of the fundamental limitations of the use of greedy search
strategies in feature selection: in forward selection, once a
feature has been included during the search process (for a
given feature cardinality), it remains included for all subse-
quently explored feature sets of larger cardinality. On data
sets containing a variety of different cluster structures (in dif-
ferent, mutually non-inclusive feature spaces), this results in
a sub-optimal performance. The set of solutions identified by
forward selection on the ‘Kim’ data set is shown in Figure 9
and compared to those identified by an MOEA.
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Method dF k Rand F-Measure
Silhouette 5 3 1.0 1.0
DB-Index 5 3 1.0 1.0
DB-Index/dF 5 3 1.0 1.0
Forward selection 5 3 1.0 1.0
Filter approach 5 3 1.0 1.0

Lower bound 10 3 1.0 0.6667
Upper bound 5 3 1.0 1.0

Table 1: Results on the ‘Morita’ data set, as described by the
cardinality and F-Measure of the obtained feature set and the
number of clusters k and Adjusted Rand Index (Rand) of the
corresponding clustering solution. All values shown are aver-
ages over 21 runs. For the five feature selection methods, the
Pareto optimal solution scoring highest under the F-Measure
is shown. For all five algorithms, this solution consistently
corresponds to the correct feature set of cardinality dF = 5
and the correct clustering. Notably, the correct clustering is
also obtained by the lower bound method.

Method dF k Rand F-Measure
Silhouette 10 5 1.0 1.0
DB-Index 10 5 1.0 1.0
DB-Index/dF 10 5 1.0 1.0
Forward selection 12 5 1.0 0.9091
Filter approach 10 5 1.0 1.0

Lower bound 30 5 1.0 0.2906
Upper bound 10 5 1.0 1.0

Table 2: Results on the ‘Kim’ data set, as described by the
cardinality and F-Measure of the obtained feature set and the
number of clusters k and Adjusted Rand Index (Rand) of the
corresponding clustering solution. All values shown are aver-
ages over 21 runs. For the five feature selection methods, the
Pareto optimal solution scoring highest under the F-Measure
is shown. For all four MOEA-based algorithms, this solution
consistently corresponds to the correct feature set of cardinal-
ity dF = 10 and the correct clustering. The best solution for
forward selection has a cardinality of dF = 12: it includes
two insignificant features, but nevertheless corresponds to the
correct partitioning. Notably, the correct clustering is also ob-
tained by the lower bound method.

2) Results Obtained on Data Sets with Elongated Cluster
Structures

Tables 3 to 5 show the results obtained on the second group of
experimental data. The results returned by the upper bound
method confirm that on these data sets with elongated cluster
structures, the k-means algorithm does indeed fail to capture
all individual clusters (c.f. the low values of theAdjusted Rand
Index). However, the results also indicate that, despite this
apparent failure, the combination of the k-means algorithm
with an appropriate validation technique still works efficiently
at recognizing the presence of structure in the data and at
identifying the most significant features in the data.
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Figure. 9: Solution sets returned by an MOEA and forward
selection on the ‘Kim’ data set, both using Silhouette Width
as their validation technique.

Method dF k Rand F-Measure
Silhouette 2 8 0.669677 1.0
DB-Index 2 3 0.597809 1.0
DB-Index/dF 1 2 0.329469 0.6667
Forward selection 2 3 0.5978 1.0
Filter approach 2 4 0.536464 1.0

Lower bound 100 4 -0.0014 0.0039
Upper bound 2 4 0.5445 1.0

Table 3: Results on the ‘Smile’ data set, as described by the
cardinality and F-Measure of the obtained feature set and the
number of clusters k and Adjusted Rand Index (Rand) of the
corresponding clustering solution. All values shown are aver-
ages over 21 runs. For the five feature selection methods, the
Pareto optimal solution scoring highest under the F-Measure
is shown. None of the algorithms identifies the correct clus-
tering. Nevertheless, four out of the five algorithms consis-
tently succeed in identifying the two significant features. The
MOEA using the normalized version of the DB-Index fails to
identify any solutions with dF > 1.

The majority of algorithms identify the correct feature sets
on the ‘Spiral’ and the ‘Smile’ data sets. The only excep-
tions are the MOEA based on the normalized DB-Index,
which identifies only the first feature in the ‘Smile’ data set
(all other solutions are dominated), and the entropy-based
MOEA, which fails to identify any of the significant features
in the ‘Spiral’ data. On the Long data set, all algorithms fail
to identify the second of the two significant features. This
is caused by the fact that the second dimension in this data
set contains no more structure than a random dimension (c.f.
Figure 7). Notably, all algorithms in the study succeed in cor-
rectly retrieving the first significant dimension and the corre-
sponding two-cluster solution.
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Method dF k Rand F-Measure
Silhouette 2 4 0.0513 1.0
DB-Index 2 4.3333 0.0437 1.0
DB-Index/dF 2 4.1905 0.0471 1.0
Forward selection 2 4.7143 0.0353 1.0
Filter approach 1 2 -0.0020471 0

Lower bound 100 2 4.8046e-05 0.0039
Upper bound 2 2 0.0417 1.0

Table 4: Results on the ‘Spiral’ data set, as described by the
cardinality and F-Measure of the obtained feature set and the
number of clusters k and Adjusted Rand Index (Rand) of the
corresponding clustering solution. All values shown are aver-
ages over 21 runs. For the five feature selection methods, the
Pareto optimal solution scoring highest under the F-Measure
is shown. None of the algorithms identifies the correct clus-
tering. Nevertheless, four out of the five algorithms consis-
tently succeed in identifying the two significant features. The
entropy-based MOEA fails to identify any of the significant
features.

Method dF k Rand F-Measure
Silhouette 1 2 1 0.6667
DB-Index 1 2 q 0.6667
DB-Index/dF 1 2 1 0.6667
Forward selection 1 2 1 0.6667
Filter approach 1 2 1 0.6667

Lower bound 100 2 -0.00047 0.00392
Upper bound 2 2 -0.0025 1.0

Table 5: Results on the ‘Long’ data set, as described by the
cardinality and F-Measure of the obtained feature set and the
number of clusters k and Adjusted Rand Index (Rand) of the
corresponding clustering solution. All values shown are aver-
ages over 21 runs. For the five feature selection methods, the
Pareto optimal solution scoring highest under the F-Measure
is shown. All five algorithms consistently identify the correct
clustering and the first significant feature. They fail to iden-
tify the second significant feature, which, however, contains
no discernible structure.

3) Results Obtained on Complex, Sparse Data

Figure 10 summarizes the experimental result on the third
category of test data. On this sparse data, differences between
the different validation techniques become more pronounced.
The main trends observable are outlined in the following.

Differences between the original and the normalized ver-
sion of the DB-Index
Clear differences can be observed between the performance
of the two MOEAs based on the original and the normalized
version of the DB-Index. On the majority of data sets, the
MOEA using the original DB-Index seems to perform better
in terms of the F-Measure of the feature set identified.

Performance of the Silhouette Width
The Silhouette Width outperforms both versions of the DB-
Index on these sparse data sets. Across the range of data
sets, a substantial performance gain in terms of both the F-
Measure and the Adjusted Rand Index can be observed. On
several of the data sets including 100 noise variables, the
performance of the MOEA based on the Silhouette Width
is close to that of the upper-bound method. Notably, on the
10d-2c data sets, the values obtained under theAdjusted Rand
Index are indeed better than those returned by the upper bound
method. This can be explained by the removal of certain
‘significant’ features that do not amplify the cluster structure,
but render the clustering task more difficult to solve for the
k-means algorithm. An illustrative example of such a feature
is the second (horizontal) feature in the Long data set, which
introduces an elongated cluster structure: consequently, k-
means performs much better in this clustering tasks if only
applied to the first (vertical) feature.

Performance on data with elongated cluster structures
In accordance with the results on the second group of exper-
imental data, the results on this third group also confirm that
a k-means based wrapper method can indeed perform well
even if the underlying clusters cannot be identified by the
k-means algorithm. This is illustrated, for example, by the
results obtained on the 2d-10c data sets. On this data, most
of the feature selection methods considered obtain close to
optimal F-Measure values despite scoring relatively poorly
under the Adjusted Rand Index.

Scalability to large embedding subspaces
Regarding the algorithms’ scalability to the dimensionality
of the subspace that contains the actual cluster structure, this
scalability depends on the type of data tackled. If individ-
ual features reflect clear signs of structure (and can thus be
identified in the initialization phase, as on the ‘Kim’ data set),
the algorithm will easily scale to larger subspaces. Yet, the
third group of data in our experiments is of a different kind:
in this data, clusters have been constructed as multivariate
Gaussians with strong covariance between variables. Conse-
quently, the one-dimensional projections of this data do not
usually reveal much structure and clusters only emerge as a
result of the correlations between several variables. Identi-
fying the significant variables in this type of data is much
harder and increases in difficulty with increasing dimension-
ality of the multivariate Gaussians (approaching ‘needle-in-
a-haystack’ search scenarios for high dimensionalities). In
our experiments, this increase in difficulty can be appreci-
ated when comparing the results obtained for the two and the
ten-dimensional Gaussians.

Scalability to large numbers of noise variables
Regarding the algorithm’s scalability to the number of noise
variables, a comparison of the results for 100 and 1000 noise
variables confirms that it is generally more difficult to retrieve
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Figure. 10: Comparison of the best solution generated by the five different methods of feature selection on the third group of
experimental data, as well as the upper and lower bound solutions. All values shown are averages over 21 runs. The Silhouette
Width emerges as the strongest performer out of the five contestants.

the relevant features with a greater number of noise variables
and that the performance of all methods suffers slightly. The
effect is more pronounced for those data sets with cluster
structures embedded in ten-dimensional subspaces, which
present the harder search tasks.

Effect of the number of clusters
The experimental results reveal two opposite trends with re-
spect to the number of clusters in the data sets: the F-Measure
values obtained tend to increase with an increasing number
of clusters, while the Adjusted Rand Index values tend to
decrease. This effect is specific to the test data used in our
experiments and can be explained as follows: due to its ran-
dom generation, this data may contain dimensions that are
marked as significant, but do not actually contribute signifi-
cantly to the cluster structure (and may even be inhibitive by

giving rise to elongated cluster shapes). Therefore, a feature
selection method may discard these features, but still succeed
in identifying a very good (and even improved) clustering.
Evidently, this is more likely to happen for data sets with low
numbers of clusters. In addition, a larger number of clusters
may generally facilitate the task of identifying the significant
dimensions, as it increases the likelihood of some degree of
structure being discernible along a given single dimension.

Time complexity
With the restriction on the feature set cardinality that we use,
all methods scale linearly in the number of features. Differ-
ences in the runtime of the algorithms arise due to differences
in the complexity of the validation techniques used. While
the the DB-Index is linear in the number of data items, the
Silhouette Width and the entropy measure are quadratic and
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Figure. 11: Representative runtimes of the four MOEAs and
forward selection as a function of the number of data items
(for 100 noise variables).

this results in a significant increase in runtime for large data
sets. Representative runtimes illustrating this trend are shown
in Figure 11.

Performance of our method of solution selection
The performance of our method of solution selection shows
some variation dependent on the primary optimization crite-
rion used within the MOEA. In particular, the method is most
accurate for the MOEA based on the Silhouette Width, as
the knees in the Pareto fronts resulting from this method are
the most pronounced. In contrast, the Pareto fronts resulting
from the optimization of the normalized DB-Index contain no
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Figure. 12: Analysis of the performance of our method of solution selection for the Silhouette Width-based MOEA on the
third group of experimental data. We compare the solution selected by our post-processing method to the worst and the best
solution in the Pareto front (as determined by the F-Measure). Shown are Sensitivity, Specificity and F-Measure of the selected
feature set and the Adjusted Rand Index of the corresponding clustering solution. All values shown are averages over 21 runs.
Note that the solution scoring best/worst under the F-Measure does not necessarily correspond to the best/worst solution under
the individual measures.

significant knee structures and the identification of the best
solution becomes more involved.

Figure 12 indicates the performance of the method when
applied to the output of the MOEAusing the Silhouette Width.
In order to assess the relative loss of solution quality, the so-
lution identified by the post-processing phase is compared to
the best and the worst solution in the Pareto front (as identified
by the F-Measure).

Results under Sensitivity indicate a certain tendency of the
approach to underestimate the number of significant features
in a data set, but, overall, the results obtained under the F-
Measure and the Adjusted Rand Index show a satisfactory
performance.

VI. Discussion

A. Observed Performance Differences

In our experimental study we have put a particular emphasis
on the performance of the different feature selection meth-
ods when applied to data in which the number of features is
much higher than the number of data points. The structure of
such data cannot easily be perceived within individual vari-
ables or the original data space and it is in such a scenario
that we would expect the choice of evaluation technique to
be of particular importance. Our experimental results con-
firm this and indicate clear performance differences between
the techniques evaluated. In particular, the two wrapper ap-
proaches based on the SilhouetteWidth (forward selection and
the MOEA) clearly emerge as the two strongest performers.
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To some degree, the performance of forward selection on
this high-dimensional and relatively complex data is surpris-
ing: forward selection performs close to optimally, and the
design of an efficient MOEA with comparable accuracy and
scalability becomes very intricate. However, while this out-
standing performance of a greedy technique may raise ques-
tions regarding the benefits of the use of global optimization
methods for unsupervised feature selection, our experimen-
tal results on the ‘Kim’ data set also alert us to the general
pitfalls of greedy approaches: on data containing noise or
multiple cluster structures, greedy approaches to feature se-
lection can perform poorly and may be significantly outper-
formed by global optimization techniques. We expect that
the incorporation of more ‘structured’ noise features into our
high-dimensional data sets would also cause the greedy ap-
proach more difficulty; we also believe that such structured
noise is typical of real data, which may exhibit multiple struc-
tured but disjoint subspaces. Such patterns may arise due to
the impact of different environmental or instrumental noise
sources, but may also impart information regarding differ-
ent aspects of a classification problem. The identification
and juxtaposition of disjoint sets of features within the Pareto
front (corresponding to these patterns) may therefore be an
instructive source of information for a decision maker.

The MOEA using Silhouette Width outperforms forward
selection on data with 100 noise variables, however, the im-
plementation is currently slightly less scalable towards high
dimensionalities. In future work, we hope to overcome this
limitation through a more efficient use of the large number
of available evaluations, for example, by introducing random
restarts and more efficient initialization schemes. In this pa-
per, we have chosen to run the MOEA for the same number
of evaluations as taken by forward selection, which facilitates
an objective comparison between the methods, but may not
be the most effective approach.

On this line, it is also worth noting that stopping at an earlier
stage is evidently possible for the MOEA-based approaches,
but not so for forward selection. In the presence of time con-
straints, the use of an MOEA may therefore turn out to be
the only feasible option. Regarding the time complexity of
the algorithms, it is also interesting to consider the differences
observed between the filter and the wrapper approaches in our
comparison. For very large feature sets, filter approaches are
commonly thought to be a computationally more realistic op-
tion. However, this is not necessarily accurate when referring
to filter approaches that are not restricted to feature ranking,
but search for good feature subsets: while the filter approach
in our study avoids the use of the k-means algorithm, its run-
time performance remains comparable to that of the wrapper
approaches.

B. Differences to Traditional Pareto Optimization

Traditionally, Pareto optimization is employed in the opti-
mization of a set of decision variables with respect to two (or
more) incommensurable objectives. In such a scenario we

usually have a clear idea whether to maximize or minimize
each individual objective.

In some ways, the application discussed in this paper is
quite different to this ordinary setting of Pareto optimization.
In particular, we have a single primary objective, the score
returned by either an internal cluster validation technique or
filter method, which we would like to optimize. The necessity
of using a second objective only arises as a result of the bias
of this validation technique and the fact that the exact form
of the bias cannot be specified. However we do know that
for subspaces containing clusters of equal quality, the score
returned by the primary objective function deteriorates mono-
tonically for either increasing or decreasing dimensionality of
the subspace. Assuming a primary objective function with a
bias towards low dimensions, the following order relations
serve to define the problem more formally:

• We are given two feature sets of the same cardinality. In
this case there is no dimensionality-bias, so the judge-
ment returned by the primary objective function can be
seen as objective. The feature set that scores better under
the primary objective function should be preferred.

• We are given two feature sets of different cardinality,
the smaller one of which scores better under the pri-
mary objective function. In this case, we cannot judge
whether the larger feature set scores worse due to the
dimensionality-bias or due to a weaker cluster structure.
The two feature sets should therefore be treated as in-
comparable.

• We are given two feature sets of different cardinality,
the larger one of which scores better than or equal to the
smaller one under the primary objective function. In this
case we know that the high score of the large feature set
must be due to a stronger cluster structure. The larger
feature set should therefore be preferred.

The above description is correctly captured by means of
a standard Pareto optimization formulation when optimizing
the cluster validation score and maximizing the number of
features.

C. Advantages of the Use of Pareto Optimization

Given the discrete nature of the second objective (the number
of features), the use of Pareto optimization is not the only
possible choice. An alternative option would be the single-
objective optimization of the cluster primary objective func-
tion for a range of different feature set cardinalities. However,
several of the results presented in this paper show that some of
the feature sets identified for different feature cardinalities are
closely related. Given this structure in the decision space, the
identification of all solutions in a single run should be more
efficient than using individual runs of a single-objective op-
timization method.
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VII. Conclusion

This paper has investigated the formulation and implemen-
tation of unsupervised feature selection as a multiobjective
optimization problem. We have discussed the reasoning be-
hind a multiobjective approach to the problem and have ana-
lyzed the strengths and limitations of two seminal algorithms
from the literature. Our analysis has led to the specification
of a number of alternative approaches, which have then been
compared across a range of benchmark data sets. Different to
previous work on unsupervised feature selection, a particular
focus in our evaluation has been on data sets in which the
number of features largely exceeds the number of data items.
In this context, a wrapper approach based on the Silhouette
Width emerges as the strongest overall performer.
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