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Abstract: Solving Multi-objective Combinatorial Optimization
Problems (MCOPs) is often a twofold problem: Firstly, the
feasible region has to be identified in order to, secondly, im-
prove the set of non-dominated solutions. In particular, prob-
lems where the construction of a single feasible solution is NP-
complete are most challenging. In the present paper, we will pro-
pose a combination of Multi-Objective Evolutionary Algorithms
(MOEAs) with Symbolic Techniques (STs) to solve this problem.
Different Symbolic Techniques, such as Binary Decision Dia-
grams (BDDs), Multi-valued Decision Diagrams (MDDs), and
SAT solvers as known from digital hardware verification will
be considered in our methodology. Experimental results from
the area of automatic design space exploration of embedded sys-
tems illustrate the benefits of our proposed approach. As a key
result, the integration of STs in MOEAs is particularly useful in
the presence of large search spaces containing only few feasible
solutions.
Keywords: MOEA, Symbolic Techniques, Design Space
Exploration

I. Introduction

Multi-Objective Evolutionary Algorithms (MOEAs) have
been shown to perform well in solving Multi-objective Op-
timization Problems [37, 40, 12, 10, 7, 2, 3]. Beside the
improvement of the set of non-dominated solutions, MOEAs
have to face the problem of identifying and guiding the
search towards the feasible region. This is especially in-
teresting if we consider Multi-objective Combinatorial Op-
timization Problems (MCOPs) where the construction of a
single feasible solution is NP-complete as is the case, e.g.,
for the Hamiltonian path [20] and for the system synthesis
problem [6].

The prototype of these problems is the well known satisfi-
ability problem (SAT). In SAT, a 0/1-assignment to variables
is sought such that a given Boolean formula evaluates to true

(is satisfied). If such an assignment exists, the given Boolean
formula is said to be satisfiable. This basic problem can be
reduced in polynomial time to all NP-complete problems.
Many methods and tools exist to solve SAT problems. These
methods are usually known as Symbolic Techniques (STs).
On the other hand, each NP-complete problem can be re-
duced polynomially to the SAT problem, thus allowing to
apply Symbolic Techniques to these problems.

In this paper, we consider the problem of automatic de-
sign space exploration of embedded systems which is the
(multi-objective) optimization variant of the system synthesis
problem. Most popular examples of embedded systems in-
clude automotive and telecommunication electronics as well
as industrial and domestic automation systems. The goal in
automatic design space exploration is to optimize an embed-
ded system with respect to many objectives while meeting
several constraints imposed on the solution, the so-called im-
plementation. Typical objectives in embedded system design
are: the cost of a system, its power consumption, its weight,
the data throughput, etc.

In order to allow an unbiased search, the task of design
space exploration is performed before selecting (decision
making) the actual implementation. Here, MOEAs have been
shown to perform well [26, 23, 15, 6]. The success of these
approaches lies in the fact that (i) MOEAs improve a set of
solutions, (ii) MOEAs do not assume any properties of the
objective functions, and (iii) MOEAs work well in large and
non-convex search spaces [5].

However, all these approaches fail or at least perform
poorly in the presence of search spaces containing only very
few feasible solutions. To overcome this drawback, we will
propose the integration of Symbolic Techniques in the MOEA
in order to guide the search towards the feasible region. Al-
though we will use the example of automatic design space ex-
ploration to develop these novel ideas, the resulting method-
ology is not limited to this particular application.
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The remaining of the paper is organized as follows:
Section II discusses some related work, before Section III
introduces the NP-complete problem of system synthesis.
The corresponding multi-objective optimization problem is
known as automatic design space exploration which can be
solved by using MOEAs. This issue will be discussed in
Section IV. The main contributions of this paper, the integra-
tion of Symbolic Techniques into MOEAs, are presented in
Section V. An H.264 encoder/decoder system will be used
throughout the paper to illustrate our approach and derive
first results (Section VI). In order to thoroughly evaluate our
novel methodology, benchmark results will be presented in
Section VII. Finally, Section VIII will conclude the paper
and will show some future research directions.

II. Related Work

An overview of MCOPs can be found in [16]. Different tech-
niques including MOEAs are proposed in literature to solve
these problems cf. [33, 32, 29, 19]. One of the most popular
MCOPs is the Multi-Objective Traveling Salesperson Prob-
lem (MOTSP) [39]. In MOTSP, a permutation of vertices in
a fully connected graph is sought such that the route given
by the permutation is optimal in several objectives simul-
taneously. When considering a non-fully connected graph,
already the construction of a single feasible solution, i.e., a
route to visit all vertices by only using the given edges, is NP-
complete. This decision problem is known as the Hamiltonian
path problem. As a consequence, the objectives of an infea-
sible solution cannot be determined as no valid evaluation
function exists.

Another challenging constrained MCOP with similar prop-
erties is the automatic design space exploration of embedded
systems [23, 26, 22]. The basic optimization problem is a
combined selection and assignment problem where appropri-
ate hardware resources must be selected for the implementa-
tion of the embedded system and the processes which repre-
sent the application must be assigned to the selected resources.
The task of assigning processes to resources is known to be
NP-complete [6]. Obviously, there is an inherent tradeoff
between the number of resources used and the performance
of the systems. Many successful design space exploration
methodologies based on MOEAs are reported in literature
[26, 23, 15, 6]. However, due to data dependencies among
the processes, nearly all possible implementations are infea-
sible. As in the case of the Hamiltonian path problem, this
infeasibility prohibits the evaluation of the design point. In
order to overcome this drawback, we will use Symbolic Tech-
niques inside the MOEA to guide the search towards the fea-
sible region. Other constraint optimization problems known
from literature are often constrained in the objective space
only (see e.g. [12, 1]).

III. System Synthesis

In this paper, we consider the problem of automatic de-
sign space exploration for embedded systems. In contrast
to general purpose computers, embedded systems are de-
signed for a particular application while satisfying several
constraints. Basically, the design space exploration problem
is a multi-objective selection and assignment problem. In
this section, we will introduce the necessary background and
mathematical notation.

A. Defining the Search Space

To allow a mathematical model of the search space, the con-
cept of a so-called specification graph is needed. A spec-
ification graph specifies an embedded system by means of
its applications, architectures, and the relation between these
two views. Here, we use a graph-based approach already pro-
posed in [6]. The specification graph consists of three parts:

• The application by means of its processes and their data
dependencies.

• The possible target architectures are represented by com-
puting elements (e.g. ASIC, FPGA, DSP) and their pos-
sible interconnects.

• Mapping edges that indicate which process can be im-
plemented on which computing element.

The application is modeled by a so-called process graph
gp = (Vp, Ep). Vertices v ∈ Vp model processes whereas
edges e ∈ Ep ⊆ Vp × Vp represent data dependencies be-
tween processes.
Example 1: The example in Figure 1 shows the process
graph of an H.264 video codec for image compression [34].
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Figure. 1: A process graph gp modeling an H.264 encoder in
the upper part and an H.264 decoder in the lower part.
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Figure. 2: An architecture graph ga representing a template
for the possible architectures available for the H.264 encoder
and decoder shown in Figure 1. Three different buses SBS,
SBM, and SBF can be allocated.

The upper part of Figure 1 shows the encoder and the lower
part shows the decoder. The encoder consists of 37, the de-
coder of 28 processes. Here, we use rectangular vertices
and circles to distinguish between operation and communica-
tion processes. For an explanation of the algorithm we refer
to [34].

The architecture including functional resources and buses
is also modeled by a directed graph termed architecture graph
ga = (Va, Ea). Vertices v ∈ Va model functional resources
(RISC processor, coprocessors, or ASIC) and communication
resources (shared buses or point-to-point connections). An
edge e ∈ Ea models a directed link between two resources.
All the resources are viewed as potentially allocatable com-
ponents.
Example 2: The process graph given in the previous exam-
ple is mapped onto a target architecture shown in Figure 2. For
the sake of readability, edges with two arrows are used to indi-
cate bidirectional links. The architecture may consist of three
shared bus with different communication bandwidths, two
memory modules (a single and a dual ported memory), two
programmable RISC processors, a signal processor (DSP),
several predefined hardware modules namely a filter module
(FILTM), a module for performing the transformation oper-
ations (TM), an subtract/adder module (SAM), an entropy
encoder/decoder module (CM), and I/O devices (INM and
OUTM).

Next, it is shown how user-defined mapping constraints
representing possible bindings of processes onto resources
can be specified in a graph based model.
Definition 1 [Specification Graph]: A specification graph
gs(Vs, Es) consists of a process graph gp(Vp, Ep), an archi-
tecture graph ga(Va, Ea), and a set of mapping edges Em.
In particular, Vs = Vp ∪ Va, Es = Ep ∪ Ea ∪ Em, where
Em ⊆ Vp × Va.

Mapping edges relate the vertices of the process graph to
vertices of the architecture graph. The edges represent user-
defined mapping constraints in the form of a relation: “can
be implemented by”.
Example 3: Figure 3 shows an example of a specification
graph. As process graph we use a part of the H.264 process
graph from Figure 1 and as architecture graph we use a part
of the architecture graph from Figure 2. The dashed edges
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Figure. 3: An example specification graph gs consisting of a
process graph gp (part of Figure 1) and an architecture graph
ga (part of Figure 2). Additionally, the dashed lines model
mapping edges Em. In this example, it is possible to bind all
communication nodes to the busses SBS, SBM, and SBF (not
shown in figure).

between the two graphs are the additional mapping edges Em
that describe the possible mappings. For example, process
BM can be executed on RISC1, RISC2, or the DSP. In this
example, it is possible to bind all communication nodes to the
busses SBS, SBM, and SBF (not shown in figure).

B. System Synthesis

Before discussing automatic design space exploration in de-
tail, we formalize the notion of a feasible implementation (cf.
[6]). An implementation, being the result of a system synthe-
sis, consists of two parts:
(1) The allocation that indicates which elements of the archi-
tecture graph are used in the implementation and
(2) the binding, i.e., the set of mapping edges which define
the binding of vertices in the process graph to components of
the architecture graph.

Before defining the term implementation formally, Blickle
et al. [6] introduce the so-called activation of vertices and
edges:
Definition 2 [Activation]: The activation of a specification
graph gs = (Vs, Es) is a function a : Vs × Es �→ {0, 1} that
assigns to each edge e ∈ Es and to each vertex v ∈ Vs the
value 1 (activated) or 0 (not activated).

The task of system synthesis is to determine an implemen-
tation, i.e., assigning activity values to vertices and edges of
the specification graph. An implementation consists of an
allocation and a binding. For the sake of simplicity, in the
following it is assumed that all vertices v ∈ Vp and all edges
e ∈ Ep of the process graph gp are activated.
Definition 3 [Allocation]: An allocation α of a given
specification graph gs is the subset of all activated ver-
tices and edges of the architecture graph ga, i.e., α =
{v ∈ Va | a(v) = 1} ∪ {e ∈ Ea | a(e) = 1}
Definition 4 [Binding]: Abinding β of a given specification
graph gs is the subset of activated mapping edges Em, i.e.,
β = {e ∈ Em | a(e) = 1}
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Figure. 4: (a) For each process p ∈ Vp exactly one outgo-
ing mapping edge mi ∈ {m0, m1, . . . , mn} has to be ac-
tivated. (b) In order to establish the required communica-
tion (p0, p1) ∈ Ep, we have to execute the processes p0
and p1 on the same resource r0 or on an adjacent resource
ri ∈ {r1, r2, . . . , rn} where (r0, ri) ∈ Ea.

To identify the feasible region, it is necessary to determine
the set of feasible allocations and feasible bindings. Afeasible
binding guarantees that communications demanded by the
process graph can be established in the allocated architecture.
This property makes the resulting optimization problem hard
to be solved.
Definition 5 [Feasible Binding]: Given a specification
graph gs and an allocation α, a feasible binding is a bind-
ing β that satisfies the following requirements:
(1) Each activated mapping edge e ∈ β ends at an activated
vertex, i.e., ∀e = (vp, va) ∈ β : va ∈ α.
(2) For each process graph vertex v ∈ Vp, exactly
one outgoing mapping edge e ∈ Em is activated, i.e.,
|{e ∈ β | e = (vp, va), va ∈ Va}| = 1.
(3) For each process graph edge e = (vi, vj) ∈ Ep:

• either both processes are mapped onto the same vertex,
i.e., ṽi = ṽj with (vi, ṽi), (vj , ṽj) ∈ β,

• or there exists an activated edge ẽ = (ṽi, ṽj) ∈ Ea ∩ α
in the architecture graph to handle the communica-
tion associated with edge e, i.e., (ṽi, ṽj) ∈ Ea ∩
α with (vi, ṽi), (vj , ṽj) ∈ β.

Example 4: The second and third requirement are depicted
in Figure 4: To achieve a feasible binding, the second re-
quirement makes the process p0 in Figure 4(a) to be bound
to exactly one of the allocated resources r0 . . . rn. The third
requirement is depicted in Figure 4(b). Here, the process p0
must be bound to the resource r0 and thus the dependent pro-
cess p1 must be bound either to the same resource r0 or to
one of the adjacent resources r1 . . . rn.
Definition 6 [Feasible Allocation]: A feasible allocation is
an allocation α that allows at least one feasible binding β.

With the above discussion, we can define an implementa-
tion by means of a feasible allocation and a feasible binding.
Definition 7 [Implementation]: Given a specification
graph gs, a (feasible) implementation ψ is a pair (α, β) where
α is a feasible allocation and β is a corresponding feasible
binding.
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Figure. 5: One possible implementation for the specification
given in Figure 1. Only the fast shared bus (SBF) is allocated,
but every module is implemented on an individual hardware
resource.

Example 5: Consider the case that the allocation of vertices
in Figure 3 is given as α = {INM, DSP, RISC1, FILTM,
DPFM, SBF, PTP}. A feasible binding can be given
by β = {(IN, INM), (BM, DSP), (FILT, FILTM),
(RF, DPFM), (IPRED, RISC1), (C IN BM, SBF),
(C IN IPRED, SBF), (C FILT BM, SBF), (C RF IPRED,
SBF), (C RF FILT, PTP)}. This allocation and bind-
ing (both shown in Figure 5) is indeed feasible, i.e., the
implementation ψ = (α, β) is feasible.

Given the implementation ψ, some properties of ψ can
be calculated. This can be done analytically or simulation-
based. The task of evaluation of objectives is not in the scope
of the paper. However, in our experiments we will estimate
the power dissipation, the implementation cost, as well as the
latency of the implementation which are typical objectives in
embedded system design.

IV. Automatic Design Space Exploration Using
Multi-Objective Evolutionary Algorithms

Beside the problem of determining a single feasible solution,
it is also important to identify the set of optimal solutions.
This is done during the automatic design space exploration.
In the following we will discuss the optimization problem as
well as the application of MOEAs to this challenging task.
This introduction is needed to develop the idea of integrating
Symbolic Techniques into MOEAs.

A. The Optimization Problem

The task of automatic design space exploration can be for-
mulated as a Multi-objective Combinatorial Optimization
Problem.
Definition 8 [Automatic Design Space Exploration]: The
task of automatic design space exploration is the following
multi-objective optimization problem (see e.g., [40]) where
without loss of generality, only minimization problems are
assumed here:
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minimize f(x),
subject to:

x represents a feasible implementation ψ,
ci(x) ≤ 0, ∀i ∈ {1, . . . , q}

where x = (x1, x2, . . . , xm) ∈ X is the decision vector, X is
the decision space, f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ Y
is the objective function and Y is the objective space.

Here, x is an encoding called decision vector represent-
ing an implementation ψ. Moreover, there are q constraints
ci(x), i = 1, . . . , q imposed on x defining the set of feasible
implementations. The objective function f is n-dimensional,
i.e., n objectives are optimized simultaneously. For example,
in embedded system design it is required that the monetary
cost and the power dissipation of an implementation are mini-
mized simultaneously. Often, objectives in embedded system
design are conflicting [17].

Only those design points x ∈ X that represent a feasible
implementation ψ and that satisfy all constraints ci, are in the
set of feasible solutions, or for short in the feasible set called
Xf = {x | ψ(x) being feasible ∧ c(x) ≤ 0} ⊆ X . The
objective space of X is defined as Y = f(X) ⊂ Rn, where
the objective function f on the set X is given by f(X) =
{f(x) | x ∈ X}. Analogously, the feasible region in the
objective space is denoted by Yf = f(Xf) = {f(x) | x ∈
Xf}.

In the following, the necessary definitions for multi-
objective optimization problems are given (cf. [40, 27]).
Without loss of generality, only minimization problems are
considered.
Definition 9 [Pareto dominance]: For any two decision
vectors a and b,

a � b (a dominates b) iff ∀i : fi(a) ≤ fi(b)
∧ ∃i : fi(a) < fi(b)

a � b (a weakly dominates b) iff ∀i : fi(a) ≤ fi(b)
a ∼ b (a is indifferent to b) iff ∀i : fi(a) = fi(b)
a ‖ b (a is incomparable to b) iff ∃i, j : fi(a) > fi(b)

∧ fj(a) < fj(b).

Definition 10 [Pareto optimality]: A decision vector x ∈
Xf is said to be non-dominated regarding a set A ⊆ Xf iff
�a ∈ A : a � x. A decision vector x is said to be Pareto-
optimal iff x is non-dominated regarding Xf .

The set of all Pareto-optimal solutions is called the Pareto-
optimal set, or the Pareto set Xp for short. An approximation
of the Pareto set Xp will be termed approximation set Xa in
the following. Furthermore, the Pareto-optimal front is given
by Yp = f(Xp).

B. The Basic Multi-Objective Evolutionary Algorithm

In this section, we will show how to solve the automatic
design space exploration problem by using Multi-Objective
Evolutionary Algorithms. This basic algorithm was already
presented in [6] and [23]. The MOEA determines the al-
location and bindings. In this paper, we are mainly con-
cerned about the encoding and decoding of solutions. The

decoding

IN: The individual j consisting of allocation alloc, repair

allocation priority list LR, binding order list LO, and

binding priority list LB(v).

OUT: The allocation α and the binding β if both are feasible,

(∅, ∅) if no feasible binding is represented by the

individual j

BEGIN

ᾱ ← allocation(alloc(j), LR(j))
β̄ ← binding(LB(j), LO(j), ᾱ)

IF β̄ = ∅
RETURN (∅, ∅)

ENDIF

β ← β̄

α ← update allocation(ᾱ, β̄)

RETURN (α, β)

END

Figure. 6: Algorithm to decode the allocation α and the bind-
ing β from a given individual j.

actual Evolutionary optimization can be performed with any
state-of-the-art MOEA like NSGA-II [13], SPEA2 [42],
ECEA [28], CNSGA-II [14], or IBEA [41].

The main decoding idea is outlined in Figure 6:
(1) The allocation of resources v ∈ Va is decoded from the
individual and repaired with a simple heuristic (the function
allocation),
(2) the binding of the edges e ∈ Em is performed (the function
binding), and
(3) the allocation is updated in order to eliminate unneces-
sary vertices v ∈ Va from the allocation and all necessary
edges e ∈ Ea are added to the allocation (the function up-
date allocation()).

Thus, the decoding function results in a feasible allocation
and binding of the vertices and edges of the process graph gp
to the vertices and edges of the architecture graph ga. If no
feasible binding could be found, the whole decoding of the
individual is aborted.

The allocation of vertices is directly encoded in the chro-
mosome, i.e., the elements in a vector alloc encode for each
vertex v ∈ Va if it is activated or not, i.e., a(v) = alloc(v).
This simple encoding might result in many infeasible alloca-
tions. The repair heuristic only adds new vertices v ∈ Va to
the allocation and reflects the simplest case of infeasibility
that may arise from non-executable functional vertices: Con-
sider the set VB ⊆ Vp that contains all vertices that can not be
executed, because not a single corresponding resource vertex
is allocated, i.e., VB = {v ∈ Vp | ∀(v, ṽ) ∈ Em : a(ṽ) = 0}.
To make the allocation feasible (in this sense), we add for
each v ∈ VB, at most one ṽ ∈ Va, until feasibility in the sense
above is achieved.

The order in which additional resources are added has a
large influence on the resulting allocation. For example, one
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Figure. 7: Example of the binding order list LO and the
binding priority lists LB. For this example, the sequential
decoder does not find a feasible solution.

could be interested in an additional allocation with minimal
cost. As this depends on the optimization goal expressed
in the objective function f , the order should automatically
be adapted. This will be achieved by the introduction of a
repair allocation priority list LR coded in the individual. In
this list, all resources v ∈ Va are contained and the order in
the list determines the order the vertices will be added to the
allocation.

In this paper, the function binding is of special interest and
should be discussed in more detail. A binding is obtained
by activating exactly one incident edge e ∈ Em for each
allocated vertex v ∈ Vp. This is achieved in the following
way: All processes are bound in the order they appear in the
binding order list LO. For each process p ∈ Vp, a list LB is
encoded as allele that contains all incident edges e ∈ Em to
p. This list is seen as a priority list and the first edge ek with
ek = (v, ṽ) that gives a feasible binding is included in the
binding, i.e., a(ek) := 1.
Example 6: An example of the binding order list LO and
binding priority list LB are shown in Figure 7. Process p1 is
bound before process p2. For process p1, it is tested if it can
be bound to resource r1 before checking r2.

The test of feasibility is directly related to the definition
of a feasible binding (see Definition 5). As the priority lists
contain all incident edges e ∈ Em, each individual contains
a feasible binding iff it contains a feasible allocation. Calcu-
lating a feasible binding for a given allocation is equivalent
to solve the underlying satisfiability problem. To solve this
problem, we can use fast heuristics that try to find a feasible
binding, or we use prohibitively slow exact methods. Differ-
ent methods are described and compared in the next section.
When no feasible binding is found, β is the empty set, and the
individual will be given a penalty value as its fitness value.
Finally, in the function update allocation, vertices of the al-
location that are not used will be removed from the allocation.
Furthermore, all edges e ∈ Ea in the architecture graph ga are
added to the allocation that are necessary to obtain a feasible
binding.

V. Integrating Symbolic Techniques

As the determination of a feasible binding is NP-complete
[6], the basic MOEA as presented above uses a simple

heuristic to bind one mapping edge after each other sequen-
tially and focuses only on a small scope of the specification.
Hence, this approach might be trapped (as will be shown
later). As each NP-complete problem can be reduced poly-
nomially to the SAT problem, it is possible to apply Symbolic
Techniques (STs) to these problems. There are two advan-
tages:
(1) The optimization might benefit from sophisticated heuris-
tics to solve the SAT problem and (2) a wider scope in contrast
to the basic MOEA can be considered during decoding. The
first advantage is obvious while the latter needs some explana-
tion: Choosing a mapping edge for the binding resembles the
assignment of a 1 to a variable in the corresponding Boolean
formula. STs permit to check if there exists at least one fea-
sible completion that satisfies the Boolean formula.

We will discuss this topic in the following in more depth.
We will start with the simple heuristic called sequential de-
coder that is used by the basic MOEA presented above and is
used by many automatic design space exploration tools. Next,
we will show how the problem of determining a feasible bind-
ing can be reduced polynomially to the SAT problem. With
this result, we will show how to use a) Binary Decision Dia-
grams (BDDs), b) Multi-valued Decision Diagrams (MDDs),
and c) SAT solvers to improve the decoding of solutions.

A. Sequential Decoder

This is the most simple and a well known decoding algorithm.
All processes are bound in the order they appear in the binding
order list LO of the individual. When binding a process, the
different mapping edges are tested in the order of the binding
priority list LB. To find a feasible binding of the complete
problem, only those mapping edges are chosen which satisfy a
simple feasibility test. This simple feasibility test checks if the
tested mapping edge is infeasible with the binding performed
up to this point.

The mapping edges are activated sequentially and the out-
come of this sequential decoder strongly depends on both,
the binding order list LO and the binding priority list LB. As
only the yet bound processes are considered, the sequential
decoder might be trapped, even if the allocation is feasible,
i.e., a feasible completion of the binding exists.
Example 7: An example is shown in Figure 7. Using the
given binding order list LO and the given binding priority lists
LB, the sequential decoder does not find the valid binding
β = {(p1, r2), (p2, r3)}. This happens because p1 is mapped
to r1 first, what does not conflict with any already activated
mapping edge (as there is none of that ilk). However, that
binding prohibits a feasible mapping of process p2. As a
consequence, the sequential decoder fails to find the valid
binding.

B. Symbolic Representation of the Specification

The problem of finding a feasible binding can be reduced poly-
nomially to the satisfiability problem [18, 35, 31] by assigning
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Boolean variables to mapping edges and resources, resulting
in a symbolic representation. These Boolean variables indi-
cate that the associated element is activated. Hence, we can
use the activation introduced in Definition 5. The Boolean
formula can be deduced by interpretation of the three require-
ments for a feasible binding from Definition 5:

The first requirement states that each activated mapping
edge m ∈ Em has to end at an activated resource r ∈ Va:
This implication written in conjunctive normal form (CNF)
is:

b1(a(m), a(r)) =
∧

m=(p,r)∈Em

a(m) ∨ a(r) (1)

The second requirement states that exactly one mapping edge
m = (p, r) ∈ Em is activated for each process p ∈ Vp what
can be split into two statements. At least one mapping edge
m for each process p has to be activated:

b2(a(m)) =
∧

p∈Vp

∨
m=(p,r)∈Em

a(m) (2)

And at most one mapping edge m for each process p has to
be activated.

b3(a(m)) =
∧

mi=(p,ri),mj=(p,rj)∈Em:ri �=rj

a(mi) ∨ a(mj)

(3)

The last requirement states that communicating processes
have to be mapped to the same or to an adjacent resource.
This can be expressed by the following equation.

b4(a(m)) =
∧

mi=(pi,ri)∈Em:
(pi,pj)∈Ep


a(mi)

∨
mj=(pj ,rj)∈Em:
ri=rj∨(ri,rj)∈Ea

a(mj)




(4)

There is a feasible implementation for a given allocation
α represented by a(r) if and only if the conjunction of Equa-
tion (1) - (4) is satisfiable, i.e., an assignment to a(m) exists:

∃a(m) : b1(a(m), a(r)) ∧ b2(a(m)) ∧ b3(a(m)) ∧ b4(a(m))
(5)

In the following we will present three different approaches to
solve this satisfiability problem.

C. BDD Decoder

As stated before, finding a feasible binding for a given alloca-
tion is a complex task. The binding is performed by binding
one process after each other in the order of the binding order
list LO of the individual. When binding a process, the dif-
ferent mapping edges are tested in the order of the binding
priority list LB. To find a feasible binding of the complete
problem, only those mapping edges are chosen which satisfy
a feasibility test.

One possibility to perform this decoding is to check
whether there still exists a valid completion for all the un-
bound processes if the currently tested mapping edge is cho-
sen. This will always find the correct binding for each pro-
cess, and each feasible allocation results in a feasible binding
β. Solving this problem means to solve the satisfiability prob-
lem stated in the Equation (5).

The basic idea of using Binary Decision Diagrams (BDD
[8]) is to encode Equation (5) in a single BDD. A BDD is a
tree-based data structure to represent Boolean formula. The
leaves of the BDDs are the Boolean values 0 and 1. All paths
in the BDD from the root to the 1 represent assignments that
satisfy the encoded Boolean formula. Thus, when applied
to the decoding in automatic design space exploration, all
paths from the root of the BDD to the 1 represent feasible
bindings.

Summary Pros
The BDD for Equation (5) represents the feasible region Xf
symbolically. This BDD can be built once and be used for
each individual. After BDD construction, the test if a mapping
edge m still allows a feasible binding is just as simple as
combining a(m) with the BDD by a logic AND-function.
This test can be done in O(|Em| + |Va|) once the BDD is
built and is known as functional simulation with BDDs [36].

Summary Cons
Unfortunately, for real-world problems, the BDD is pro-
hibitively large (memory requirements) and thus this ap-
proach is not viable.

To overcome this drawback, we constructed a small BDD
for each process as compromise. It is tested if the selection of
a certain mapping edge m = (p, r) for a process p prohibits
a feasible binding of any direct predecessor or successor of
p. To do so, Equations (1) - (3) are split into parts that con-
tain only mapping edges incident to a single process p. These
Boolean equations are encoded in the BDD of the correspond-
ing process. Equation (4) always contains mapping edges of
different processes. Hence, Equation (4) must be considered
in the BDDs associated with pi and pj .

With these BDDs, we can test if the activation of mapping
edge mi prohibits the feasibility of the adjacent processes.
Therefore, we have to set a(mi) = 1 for the BDD associated
with process pi belonging to mi, and for all the BDDs asso-
ciated with succeeding or proceeding processes pj . If one of
the BDDs collapses to a logic 0 value, the mapping edge mi

would not allow to find a feasible binding and thus will be
rejected.

This method solves the problem shown in Figure 7. Of
course, this BDD decoder generally is not able to find a fea-
sible binding for each feasible allocation.
Example 8: This is illustrated in Figure 8 where
only two feasible bindings exists: {m1, m2, m4, m6} and
{m3, m5, m7, m8}. But as p1 and p4 do not have common
neighbors, even the BDD feasibility test may select the map-
ping edges m1 and m8 what prohibits a feasible binding.
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Figure. 8: Example of four processes that should be bound
onto four resources. In the worst case the BDD decoder will
be trapped by this example (binding p1 and p4 before p2
and p3.
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Figure. 9: An example specification graph and the corre-
sponding MDD.

Later in this paper, we will show, that the BDD decoder can
improve the convergence speed compared with the sequential
decoder even though the test itself is slower.

D. MDD Decoder

The MDD decoder is similar to the approach by using a single
BDD that encodes the complete satisfiability problem (Equa-
tion (5)) of finding a valid completion for a binding. The
difference is that it is based on Multi-valued Decision Dia-
grams (MDD [25]) which support integer valued variables.
The operator that supports integer valued variables in MDDs
is the CASE-operator. It selects a value of a subtree depend-
ing on an additional integer valued variable. Due to the use of
integer values instead of binary values, the size (memory re-
quirement) of the MDD is expected to be less than the size of
the BDD. In order to use Equation (5) with MDDs, we assign
different integer values for the mapping edges m = (p, r)
belonging to a process p. Thus we implicitly take care that
exactly one mapping edge is selected per process p ∈ Vp
during the evaluation of the MDD.

We use the recursive algorithm shown in Figure 10 to build
the MDD used for the decoding. This algorithm mainly uses
the CASE-operator and the Boolean AND-function to create

Build MDD

mdd ← true

for each root process p

for each mi of p

mddi ← resource of(mi)

for each successor process s of p

mddi ← mddi AND build mdd recurs(s, resource of(mi))

mdd ← mdd AND CASE(p, mdd0, mdd1, . . . )

RETURN (mdd)

build mdd recurs(p, r)

for each mi of p

if not connected(r, resource of(mi))

mddi ← false

else

mddi ← resource of(mi)

for each successor process s of p

mddi ← mddi AND build mdd recurs(s, resource of(mi))

RETURN CASE(p, mdd0, mdd1, . . . )

Figure. 10: Algorithm to build an MDD that encodes all feasi-
ble bindings of a given specification graph. The allocation of
resources is represented by binary decision variables whereas
the selection of mapping edges is encoded by integer values
for each process.

the MDD. However, one can see from this algorithm that this
approach is limited to acyclic process graphs.
Example 9: In Figure 9, an example of a specification graph
together with its corresponding MDD is given. All paths in
the MDD beginning with the root node p0 and ending at 1
indicate valid bindings. All the paths ending at 0 indicate
invalid bindings. Even though the MDD is smaller compared
to a corresponding BDD, it still requires a lot of memory for
large problems.

The decoding itself is the same as for the BDD decoder
(functional simulation), the binding is performed by select-
ing one process after each other in the order of the binding
order list LO of the individual. When binding a process, the
different mapping edges are tested in the order of the binding
priority list LB and the MDD is used to calculate the feasi-
bility for this mapping edge. If the MDD collapses to zero,
we know that using this particular mapping edges prohibits a
feasible completion of the binding.

E. SAT Decoder

Finally, we will present a decoder based on SAT solvers. SAT
solvers are designed to solve satisfiability problems as shown
in Equation (5). The most important task is to force the SAT
solver to regard the information encoded in the individual.
Here we describe how to manage this by using a SAT solver
based on the Davis-Putnam backtrack search algorithm [11].

A decision strategy used by the Davis-Putnam algorithm
determines which unassigned variable will be set to a Boolean
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value (0 or 1). If a clause of the CNF given to the SAT-solver
is recognized as unsatisfiable, the SAT solver tries to resolve
this conflict by a backtracking procedure. This continues
until all variables are assigned, and this assignment represents
a feasible solution. Thus, we developed a problem-specific
decision strategy. Considering the encoded information of
the individual, this decision strategy can be described by the
following three steps:
(1) The Boolean value 1 is assigned to all allocated resources.
The order does not matter as an allocation of a resource does
not prohibit a feasible binding.
(2) The Boolean value 0 is assigned to every not activated
resource in the reverse order of the allocation priority list LR.
This ensures the sequential addition of resources respecting
the priority in LR if the CNF is unsatisfiable with the given
resource allocation.
(3) In the third step, we try to find a feasible binding based on
the allocation determined in step 1 and step 2. The Boolean
variables associated to mapping edges are set to true regarding
the order of the binding order list LO and the corresponding
binding priority list LB. If this assignment prohibits a fea-
sible binding, the next variable in the binding priority list is
tested. If the end of the binding priority list is reached with-
out finding an assignment that allows a feasible solution, the
backtracking algorithm will automatically return to step 2 and
add additional resources.

Next we will present first results when using the three de-
scribed Symbolic Techniques in automatic design space ex-
ploration.

VI. Results

In this section, first results of applying our four different de-
coders, Sequential decoder, BDD decoder, MDD decoder, and
SAT decoder, to the problem of the H.264 decoder/encoder
example will be presented. This example consists of 65 pro-
cesses, 15 resources, and 274 mapping edges. The search
space contains about 2140 solutions, where most of them are
infeasible. The optimization is performed for three objectives
namely implementation cost, power dissipation, and latency.
The implementation uses the PISA (Platform independent In-
terface for Search Algorithms [4]) framework for optimiza-
tion purposes. In the present work, the SPEA2 selection pro-
cedure [42] was applied. For the SAT decoding technique,
we used the zChaff [30] SAT solver, for the BDD decoder
we used the Buddy BDD library [9]. We implemented the
MDD decoder using an MDD package from the University
of Colorado at Boulder [38].

A. Evaluation Methods

For each individual decoding technique, we performed 10
optimization runs. Consequently, 40 approximation sets Xa
were obtained. From these 40 approximation sets, we build
a reference set XR containing the non-dominated solutions
over all runs. The performance assessment was done using

the ε-dominance and entropy indicator. For a discussion on
indicators for performance assessment in multi-objective op-
timization, see [43].

ε-Dominance Laumanns et al. [28] introduce the concept
of ε-dominance. A point a is said to weakly ε-dominate (in
a minimization problem) a point b, denoted by a �ε b if and
only if a � ε · b. By scaling point b by a factor ε, point a is
superior to point b.

Using the definition of ε-dominance, a binary quality indi-
cator Dε can be defined.

Dε(A, B) = inf
ε

{b ∈ B | ∃a ∈ A : a �ε b} (6)

In practice, Dε(A, B) can be calculated in time O(n·|A|·|B|),
where n is the number of objectives and |A| and |B| denote
the cardinalities of A and B, respectively [43]:

Dε = max
b∈B

min
a∈A

max
1≤i≤n

a

b

Thus, a value of Dε(B, A) > 1 and Dε(A, B) ≤ 1 indicates
that A is better than B, i.e., every b ∈ B is weakly domi-
nated by at least one a ∈ A and A �= B, while Dε(A, B) =
Dε(B, A) = 1 corresponds to the fact that A = B. A gen-
eralization of ε-dominance and Pareto-dominance called E-
dominance and its application to archiving strategies is pro-
posed in [24].

Entropy Method Gunawan et al. [21] propose the entropy
method E(A) for measuring the diversity of an approximation
set A. Hence, E(A) is a unary quality indicator. The basic
idea is to use Shannon’s entropy for probability distribution
functions which is defined as:

H(P ) = −
n∑

i=1

pi ln(pi) with
n∑

i=1

pi = 1 (7)

where pi is the probability that some random variable takes the
value xi. To apply the entropy method to an approximation
set A, a Gaussian influence function ωi(x) is associated with
each member ai ∈ A. The influence function for a particular
point ai has its maximum at that point (x = ai) and decreases
gradually with the distance. From all influence functions as-
sociated with an approximation set A, an aggregative density
function D can be defined:

D(x) =
|A|∑
i=1

ωi(dai,x), (8)

where dai,x denotes the Euclidean distance from x to point
ai. In a last step, a mesh is constructed in the objective space
and the normalized density function δ(x) can be measured at
each point xi of this mesh:

δ(xi) =
D(xi)∑
xi

D(xi)
(9)
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Note, that
∑

xi
δ(xi) = 1. As a result, a normalized dis-

tribution function is obtained and Shannon’s entropy can be
applied to this function, leading to the entropy quality indi-
cator:

E(A) = −
∑
xi

δ(xi) ln(δ(xi)) (10)

The observation is, that an approximation set A with a high
entropy E(A) has a high diversity as well and vice versa.

B. Quantitative Results

For our experiments, we chose the parameters for the MOEA
as follows: The population size was set to 400. For re-
combination, 100 children were created from 100 parents
by single-point crossover. The mutation rate was set to
|decision variables|−1. The mutation operation is either
a single bit flip or order-based mutation.

The ε-dominance results are shown in Figure 11 and Fig-
ure 12. We can see that all three decoders using symbolic
techniques reach a better ε-dominance than the original se-
quential decoder. As expected, the best values are obtained
by the SAT and MDD decoder. However, having a look at
Figure 12, we can see that the construction of the MDD takes
more time than the complete optimization of 200 generations
using any of the other methods. Including this construction
time, the complete optimization of 200 generations lasts 5544
seconds, making the MDD decoder not competitive. Note that
the BDD decoder constructs a set of small BDDs (instead of
a single BDD for the entire problem) making this procedure
much faster in comparison to the MDD decoder.

The entropy values and their standard deviations are shown
in Figure 13. One can see that all methods have a comparable
diversity, where the SAT decoder seems to be slightly better
while the sequential decoder is clearly performing worst.
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Figure. 11: H.264 example: The mean ε-dominance and its
standard deviation over the number of generations.
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Figure. 13: H.264 example: The mean entropy value and its
standard deviation over the number of generations.

VII. Synthetic Benchmark Results

In this section, we present additional experimental results
from applying the sequential decoder, the BDD decoder, and
the SAT decoding technique to a set of synthetic benchmarks
in order to test the performance in the presence of small and
respectively large feasible regions Xf . We do not take the
MDD decoder into account here, because the MDD could not
be build for most of our test cases due to memory restric-
tions. The three objectives used during the optimization are
again the technical properties of embedded systems, namely
implementation cost, power dissipation, and latency. In the
following, we provide quantitative results from the compar-
ison between the sequential decoder, the BDD decoder, and
the SAT decoder.

The experiments are performed as follows: A generator
program is used to construct specification graphs. Due to
different random values, the generated problem instances are
similar in structure, but not equal. Each MCOP instance is
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optimized using all three methods. After the optimization
of each problem instance, the non-dominated solutions Xa
found by these methods are combined in a single reference
set XR. This reference set is Pareto-filtered and is used to
quantitatively assess the performance of the three decoding
techniques.

A. Problem Instances and Parameters

We created nine different classes of MCOP instances (speci-
fication graphs). First we created three classes that differ in
size. These are generated from following parameters:
(i) The number of available resources in the architecture graph
is 25, 50, respectively 75.
(ii) The number of processes in the process graph gp is either
50, 100, or 150.
(iii) Each process has 3 . . . 6, 4 . . . 8, respectively 5 . . . 9 ran-
dom mapping edges.
(iv) The number of edges in the process graph is determined
by a value that indicates the probability that two processes are
connected by an edge. This probability value is 25% for every
problem class. All these values are typical in system level
design. The resulting MCOP instances are of approximate
sizes 2104 − 2154, 2250 − 2350, and 2423 − 2550, respectively.

Then for each of these three problem classes we created
three different subclasses with feasibility probabilities 15%,
25%, and 45%. This probability is used when the edges Ea of
the architecture graph are created. For each possible mapping
edge mi = (pi, ri), mj = (pj , rj) ∈ Em of two adjacent pro-
cesses pi and pj , the resources ri and rj are connected with
this probability to satisfy the data dependency. Smaller prob-
ability values result in less created edges, and less feasible
solutions exist.

For each of these nine problem classes, we created 10
different problem instances. The optimization was run 10
times for each problem instance with all three decoding
techniques.

Especially for very hard problems, the sequential decoder
only finds solutions in a reasonable time when all resources
are allocated for the individuals in the initial population. So
we changed the generation of the initial population for the se-
quential decoder to contain only this kind of individuals. For
the SAT decoding technique and the BDD decoder we used the
original algorithm which randomly allocates approximately
half of the resources.

The parameters for the MOEA are: Population size 100,
25 children were created from 25 parents. The mutation rate
was set to |decision variables|−1 again.

B. Quantitative Results

Each optimization was run for 1000 generations, and for every
generation the average time to reach this generation is calcu-
lated and used to draw the Figures 14 - 16. An optimization
run contributes to the average value computation only after it
found at least one feasible solution.
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Figure. 14: 50 processes: The mean ε-dominance and
its standard deviation over the average optimization time
(5 minutes).

Figure 14 shows that all three methods behave similar for
problems with a small number of processes and many feasible
solutions. But the less feasible solutions exist, the worse
is the sequential decoder as compared to the SAT decoding
technique, the BDD decoder is right in between.

In Figure 15, one can see, that the sequential decoder
performs worse for problems with an increasing number of
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Figure. 15: 100 processes: The mean ε-dominance and
its standard deviation over the average optimization time
(16 minutes).

processes. The curve for the sequential decoder with a fea-
sibility of 15% has some spikes. These spikes are due to
optimization runs that find a first feasible solution quite late.
The BDD decoder is always worse than the SAT decoding
technique, and in the beginning even worse than the sequen-
tial decoder. But the harder the problem becomes, the earlier
does the BDD decoder overtake the sequential one. As these

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000

D
ε(

X
a,

X
R

)

Time [s]

Sequential
BDD
SAT

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000

D
ε(

X
a,

X
R

)

Time [s]

Sequential
BDD
SAT

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000  3500

D
ε(

X
a,

X
R

)

Time [s]

Sequential
BDD
SAT

Feasibility 25%:

Feasibility 15%:

Feasibility 45%:

Figure. 16: 150 processes: The mean ε-dominance and its
standard deviation over the average time.

feasible solutions are worse than the already found solutions
of the other runs the mean ε-value becomes larger.

Figure 16 indicates that the SAT decoding technique still
works good for a large number of processes. The steps in
the curve of the sequential decoder with a feasibility of 15%
indicate that only a single run out of 100 was able to find a
feasible solution at all. The BDD decoder behaves similar to
Figure 15.



Improving Automatic Design Space Exploration by Integrating Symbolic Techniques 251

Table 1: Entropy and its standard deviation values for the 9
test cases after 1000 generations.

Size Feasibility Sequential BDD SAT

50 15% 57.0607 100.92 182.361
±44.7296 ±69.99 ±65.2609

25% 137.399 193.318 236.229
±74.0809 ±85.7739 ±84.3631

45% 410.258 445.456 456.928
±180.861 ±168.586 ±175.727

100 15% 32.8091 120.17 295.661
±52.5102 ±84.7359 ±196.698

25% 154.877 233.829 434.02
±110.429 ±114.949 ±193.905

45% 424.993 509.767 553.053
±170.27 ±196.147 ±223.847

150 15% 1.99421 45.9437 300.613
±19.8421 ±86.2474 ±134.402

25% 160.92 236.785 429.89
±113.338 ±132.53 ±199.177

45% 391.455 475.613 594.463
±153.231 ±187.923 ±242.524

If we compare the times for the different optimization runs,
we can see that the runs of both symbolic decoding techniques
take a longer time for bigger problems. This is due to the
increased number of mapping edges, processes and resources,
that increase the runtime for the evaluation of different quality
functions. We can also see that the SAT-solver requires more
time to compute 1000 generations than the sequential decoder.
This has two reasons:
(1) The SAT decoding technique requires slightly more time
to compute a binding for each individual (but one has to keep
in mind that it always finds a valid binding by adjusting the
resource allocation, if such exists).
(2) As the SAT decoding technique finds more feasible so-
lutions in every generation, the quality functions have to be
executed for this increased number of individuals.

But even with these increased durations, the SAT decoding
technique generates better solutions earlier for big problems
that contain few feasible solutions. 150 processes is not the
upper limit for the SAT decoding technique, internal test have
shown that even 500 processes can be handled in acceptable
time with regard to the MOEA.

Table 1 shows the average entropy values for the test cases
and their standard deviations. We can see that both the SAT
decoder as well as the BDD decoder produce results with a
higher diversity than the sequential decoder. With these re-
sults, we can conclude (at least for our test cases) that using
Symbolic Techniques can help a MOEA to find feasible solu-
tions. Moreover, the produced results by symbolic decoding
converge faster to the Pareto-optimal set and do this, with a
high diversity.

VIII. Conclusions

In many Multi-objective Combinatorial Optimization Prob-
lems (MCOPs), already the construction of a single feasible

solution is an NP-complete problem. In order to guide the
search towards the feasible region, we propose the use of
Symbolic Techniques (STs) in Multi-Objective Evolutionary
Algorithms. We illustrate our approach on the example of au-
tomatic design space exploration. In automatic design space
exploration, the goal is to optimally select hardware resources
and bind processes of an application onto these resources such
that the communication between processes is guaranteed. By
polynomially reducing the problem of finding a feasible bind-
ing to the Boolean satisfiability problem, the application of
STs can be established. We have shown how to integrate STs
into the decoding phase of an individual. From our experi-
mental results, we can conclude that using STs in MOEAs are
particularly useful in the presence of complex search spaces
containing only very few feasible solutions. Although we
focused on automatic design space exploration of embedded
systems, there is however the potential to generalize our re-
sults to other constrained MCOPs.
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