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Abstract: Real-world optimization problems are often subject
to uncertainties caused by, e.g., missing information in the prob-
lem domain or stochastic models. These uncertainties can take
different forms in terms of distribution, bounds, and central
tendency. In the multiobjective context, some approaches have
been proposed to take uncertainties into account within the opti-
mization process. Most of them are based on a stochastic exten-
sion of Pareto dominance that is combined with standard, non-
stochastic diversity preservation mechanisms. Furthermore, it
is often assumed that the shape of the underlying probability
distribution is known and that for each solution there is a ‘true’
objective value per dimension which is disturbed by noise.
In this paper, we consider a slightly different scenario where the
optimization goal is specified in terms of a quality indicator—
a real-valued function that induces a total preorder on the set
of Pareto set approximations. We propose a general indicator-
model that can handle any type of distribution representing
the uncertainty, allows different distributions for different so-
lutions, and does not assume a ‘true’ objective vector per solu-
tion, but in general regards a solution to be inherently associ-
ated with an unknown probability distribution in the objective
space. To this end, several variants of an evolutionary algo-
rithm for a specific quality indicator, namely the ε-indicator, are
suggested and empirically investigated. The comparison to ex-
isting techniques such as averaging or probabilistic dominance
ranking indicates that the proposed approach is especially useful
for high-dimensional objective spaces. Moreover, we introduce
a general methodology to visualize and analyze Pareto set ap-
proximations in the presence of uncertainty which extends the
concept of attainment functions.
Keywords: uncertainty, multiobjective optimization, evolutionary
algorithms, quality indicators

I. Motivation

Knowledge about the set of Pareto-optimal solutions is
useful in many applications involving multiple objectives.
Therefore, considerable research, particularly in the context
of evolutionary computation, has been devoted to generat-
ing methods, i.e., techniques that try to generate the entire
Pareto set or approximations of it. One recent approach is
based on quality indicators where a function I assigns each
Pareto set approximation a real value reflecting its quality,
cf. [26]; the goal is to identify a Pareto set approximation that
minimizes (or maximizes) I . As such, I induces a total or-
der of the set of approximation sets in the objective space, in
contrast to the classical aggregation functions like weighted
sum that operate on single solutions only and gives rise to
a total order of the corresponding objective vectors. In [16]
and [24], different indicator-based multiobjective optimizers
have been proposed. The advantage of the indicator concept
is that no additional diversity preservation mechanisms are
required, and 24) have demonstrated that indicator-specific
search can yield superior results in comparison with popular
algorithms such as SPEA2 [25] and NSGA-II [6] and with
respect to the indicator under consideration.

Since evolutionary multiobjective optimization using qual-
ity indicators is a relatively new concept, it is an open question
how to deal with uncertainties in this framework. Many real-
world optimization problems are subject to uncertainties and
therefore this aspect needs to be accounted for. Among the
different types of uncertainty one can distinguish, cf. [15],
we here consider the case that the calculation of the objec-
tive function values is randomized, i.e., every time a solution
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is evaluated, a different objective vector may be returned.
Such a scenario emerges, e.g., if the underlying computa-
tional model involves stochastic components such as Monte
Carlo simulation [21].

While uncertainty in the objective functions gained some
attention in the single-objective context [1; 15], only few
studies address this problem within a multiple criteria set-
ting1. [13] were among the first to discuss uncertainty in the
light of generating methods, although they did not propose a
particular multiobjective optimizer for this purpose. Several
years later, 14) and 22) independently proposed stochastic
extensions of Pareto dominance and suggested similar ways
to integrate probabilistic dominance in the fitness assignment
procedure; both studies consider special types of probabil-
ity distributions. In [2], another ranking method is proposed
which is based on the average value per objective and the
variance of the set of evaluations. Similarly, 7) suggested
to consider for each dimension the mean over a given sam-
ple of objective vectors and to apply standard multiobjective
optimizers for deterministic objective functions.

Most of the aforementioned approaches cannot directly
be used in indicator-based search, only averaging the objec-
tive values as, e.g., in [7] is a generally applicable strategy.
Furthermore, existing studies assume certain characteristics
(symmetry, shape, etc.) of the probability distribution that de-
termines to which objective vectors a solution may be mapped
to. In other words, the corresponding methods rely and ex-
ploit problem knowledge, which may not be available, par-
ticularly with real-world applications. Therefore, we propose
a general indicator-based model for uncertainty where every
solution is associated with an arbitrary probability distribu-
tion over the objective space. Extending [24], different algo-
rithms for this model and a particular quality indicator, namely
the ε-indicator, are presented and investigated in comparison
with the methods in [14] and [7]. Moreover, this paper also
considers the issue of analyzing and visualizing Pareto set
approximations in the presence of uncertainty, which to our
best knowledge has not been considered so far in the multi-
objective literature. To this end, an extension of the empiri-
cal attainment function [11] and corresponding algorithms are
suggested. In the last section, we will summarize the different
issues of this paper and discuss about some open questions.

II. An Indicator-Based Model for Uncertain
Environments

A. Multiobjective Optimization Using Quality Indicators

Let X denote the search space of the optimization problem
under consideration and Z the corresponding objective space.
Without loss of generality, we assume that Z = IRn and

1Note that the problem considered here is different from the issue of
robustness, where the goal is to find solutions that are robust regarding pa-
rameter perturbations.

that all n objectives are to be minimized. In the absence
of uncertainty, each x ∈ X is assigned exactly one objective
vectorz ∈ Z on the basis of a vector functionf : X → Z with
z = f(x). The mapping f defines the evaluation of a solution
x ∈ X , and often one is interested in those solutions that are
Pareto optimal with respect to f .2 However, generating the
entire set of Pareto-optimal solutions is usually infeasible,
e.g., due to the complexity of the underlying problem or the
large number of optima. Therefore in many applications, the
overall goal is to identify a good approximation of the Pareto-
optimal set.

Different notions of what a good Pareto set approximation
is are possible, and the definition of approximation quality
strongly depends on the decision maker and the optimiza-
tion scenario. We here assume that the optimization goal is
given in terms of a binary quality indicator I , as proposed
in [24]. A binary quality indicator, cf. [26], is a function
I : M(Z) × M(Z) → IR, where M(Y ) stands for the set
of all possible multisets over Y , that can be regarded as a
continuous extension of the concept of Pareto dominance to
multisets of objective vectors. The value I(A, B) quantifies
the difference in quality between A, B ∈ M(Z). Now, if
R denotes the set of Pareto-optimal solutions (or any other
reference set), then the overall optimization goal can be for-
mulated as

argminS∈M(X) I(f(S), f(R)) (1)

with f(Y ) := {f(x) |x ∈ Y }. Since R is fixed, I actually
represents a unary function that assigns each Pareto set ap-
proximation a real number; the smaller the number, the more
preferable is the approximation.

B. Handling Uncertainty

In the following, the above optimization model will be ex-
tended to take uncertainty into account; to this end, we will
assume that X is finite which simplifies the following presen-
tation. Later, we will discuss how to estimate and compute
expected indicator values for uncertain environments.

As to uncertainty, the basic difference to the classical set-
tings is that the vector function f does not represent a de-
terministic mapping from X to Z, but can be regarded as a
randomized procedure: every time a solution x ∈ X is evalu-
ated using f , it may be mapped to a different objective vector
z ∈ Z. The higher the degree of uncertainty, the larger the
variance among the objective vectors resulting from multi-
ple, independent evaluations of x. Thus, with each solution
x a random variable F(x) is associated the range of which is
Z; the underlying probability distribution is usually unknown
and may be different for other solutions.

Now, consider an arbitrary solution multiset S =
{x1,x2, . . . ,xm} ∈ M(X). Based on the random variables

2A solution x ∈ X is Pareto optimal if and only if there exists no x′ ∈ X
such that (i) f(x′) is component-wise smaller than or equal to f(x) and (ii)
f(x′) �= f(x).
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F(xi) associated with the elements xi of S, a corresponding
random variable F(S) is defined for S which takes values
in M(Z); P (F(S) = A) denotes the probability that (i) all
members of S are mapped to elements of A ∈ M(Z) and (ii)
there is at least one x ∈ S per z ∈ A for which z = f(x).
Using this notation, we can now reformulate the optimization
goal for uncertain environments as

argminS∈M(X) E(I(F(S), F(R))) (2)

where R is an arbitrary reference set from M(X) and E(·)
stands for the expected value.

Note that there is a fundamental difference to other ap-
proaches, cf. [15]: we do not assume that there is a ’true’
objective vector per solution which is blurred by noise; in-
stead, we consider the scenario that each solution is inherently
associated with a probability distribution over the objective
space.

C. Estimating the Expected Indicator Value

If the probability distributions are known in advance and iden-
tical for all solutions x ∈ X , then the expected value for any
indicator can be computed according to

E(I(F(S), F(R)))

=
∑

A,B∈M(X)

P (F(S) = A, F(R) = B) · I(A, B)

=
∑

A,B∈M(X)

P (F(S) = A) · P (F(R) = B) · I(A, B)

(3)

since F(S) and F(R) are independent from each other.
However, in practice the underlying probability distribu-

tions are in general unknown, may vary for different solutions,
and therefore can only be estimated by drawing samples. Let
us assume that S(x) ∈ M(Z) represents a finite sample, i.e.,
a multiset of objective vectors, for solution x. Now, the ex-
pected indicator value E(I(F({x}), {z∗

1, . . . , z
∗
q}) of F(x)

with respect to a given set of objective vectors {z∗
1, . . . , z

∗
q}

can be estimated as follows

Ê(I(F({x}), {z∗
1, . . . , z

∗
q}))

=
∑

z∈S(x)

I({z}, {z∗
1, . . . , z

∗
q})/|S(x)| (4)

where Ê stands for the estimated expected value and | · | for
the cardinality of a set. For a multiset S of solutions with
S = {x1,x2, . . . ,xm}, the formula is

Ê(I(F(S), {z∗
1, . . . , z

∗
q})

=
∑

z1∈S(x1)

. . .
∑

zm∈S(xm)

I({z1, . . . , zm}, {z∗
1, . . . , z

∗
q})∏

1≤i≤m |S(xi)|
(5)

and if one considers a reference set R of solutions with R =
{x∗

1, . . . ,x
∗
r}, then the estimate amounts to

Ê(I(F(S), F(R))

=
∑

z∗
1∈S(x∗

1)

. . .
∑

z∗
r∈S(x∗

r)

Ê(I(F(S), {z∗
1, . . . , z

∗
r}))∏

1≤i≤r |S(x∗
i )|

(6)

With this approach, the probability of a solution x ∈ X
to be mapped to any objective vector z is estimated us-
ing the relative frequency of z with respect to S(x), i.e.,
P̂ (F({x}) = {z}) =

∑
z′∈S(x), z′=z 1/|S(x)|.

D. Computing Estimates for Expected Indicator Values

Computing the estimated expected indicator value for two
multisets of solutions in the aforementioned manner is usu-
ally infeasible due to combinatorial explosion. Suppose each
multiset contains 100 solutions with a sample size of 10 each,
then equation 6 contains 10010 · 10010 = 1040 summands.
However, if particular properties of the indicator used can be
exploited, then the exact calculation for Ê(. . .) may become
feasible. We here propose an algorithm for the (additive) ε-
indicator [26] to compute an estimate for the expected quality
difference between a multiset S ∈ M(X) and a reference set
R with one element only - for reference sets of arbitrary size
the computation is still too expensive to be useful in practice.
Later in Section III it will be discussed how this procedure
can be integrated into an evolutionary algorithm.

For a minimization problem, the additive ε-indicator Iε+
is defined as follows:

Iε+(A, B) = inf{ε ∈ IR | ∀z2 = (z21 , . . . , z2n
) ∈ B :

∃z1 = (z11 , . . . , z1n) ∈ A : ∀1 ≤ i ≤ n : z1i ≤ ε + z2i}
(7)

It gives the minimum ε-value by which B can be moved in
the objective space such that A is at least as good as B; a
negative value implies that A is better than B in the Pareto
sense. If B consists of a single objective vector z∗, then the
formula reduces to

Iε+(A, {z∗}) = inf{ε ∈ IR | ∃z1 = (z11 , . . . , z1n) ∈ A :
∀1 ≤ i ≤ n : z1i ≤ ε + z∗

i } (8)

Now, to compute Ê(Iε+(F(S), {z∗})) it is not necessary
to consider all combinations of objective vectors to which
the elements x ∈ S could be mapped to. Instead, one can
exploit the fact that always the minimum Iε+({x}, {z∗}))-
value determines the actual indicator value. By sorting the
objective vectors beforehand, it suffices to consider the ε-
values in increasing order.

In detail, this works as follows. We consider all pairs
(xj , zk), where xj ∈ S and zk ∈ S(xj), and sort them in in-
creasing order regarding the indicator value Iε+({zk}{z∗}).
Suppose the resulting order is (xj1 , zk1), (xj2 , zk2), . . . ,
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Algorithm 1 (Estimation of the Expected Iε+-Value)

Input: S ∈ M(X) (multiset of decision vectors)
z∗ ∈ Z (reference objective vector)

Output: Ê(Iε+(F(S), {z∗}))(estimate for the expect. value of Iε+)

Step 1: Determine ε = minx∈S maxz∈S(x) Iε+({z}, {z∗})
Step 2: Set L = ∅. For each x ∈ S and z ∈ S(x) do:

1. ε = Iε+({z}, {z∗}).

2. If ε ≤ ε then append (ε,x) to list L.

Step 3: Sort L in increasing order according to the ε-values.

Step 4: Set Ê = 0. For each x ∈ S set N [x] = 0.

Step 5: While L is not empty do:

1. (ε′,x′) = first element of L.

2. p = 1/(|S(x′)| − N [x′]) ·
∏

x∈S 1 − N [x]/|S(x)|.

3. Ê = Ê + p · ε′.

4. N [x′] = N [x′] + 1.

5. Remove first element of L from L.

Step 6: Return Ê.

(xjl
, zkl

). Then, the estimate of the expected indicator
value is

Ê(Iε+(F(S), {z∗})) =

Iε+({zk1}, {z∗}) · P̂ (F({xj1}) = {zk1}) +

Iε+({zk2}, {z∗})·
P̂ (F({xj2}) = {zk2} | F({xj1}) �= {zk1)} +

. . .

Iε+({zkl}, {z∗})·
P̂ (F({xjl}) = {zkl} | ∀1≤i<lF({xji}) �= {zki})

(9)

Note that not necessarily all l summands need to be computed
and thereby the computation time can be reduced. As soon
as for one solution x all objective vectors z ∈ S(x) have
been considered, the remaining summands will yield 0 since
P̂ (∀z∈S(x)F(x) �= z) = 0, i.e., at least one objective vector
z in the sample S(x) must occur. This scheme is detailed in
Alg. 1.

III. Algorithm Design

24) proposed a general scheme of an evolutionary algorithm to
perform a multiobjective search with respect to an arbitrary
quality indicator. Based on this work, we will present and
discuss different implementations for integrating Alg. 1 into
the optimization process in order to achieve the overall goal
as defined in Equation 2.

The baseline algorithm that will be considered in the fol-
lowing is outlined inAlg. 2. It represents a steady-state evolu-
tionary algorithm where at each generation a single offspring
is produced and added to the population; the environmental
selection step removes the worst individual from the popula-
tion. The fitness of an individual x is defined as the estimated

Algorithm 2 (Baseline Algorithm: Steady-State-IBEA)

Input: N (population size)
G (maximum number of generations)

Output: S (approximation set)

Step 1: Initialization: Generate an initial population S of size N ; set the
generation counter g to 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in S,
i.e., Fit(x) =

∑
z∈S(x) Ê(I(F(S \ {x}), {z}))/|S(x)| for all

x ∈ S.

Step 3: Environmental selection: If |S| > N , then remove the individual
x∗ ∈ S with the smallest fitness value, i.e., Fit(x∗) ≤ Fit(x) for
all x ∈ S, from S.

Step 4: Termination: If g ≥ G then return S.

Step 5: Mating selection: Perform binary tournament selection on S to
select two parents.

Step 6: Variation: Apply recombination and mutation operators to the se-
lected parents and insert the generated individual into the popula-
tion S. Increment the generation counter (g = g + 1) and go to
the Step 2.

expected loss in quality, if x would be removed from the
population S, i.e.,

Fit(x) = Ê(I(F(S \ {x}), F(S))

= Ê(I(F(S \ {x}), F({x}))

=
1

|S(x)|
∑

z∈S(x)

Ê(I(F(S \ {x}), {z})) (10)

Regarding Equation 2, we here assume that no external refer-
ence set R is given; instead, R is the current population plus
the newly generated child.

The fitness assignment step in Alg. 2 can be realized on
the basis of Alg. 1, and we will denote the resulting algo-
rithm as EIV (exact computation of the estimated expected
indicator value). In this case, the running time complexity
of Step 2 is of order O(n(Ns)2 log(Ns)) which can become
computationally expensive in practice. To yield a faster com-
putation of the fitness values, we suggest two variants of Alg.
1, namely BCK and Exp, which approximate the ranking of
the individuals induced by the exact Ê(·) values.

The first variant (BCK) uses bucket sort [4] for the
sorting step in Alg. 1. The range of indicator values
[Imin, Imax],which can be either determined in advance or
adaptively during the run, is partitioned into c buckets of equal
size where c is user-defined and controls the accuracy and the
run-time of the sorting procedure. The elements of L (see
Alg. 1) are placed in the corresponding buckets, and a sorting
is generated by reading out the buckets from lower to greater
values. Here, the running-time complexity of the fitness as-
signment is bounded by O((n + c)(Ns)2). If c is chosen
large enough and no elements are placed in the same bucket,
then the correct sorting is computed, but also the running-time
can be high. If c is small, then the running-time is low as it is
dominated by the term (Ns)2, but potentially all elements are
in the same bucket and the resulting sorting can be arbitrary.
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The second variant (Exp) does not make use of Alg. 1, but
directly computes the fitness values in the following manner:

Fit(x) =
∑

z∈S(x)

∑

x′∈S\{x}

∑

z′∈S(x′)

−e−Iε+ ({z′},{z})/κ (11)

This scheme represents an extension of the one proposed in
[24] and transforms the indicator values using an exponential
function. With one evaluation per solution (s = 1) and κ
sufficiently close to 0, the corresponding fitness ranking tends
to be identical to the fitness ranking resulting from applying
Alg. 1; however, numerical precision issues strongly affect
the outcome. The running-time complexity of this fitness
assignment method is of order O(n(Ns)2).

To evaluate the three different schemes proposed above,
we also consider two alternative fitness assignment schemes:

• The first approach, the averaging method (Avg), follows
the idea presented in [7] and applies it to Alg. 1. In prin-
ciple, the average value is computed for each objective
function and individual, and then Alg. 1 is executed
where the sample for each individual consist of only one
objective vector, namely the one representing the aver-
ages. However, the computation can simplified using
the following formula:

Fit(x) = Ê(Iε+(F(S \ {x}), {z∗})
= minx′∈S Iε+({f(x′)}, {z∗})

(12)

The running-time complexity is O(Ns+N2) (averaging
step + indicator values computation).

• The second approach (PDR) is the fitness assignment
method proposed by 14) which is based on the proba-
bilistic dominance relation between solutions:

Fit(x) =
∑

z∈S(x)

n∑

i=1

∑

x′∈S\{x}

∑

z′∈S(x′)

h(z′
i, zi)

|S(x′)| · |S(x)|
(13)

with h(z′
i, zi) equal to 0 (resp. 0.5, 1) if the ith objective

value of z′ is smaller (resp. equal, greater) than the
ith objective value of z. The running-time complexity
of the PDR fitness assignment algorithm is of order
O(n(Ns)2).

IV. Simulation Results

In the following, we investigate two questions concerning
performance of the five different algorithms. First, we eval-
uate the ability of these algorithms to select the best solu-
tions with respect to a single environmental selection step. To
achieve this, we compute the average loss in quality, in terms
of the ε-indicator value, obtained by deleting one individual
of randomly created populations of size N +1. Secondly, we
compare the outcomes of entire optimization runs on various
multiobjective tests functions.
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Figure. 1: Average selection error, with different levels of
uncertainty.

A. Environmental Selection

The tests are performed with the different exact (EIV ) and
approximative (EIV , BCK, Exp, Avg, PDR) selection
methods described above. We evaluate the selection process
on randomly generated populations. The individuals gener-
ated are incomparable (using the dominance notion) in respect
to their non-uncertain objective values. Each individual is
created in the following way:

• Generate a (virtual) decision vector x with random value
for each objective function.

• Scale x objective values to obtain z with
∑n

i=1 fi(x) =
n/2. In the biobjective case, the resulting vector z is on
the diagonal [(1, 0), (0, 1)].

• Generate s different evaluations [z1 . . . zs] by adding
uncertainty, i.e., a random value in the interval [−σ, σ]),
for each objective function.

For each test, we consider 100 random populations of 100 in-
dividuals, with 10 biobjective evaluations per solution. Uni-
form noise defined on the interval [−0.05, 0.05] is applied
within each evaluation, and the number of objective func-
tions, the sample size, and the level of uncertainty are sys-
tematically varied. The bucket sort approach was tested with
c = 50.

We first evaluate the selection process for the exact Iε+

value computation (EIV algorithm), which exactly deter-
mines the worst solution xw. Then, for each approximative
fitness assignment algorithm i, we compute the worst solu-
tion xwi . To evaluate the effectiveness of the approxima-
tion, we compute the difference, in terms of quality indica-
tor Iε+ , between the exact and the approximative approach:
Iε+(S \ {xwi

}, S) − Iε+(S \ {xw}, S) (smaller values are
better).
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Figure. 2: Average selection error, with different number of
evaluations.
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Figure. 3: Average selection error, with different number of
objective functions.

The Figs. 1, 2 and 3 give the results obtained for different
number of objective functions (1, 2, 5 and 10), sample size (1,
5 and 50), and levels of uncertainty (.1%, 5% and 50%). The
smaller values are achieved by BCK in many cases, espe-
cially with an important level of uncertainty, many objectives,
or a lot of evaluations. The other methods obtain small val-
ues only for small sample size or small level of uncertainty.
When s = 1, the exponential approaches almost obtain the
exact approach results, but only in this case. If the uncer-
tainty considered is small, all approaches obtain the close-to-
optimal results, except of BCK. In the non-uncertain case,
we suggest to use the exponential function approach, which
is not expensive to compute and almost gives the optimal re-
sults. With uncertainty, BCK seems to be more effective.
The computational complexity of BCK mainly depends on
its main parameter, i.e., the number of cells, which was set to
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Figure. 4: Selection error in function of C value: compari-
son against EIV fitness assignment; (1) quality loss during
ES(N+1) selection process; (2) rate of misorder between EIV
and BCK ranking; (3) maximum ranking difference between
EIV and BCK.

50 in our experiments. In Fig. 4, the error obtained by BCK
with different values for the number of cells defined is shown.
With more than 20 cells, the quality of the results appears to
be sufficient. The number of cells has to be chosen carefully
for a good trade-off between computational complexity and
quality of approximation.

B. Entire Optimization Runs

For the entire optimization runs, we consider 6 multi-
objective test functions taken from the literature: ZDT1,
ZDT6 [23], DTLZ2 [8], KUR [19], COMET [9] and QV
[20]. The number of decision variables has been fixed to 50
for all the test problems. Tests are realized by considering
two different types of uncertainty:

• on the objective vector f(x): an uniform-distributed
random uncertainty is directly applied on the evaluation
functions, in a fixed interval [−σ, σ]. We set σ = 0.1 for
all problems, excepted for COMET (σ = 1) and KUR
(σ = 0.5) problems.

• on the decision variables: a uniformly distributed un-
certainty distribution is applied concerning the decision
variables. The result is a variable uncertainty, depending
on the form of the objective space around the envisaged
solution. We set σ = 0.1 for all decision variables for
every problem.

The population size N is set to 50, with s = 5 evaluations
for each solution. An uniformly distributed uncertainty is ap-
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plied on the solutions (on decision variables x or on objective
vectors z). The maximum number of generations is set to
5000. We perform 30 runs for each problem. The different
methods are tested with the same initial populations. The 50
decision variables are real numbers defined over the interval
[0, 1]. The SBX-20 operator is used for recombination and a
polynomial distribution for mutation [5]; the mutation and re-
combination probabilities are set to 1 and 0.01, respectively,
according to [10]; the other parameters are those used in [24].

1) Performance assessment: evaluation with the
‘true’ vector function

To evaluate the effectiveness of each method, we generate
the ’true’ objective vector for each solution. Then, for each
approximation A, we compute Ê(Iε+(A, R)) value, where
R is the reference set, determined by merging all solutions
found during the runs and keeping only the non-dominated
solutions. The comparison of the whole set of runs is realized
using the Mann-Whitney statistical test [3], applied on the
sets of Ê(Iε+(A, R)) values computed for each method.

Table 1 represents the comparison of the different selection
methods for the Ê(Iε+) value, with two different types of un-
certainty: on objective vectors and on decision variables. In
order to compare the outcomes of the runs, we use the Mann-
Whitney statistical test, as described in [17]. The columns
give the adjusted P value of the corresponding pairwise test
that accounts for multiple testings; it equals to the lowest sig-
nificance level for which the null-hypothesis (the medians are
drawn from the same distribution) would still be rejected (with
a significance level of 5%). A value under 5% shows that the
method in the corresponding row is significantly better than
the method in the corresponding column. If the significance
level of method A better than method B is greater than 5%,
then no conclusion can be drawn (A ≡ B). u1 (resp. u2)
column corresponds to the results with uncertainty applied
on the objective space (resp. decision variables).

In many cases, the results are not significant in the bi-
objective case, since the different approaches achieve similar
results. Further observations from Table 1 are:

• The exponential approximation approach Exp, give
the worst results in many cases, except for KUR and
COMET instances.

• BCK and EIV obtain similar results, which shows the
efficiency of BCK to approximate EIV fitness assign-
ment method.

• Uncertainty on objective vectors: in many cases, ε-
indicator-based approaches Avg, BCK and EIV per-
form significantly better than Hughes selection mech-
anism PDR, especially for COMET and ZDT1
instances—with respect to the ε-indicator.

• Uncertainty on decision variables: in many cases, Avg
results are significantly worse than EIV , BCK and

PDR (problems DTLZ2, ZDT6 and KUR).

As a conclusion, the ε-indicator-based fitness assignment
EIV performs well, in a general case, for the continuous
problems which have uncertainty on objective functions or
decision variables, and the approximative algorithm BCK
obtain similar results. Table 2 shows the results on the same
problems, with higher uncertainty level (5 times higher). The
main observations are:

• EIV and BCK obtain similar results.

• Except for QV with uncertainty on the decision space,
the average results of EIV and BCK outperform the
other approaches.

• As for the previous tests, Avg obtains good approxima-
tions with uncertainty in the objective space, and PDR
obtain good approximations with uncertainty in the de-
cision space.

• Exp approach obtain acceptable results with uncertainty
in the decision space.

In the table 3, we represent the results obtained for experi-
ments performed on the DTLZ2 test function, with different
number of objective functions. This table shows a superior
performance of the EIV and BCK fitness assignment meth-
ods when the number of objective functions is growing. Exp
is inferior to the other approaches in many cases, but gives
satisfactory results with many objective functions to optimize.

We make the same test series on another multiobjective test
function: DTLZ6. With uncertainty on the objective vectors,
PDR is worse than the other methods in many cases, with
a very small significance level. However, no global conclu-
sion can made about the comparison of the other approaches.
With uncertainty on decision variables, Exp, BCK and EIV
approaches obtain results significantly better than PDR and
Avg. Moreover, Exp is the best approach on this problem.

In our first experiments, we consider two type of uncer-
tainty, u1 (uncertainty on decision variables) and u2 (un-
certainty on objective functions), which are uniformly dis-
tributed and a central tendency equal to 0. Some experiments
have been realized also with different types of uncertainty,
on DTLZ2 test problem. The uncertainties considered are
defined as follow:

• Normal distribution of the uncertainty on the objective
vectors, with a central tendency equal to zero, and a
scale value defined as σ in the first series of experi-
ments. Let p1 and p2 be two random numbers (uniformly
distributed); we approximate the normal distribution of
the uncertainty u1 as follow (applied on every objective
value zi):

u3(zi) = σ ∗
√

−2 ∗ log(p1) ∗ cos(2πp2)
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• Normal distribution of the uncertainty on the objective
vectors, with a central tendency up to 0. The result-
ing uncertainty u2 equals to (applied on every objective
value zi):

u4(zi) = abs(u1)

• Noise on decision variables, with different scale for ev-
ery decision variable. The uncertainty u3 applied on the
decision variables decrease with the rank of each deci-
sion variable xi:

u5(xi) =
σp1

i

The results are given in Table 4. With the two first defined
uncertainties u1 and u2 (see Table 1), PDR is significantly
better than the other approaches. If we consider the uncer-
tainty u3, PDR is significantly worse than EIV and Avg
methods. For the uncertainty u4, PDR is significantly worse
than EIV , BCK and Avg methods. For the uncertainty u5,
there are no significant relation between the algorithms.

As mentioned at the beginning of the paper, we do not
assume a true objective vector per solution, but a solution
associated with an unknown probability distribution in the
objective space. Then, each possible evaluation has to be
considered as a possible event. In the next section, we de-
scribe a method to evaluate outputs without knowledge about
the true objective vector function.

2) Probabilistic performance assessment

In the previous section, we presented experimental results
obtained by comparing the set of individuals according to their
’true’ evaluations, i. e. the result of the evaluation function
without uncertainty. In the real case, we will consider that
each ’uncertain’ evaluation is a possible event. In this case,
we have to take into account all the possible evaluations to
evaluate a set of solutions, and evaluate the different possible
sets according to the Iε+-indicator. In order to compute this
performance, we suggest the following procedure:
(1) At the end of the optimization process, proceed to k un-
certain evaluations for each solution of the approximation S
proposed by the optimizer. In order to delete the influence
of the optimization process, the k evaluations of every solu-
tion replace the evaluations realized during the optimization
process.
(2) Define a reference set R, which corresponds to the set of
non-dominated solutions extracted from all the evaluations
done in the step 1.
(3) Compute the exact value for Ê(Iε+(F(S), F(R))), rep-
resented by equation 5.

The exact computation of Ê(Iε+(F(S), F(R))) can be
time consuming. Therefore, we propose to compute
I(F(S), {r}) for all elements r in R, which is different than
Ê(Iε+(F(S), F(R))). In order to compute an approximation
of this expected quality indicator, we propose to compute 3
different values:

• Iε+(F(S), F(R)) value, in the best case:

min(Iε+(F(S), F(R))) =
max(min(min(Iε+({xa}, {xr}),xa ∈ S(x)),
S(x) ∈ S), xr ∈ R)

(14)

• Iε+(F(S), F(R)) value, in the worst case:

max(Iε+(F(S), F(R))) =
max(min(max(Iε+({xa}, {xr}),xa ∈ S(x)),
S(x) ∈ S), xr ∈ R)

(15)

• Iε+(F(S), F(R)) average value, for every xr ∈ R:

max(Iε+(F(S), F(R))) = 1
|R|

∑
xr∈R

Ê(Iε+(S, {xR}))

(16)

This type of evaluation could be useful, especially if the
’true’ objective vector is either unknown or does not exist.
In real-world application, there is usually not a true objec-
tive vector, and for such scenarios this type of evaluation
can be used. In order to estimate the difference between
these probabilistic quality indicators and evaluation made
with knowledge of a ’true’objective vector function, we com-
pute min(Iε+(F(S), F(R))), max(Iε+(F(S), F(R))) and
avg(Iε+(F(S), F(R))) on several outputs. We apply these
quality indicators to the results obtained on DTLZ2 with the
5 different type of uncertainty u1 . . . u5.

The results for avg(Iε+(F(S), F(R))) quality indica-
tor are shown in Table 5. Let us remark that there are
no significant difference between the results obtained by
avg(Iε+(F(S), F(R))) and the two other probabilistic qual-
ity indicators. For the two first uncertainties, which have an
uniform distribution, the results obtained do not show a great
difference of performance between evaluating with or without
knowledge of the true evaluation function 1.

Considering the three last uncertainties, different results
are obtained:

• u3: Avg method is no longer better than the BCK and
EIV methods. PDR is significantly worse than EIV
(not BCK).

• u4: Avg and BCK methods are significantly worse than
EIV and BCK.

• u5: Avg is significantly worse than BCK.

V. Probabilistic empirical attainment function
for uncertain sets of solutions

Without uncertainty, the attainment function provides a de-
scription of the distribution of an outcome set x = {xj ∈
IRn, j = 1, . . . , M} in a simple and elegant way, using the
notion of goal-attainment [11]. This function allows the user
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Table 4: Evaluation with different type of uncertainty: DTLZ2 test function, using the Mann-Whitley statistical test: P-value.

EIV BCK Exp Avg PDR
u3 EIV ≡ 7.10 ∗ 10−11 ≡ 2.73 ∗ 10−2

BCK ≡ 1.59 ∗ 10−10 ≡ ≡
Exp ≡ ≡ ≡ ≡
Avg 6.93 ∗ 10−4 2.41 ∗ 10−5 6.51 ∗ 10−11 3.35 ∗ 10−7

PDR ≡ ≡ 2.59 ∗ 10−10 ≡
u4 EIV ≡ 5.74 ∗ 10−11 ≡ 1.98 ∗ 10−6

BCK ≡ 5.74 ∗ 10−11 ≡ 1.39 ∗ 10−5

Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ 5.74 ∗ 10−11 2.90 ∗ 10−4

PDR ≡ ≡ 6.35 ∗ 10−11 ≡
u5 EIV ≡ ≡ ≡ ≡

BCK ≡ ≡ ≡ ≡
Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ ≡ ≡
PDR ≡ ≡ ≡ ≡

Table 5: Evaluation with different type of uncertainty: DTLZ2 test function, using the Mann-Whitley statistical test: P-value
- Probabilistic performance assessment (avg(Iε+(A, R))).

EIV BCK Exp Avg PDR
u1 EIV ≡ 5.74 ∗ 10−11 ≡ ≡

BCK 1.08 ∗ 10−3 5.74 ∗ 10−11 5.92 ∗ 10−3 ≡
Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ 5.74 ∗ 10−11 ≡
PDR 2.46 ∗ 10−9 3.86 ∗ 10−5 5.74 ∗ 10−11 3.25 ∗ 10−8

u2 EIV ≡ 7.76 ∗ 10−11 2.48 ∗ 10−6 ≡
BCK ≡ 8.57 ∗ 10−11 1.25 ∗ 10−7 ≡
Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ 8.00 ∗ 10−9 ≡
PDR 2.90 ∗ 10−4 3.81 ∗ 10−3 7.76 ∗ 10−11 1.70 ∗ 10−9

u3 EIV ≡ 1.40 ∗ 10−10 ≡ 1.76 ∗ 10−2

BCK ≡ 3.89 ∗ 10−10 ≡ ≡
Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ 3.14 ∗ 10−10 ≡
PDR ≡ ≡ 6.76 ∗ 10−10 ≡

u4 EIV ≡ 5.74 ∗ 10−11 1.27 ∗ 10−3 2.11 ∗ 10−2

BCK ≡ 5.74 ∗ 10−11 9.17 ∗ 10−4 1.25 ∗ 10−2

Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ 5.74 ∗ 10−11 ≡
PDR ≡ ≡ 5.74 ∗ 10−11 ≡

u5 EIV ≡ ≡ 4.05 ∗ 10−2 ≡
BCK ≡ ≡ ≡ ≡
Exp ≡ ≡ ≡ ≡
Avg ≡ ≡ ≡ ≡
PDR ≡ ≡ ≡ ≡

to obtain a visualization of the outputs and some analysis re-
sults, such as the probability to attain a goal, i.e., objective
vector z. It is defined by the function EAFx(z) : IR → [0, 1]
with

EAFx(z) = P (x 
 z)

In this section, we discuss on how to adapt the Empir-
ical Attainment Function (EAF ) to an uncertain context.
Consider r sets of objective vectors S1 . . . Sr ∈ M(Z)r,
resulting from r different executions of the same couple
{optimizer, problem}. The empirical attainment function
EAFS(z∗) is defined as the probability that the optimizer
considered obtains at least one objective vector which dom-
inates the goal z∗, in a single run. In detail, the EAF gives
for each objective vector in the objective space the relative
frequency that it was attained, i.e., weakly dominated by the

generated approximation set, with respect to r runs. In this
section, we propose to adapt the EAF to the context of un-
certain optimization. First, we consider the EAF for a single
run (without uncertainty, the resulting EAF function returns
0 and 1 values), then we present an algorithm to compute the
EAF in uncertain environments. In the last part, we propose
a corresponding approximative algorithm.

A. Compute the exact probabilistic attainment surface for
“uncertain” approximations

We introduce some notations before describing the global al-
gorithm for EAF computation in the presence of uncertainty.

• dom(z1, z2): compare the objective vector z1 ∈ Z
against the objective vector z2 ∈ Z. Return 1 if z1 
 z2,
0 otherwise.
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Figure. 5: There are no difference in terms of dominance
relation between each point of the shaded area A and the
set of circle solutions in the objective space (with S(x) =
{z1, z2, z3, z4}, ∀z∗ ∈ A, P (S(x) 
 z∗) = 0.25 - only
z3 dominates A). In this example, A is defined by m =
(f1(z3), f2(z4)) and m = (f1(z4), f2(z1)).

• P (S 
 z∗): probability that a multiset S ∈ M(Z) dom-
inates a reference point z∗ ∈ Z, computed as follow:

P (S 
 z∗) =
∑

z∈S

dom(z, z∗)
|S| (17)

• P (S 
 z∗): probability that at least as one solution
of the approximation set F(S) = {S(x1) . . .S(xt)}
of t multisets, dominates the reference point r, which
corresponds to the formula:

P (F(S) 
 z∗) = 1 −
∏

S∈F(S)

(1 − P (S 
 z∗)) (18)

With the equation 18, we can compute EAF for one point
of the objective space. In order to compute EAF for every
point in the objective space, we need to sum the equation
18 result, for each point of the objective space. Consider-
ing a set of objective vector S and an hyper-volume A de-
fined by the two points m = [min1 . . . minn] and M =
[max1 . . . maxn], with the relation: ∀z ∈ S, �i ∈ [1 . . . n],
with mini < xi ≤ maxi, then the EAF function is constant
for every point in A (see Fig. 5).

Then, we are able to compute the entire EAF function,
with a finite number of dominance relation computation, as
described in Alg. 3. The Fig. 6 shows an illustrated example
with two objective functions, two solutions and 5 evaluations
per solution.

EAFs could be used for visualizing the outcomes of uncer-
tain run of an optimizer. For instance, one may be interested
in plotting all the goals that have been attained (indepen-
dently) in 50% of the cases. This is defined in terms of a
probabilistic-k%-approximation set:

An approximation set S is called the probabilistic-
k%-approximation set of an EAF (S), iff it weakly
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Figure. 6: Example with two objective functions and two
solutions evaluated 5 times (circle and square points). There
exist only one alternative over 25 for the point (8, 4) to not
be dominated by at least as one solution: if we take the circle
and square sample on the top of the figure. Then P (S 

(8, 4)) = 24/25 = 96%.

dominates exactly those objective vectors that have
been attained with a probability up to k per cent.

As described in [18] (k%-approximation set), the
probabilistic-k%-approximation set can be derived in the
same way to take into account multiple runs. It corresponds
to the average probabilistic-k%-approximation set computed
for each run done.

B. Compute an approached probabilistic empirical attain-
ment function

The complexity of Alg. 3 is in θ(Nsn+1), where Ns is the to-
tal number of evaluations taken into account. Then, the exact
value needs a lot of computation time. It will be interesting
to approximate EAF , in order to apply it on large population
size, or on problems with more than 2 objectives.

A simple way is to limit the number of areas defined. Let
cn << Nsn − 1, be the number of hyper-squares envisaged.
Then cn hyper-square of size 1/(c−1), are defined by defining
each set of objective values as [1, 1 − 1/(c − 1), 1 − 2/(c −
1) . . . , 0].

Then, we can use Alg. 3 as an approximation algorithm
with a complexity of Ns ∗ cn: step 2 is replaced cn cells,
uniformly distributed. c could be set in order to favour com-
putation time, or quality of the approximation.

We can also compute the probability that S dominates at
least as one point of an hyper-surface A. To do that, we only
need to compare S against the nadir point of A. Then we
have a upper bound for the exact probabilistic EAF function
(see Fig. 7).

Let us remark that computing the upper bound corresponds
to compute the lower bound, with a translation of each solu-
tion of S by a vector [−1/(c − 1), . . . ,−1/(c − 1)].
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Algorithm 3 (Algorithm to compute EAF)

Input: n (Number of objectives)
S (The set to evaluate)
Z− (nadir point)

Output: EAFT (EAF table)

Step 1: S = {S(x1) . . . S(xt)}
Step 2: Scale the values of each objective vector z ∈ S(x) (x ∈ S), into

the interval [0 . . . 1]n

Step 3: for each objective i ∈ [1 . . . n], T [i] ← Sort the different possible
values of the objective i, in decreasing order (T [i][j]= the jth worst
solution of S, according to the objective function fi)

Step 4: Ns ← Total number of evaluations

Step 5: for i in 1 . . . Nsn

1. V1 . . . Vn ← i, written in base Ns

2. Ref ← [T [1][V1], . . . , T [n][Vn]] (temporary reference
point)

3. p ← 0

4. for all x ∈ S do

(a) ps ←
∑

z∈S(x)
dominates(z,Ref)

sx

(b) p ← 1 − ((1 − p) ∗ (1 − ps))
(c) EAFT [Ref ] = p

Step 6: end for

Step 7: return EAFT

An alternative algorithm: The complexity of the approx-
imative EAF computation is in Ns ∗ cn. The next algo-
rithm changes this complexity to N(2c)n, which is interesting
while 2n < s, i.e. for problems with only a few objectives
to optimize. This algorithm proceeds as follows (EAFT
represents the set of areas where EAF value has to be
computed):

• fill EAFT values: initialize each cell to 0. Then, for
each evaluation, define its cell by dividing each objective
value by the range of one cell.

• then, for each solution z ∈ S(x) and for each cell, com-
pute how many solutions of the multiset S(x) dom-
inates the solution x. We can compute this in 2n

steps, using the previously computed values (Alg. 4).
For example, in the bi-objective case, EAFT [i][j] =
EAFT [i][j−1]+EAFT [i−1][j]−EAFT [i−1][j−1],
where i (resp. j) represents the ith (resp. jth) cell for
the first (resp. second) objective function. The Alg. 4
computes the following recursive relation:

EATF [x1] . . . [xn] =
1∑

i1=0
· · ·

1∑
in=0

(−1)

n∑

j=1
ij

EAFT [x1 − i1] . . . [xn − in]

(19)
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Figure. 7: Comparison of S against Au give the upper bound
of P (S 
 z∗), z∗ ∈ A. If the comparison is realized against
Al, we have a lower bound (S is represented by two multisets:
circle and square solutions).

Algorithm 4 (computeCell: one EAFT value computation)

Input: cell (Current cell)
dim (The envisaged dimension)

Output: EAFT[i]

Step 1: s ← 0
Step 2: for k in 0..dim − 1, s ← s + computeCell(cell − ck, k)
Step 3: return EAFT [cell] − s

C. Experimental results of EAF computation

We can apply the probabilistic EAF approximation to com-
pute an approximated probabilistic EmpiricalAttainment Sur-
face (EAS). Then, we can compute the maximum error of
each bound: (c+1)n−cn

cn . Then, by averaging the lower bound
EASl and the upper bound EASu, the maximum error is re-
duced to (EASl − EASu)/2, which is less than (c+1)n−cn

2∗cn .
We make several experimental EAF computation on un-

certain random populations which are used in section IV-A.
The Fig. 8 represents the computation time needed to com-
pute EAF , with different number of objective functions and
population size. This shows the interest of using the approx-
imation algorithm, especially with many objective functions.

The quality of the approximation is represented in Figs. 9
and 10. The computation time corresponds to the ratio be-
tween the approximation and the exact EAF computation
time. These figures show a good efficiency of EAF approx-
imative algorithm, especially with 2 objective functions to
optimize.

In Figs. 11 and 12, we represent the probabilistic-k%-
approximation set for one uncertain run on KUR and ZDT6
test functions. This graphical representation could be applied
for several runs, by averaging the probabilistic dominance of
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Figure. 9: Evaluation of the error ratio of the approximated
approach, with different C values (example with 2 objectives,
50 individuals and 5 evaluation per individual).

each possible area of the objective space. For example, if we
consider 50 runs, each run returning 50 individuals, which are
evaluated 10 times, it corresponds, in the bi-objective case, to
(50∗50∗10)2 = 6.25·108 potential different areas. Then, it is
better to compute an probabilistic-k%-approximation set by
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Figure. 10: Evaluation of the error ratio of the approximated
approach, with different C values (example with 3 objectives,
20 individuals and 5 evaluation per individual).
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Figure. 11: EAF output, with a single run on KUR problem
with EIV algorithm.

computing an approximated probabilistic EAF on a constant
set of cells (only c2 cells).

VI. Discussion

In this paper, we propose a method to handle uncertainty in
indicator-based multiobjective optimization. Our approach
tries to make no assumption about distribution, bounds and
general tendency of the uncertainty. We propose the algo-
rithm EIV , which computes the exact expected value of the
Iε-indicator. In order to apply this algorithm to environmen-
tal selection in EAs, we propose several algorithms which
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Figure. 12: EAF output, with a single run onZDT6problem
with EIV algorithm.

approximate the results obtained by EIV , in order to select
the best possible solutions during environmental selection,
according to the Iε-indicator quality indicator.

We made several experiments of the different methods pro-
posed. First, we consider the goal to minimize the loss in
quality during environmental selection: BCK give a good
approximation of EIV selection, which is more time con-
suming. Then, we made some experiments on classical mul-
tiobjective tests functions. Regarding several other methods,
Avg and PDR, EIV select the best solutions according to
the Iε-indicator, and BCK obtain the better approximation
of the ideal selection, especially on functions with more than
two objective to optimize. We use two different techniques to
evaluate the outputs: by computing the ’true’ objective vec-
tor value of every solution, then use the classical Iε-indicator,
and by computing a probabilistic Iε-indicator value, without
knowledge of the ’true’ objective vector function.

In the section V, we propose an algorithm to compute an
empirical attainment function, which evaluates the area of the
objective space which is dominated by the output with dif-
ferent confidence levels. We propose one exact algorithm,
and an approximative algorithm. We show some graphical
results, concerning the computational time and efficiency of
the algorithms. The exact algorithm is practicable only for a
small number of solutions and only for biobjective functions.
The approximation algorithms are practicable for 3 or 4 ob-
jective functions, but the approximation error increases with
the number of objective functions.

There are some open questions resulting from this study:

• We propose indicator-based evolutionary approaches in
order to handle uncertainty, but we only consider the
ES(N + 1) evolution strategy. It will be interesting to
evaluate the effectiveness of different evolution strate-
gies, such as ES(N +N), which allows a fast evolution
in only a few generations. Only the ES(N + 1) evolu-
tion strategy has been investigated actually, in order to
design an exact selection algorithm for this strategy. We

could adapt our algorithm to the ES(N + N) evolution
strategy by using two different ways; (1) Cut: evalu-
ate the fitness value of every solution, then select the N
bests; (2) Recursive: evaluate the solutions, then delete
the worst one, then re-evaluate the remaining solutions
- stop when only N solutions remains. The first ap-
proach is no more expensive in time than our proposed
approaches, the second approach seems more efficient
and natural, but more expensive to compute. The algo-
rithms presented in this article need to be adapted to the
ES(N + N) recursive selection strategy.

• In this article, we do not focus on the sample size setting,
i.e. the number of evaluations to be done on the envis-
aged solutions. However, this is an important parameter
of the optimization process. Indeed, a large sample size
implies more computation time needed to compare the
different solutions, but a good approximation of the real
probability density function of the solutions (see equa-
tion 3). A good trade-off between computation time and
quality of the approximation has to be found. This size
could be defined dynamically during the optimization
process, with a small initial value, which will increase
during the run. Indeed, the difficulty to compare solu-
tion increases with the overall quality of the population.
To achieve this, let set the initial sample size to 1, then
increase its value every time a negative convergence rate
is encountered after one new generation. Another idea
is proposed in [12]: every generation, the ranking error
of s − 1 evaluations against s evaluations is computed.
If the ranking error reach a threshold, the number of
evaluations is increased by 1. Lastly, different number
of evaluations could be defined for each solution of the
population. Indeed, it would be interesting to refine the
quality of the approximation for the oldest solutions of
the populations, i.e. those which are selected every gen-
eration.

These different questions have to be answered, both in the
bi-objective and multi-objective (n > 2) cases. Indeed, as
shown in this study, the number of objectives has an impact on
the results. Other parameters have to be checked, especially
the uncertainty considered.
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