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Abstract: The success of the Particle Swarm Optimiza-
tion (PSO) algorithm as a single-objective optimizer (mainly
when dealing with continuous search spaces) has motivated re-
searchers to extend the use of this bio-inspired technique to
other areas. One of them is multi-objective optimization. De-
spite the fact that the first proposal of a Multi-Objective Par-
ticle Swarm Optimizer (MOPSO) is over six years old, a con-
siderable number of other algorithms have been proposed since
then. This paper presents a comprehensive review of the vari-
ous MOPSOs reported in the specialized literature. As part of
this review, we include a classification of the approaches, and
we identify the main features of each proposal. In the last part
of the paper, we list some of the topics within this field that we
consider as promising areas of future research.

I. Introduction

Optimization problems that have more that one objective
function are rather common in every field or area of knowl-
edge. In such problems, the objectives to be optimized are
normally in conflict with respect to each other, which means
that there is no single solution for these problems. Instead,
we aim to find good “trade-off” solutions that represent the
best possible compromises among the objectives.

Particle Swarm Optimization (PSO) is a heuristic search
technique (which is considered as an evolutionary algorithm
by its authors [18]) that simulates the movements of a flock
of birds which aim to find food. The relative simplicity of
PSO and the fact that is a population-based technique have
made it a natural candidate to be extended for multi-objective
optimization.

Moore and Chapman proposed the first extension of the
PSO strategy for solving multi-objective problems in an un-
published manuscript from 19991 [41]. After this early
attempt, a great interest to extend PSO arose among re-

1This paper may be found in the EMOO repository located at:
http://delta.cs.cinvestav.mx/˜ccoello/EMOO/

searchers, but interestingly, the next proposal was not pub-
lished until 2002. Nevertheless, there are currently over
twenty five different proposals of MOPSOs reported in the
specialized literature. This paper provides the first survey
of this work, attempting to classify these proposals and to
delineate some of the potential research paths that could be
followed in the future by researchers in this area.

The remainder of this paper is organized as follows. In
Section II, we provide some basic concepts from multi-
objective optimization required to make the paper self-
contained. Section III presents an introduction to the PSO
strategy and Section IV presents a brief discussion about ex-
tending the PSO strategy for solving multi-objective prob-
lems. A complete review of the MOPSO approaches is pro-
vided in Section V. We provide a brief discussion about
the convergence properties of PSO and MOPSO in Section
VI. In Section VII, possible paths of future research are dis-
cussed and, finally, we present our conclusions in Section
VIII.

II. Basic Concepts

We are interested in solving problems of the type2:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision
variables,fi : IRn → IR, i = 1, ..., k are the objective
functions andgi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p
are the constraint functions of the problem.

2Without loss of generality, we will assume only minimization problems.
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Figure. 1: Dominance relation in a bi-objective space.

To describe the concept of optimality in which we are
interested, we will introduce next a few definitions.

Definition 1. Given two vectors~x, ~y ∈ IRk, we say that
~x ≤ ~y if xi ≤ yi for i = 1, ..., k, and that~x dominates~y
(denoted by~x ≺ ~y) if ~x ≤ ~y and~x 6= ~y.

Figure 1 shows a particular case of thedominance
relation in the presence of two objective functions.

Definition 2. We say that a vector of decision variables
~x ∈ X ⊂ IRn is nondominatedwith respect toX , if there
does not exist another~x′ ∈ X such that~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables
~x∗ ∈ F ⊂ IRn (F is the feasible region) isPareto-optimal
if it is nondominated with respect toF .

Definition 4. ThePareto Optimal SetP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}
Definition 5. ThePareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}
Figure 2 shows a particular case of thePareto front in the

presence of two objective functions.
We thus wish to determine the Pareto optimal set from the set
F of all the decision variable vectors that satisfy (2) and (3).
Note however that in practice, not all the Pareto optimal set
is normally desirable (e.g., it may not be desirable to have
different solutions that map to the same values in objective
function space) or achievable.

III. Particle Swarm Optimization

James Kennedy and Russell C. Eberhart [30] originally
proposed the PSO algorithm for optimization. PSO is a
population-based search algorithm based on the simulation
of the social behavior of birds within a flock. Although orig-
inally adopted for balancing weights in neural networks [17],
PSO soon became a very popular global optimizer, mainly in
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Figure. 2: The Pareto front of a set of solutions in a two
objective space.

problems in which the decision variables are real numbers3

[32, 19].
According to Angeline [3], we can make two main distinc-

tions between PSO and an evolutionary algorithm:

1. Evolutionary algorithms rely on three mechanisms in
their processing: parent representation, selection of in-
dividuals and the fine tuning of their parameters. In con-
trast, PSO only relies on two mechanisms, since PSO
does not adopt an explicit selection function. The ab-
sence of a selection mechanism in PSO is compensated
by the use of leaders to guide the search. However, there
is no notion of offspring generation in PSO as with evo-
lutionary algorithms.

2. A second difference between evolutionary algorithms
and PSO has to do with the way in which the individ-
uals are manipulated. PSO uses an operator that sets
the velocity of a particle to a particular direction. This
can be seen as a directional mutation operator in which
the direction is defined by both the particle’s personal
best and the global best (of the swarm). If the direc-
tion of the personal best is similar to the direction of
the global best, the angle of potential directions will be
small, whereas a larger angle will provide a larger range
of exploration. In contrast, evolutionary algorithms use
a mutation operator that can set an individual in any di-
rection (although the relative probabilities for each di-
rection may be different). In fact, the limitations exhib-
ited by the directional mutation of PSO has led to the
use of mutation operators similar to those adopted in
evolutionary algorithms.

Two are the key aspects by which we believe that PSO has
become so popular:

3It is worth noting that there have been proposals to use alternative en-
codings with PSO (e.g., binary [31] and integer [26]), but none of them has
been as popular as the original proposal in which the algorithm operates
using vectors of real numbers.
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1. The main algorithm of PSO is relatively simple (since
in its original version, it only adopts one operator for
creating new solutions, unlike most evolutionary algo-
rithms) and its implementation is, therefore, straight-
forward. Additionally, there is plenty of source code
of PSO available in the public domain (see for exam-
ple: http://www.swarmintelligence.org/
codes.php ).

2. PSO has been found to be very effective in a wide va-
riety of applications, being able to produce very good
results at a very low computational cost [32, 20].

In order to establish a common terminology, in the follow-
ing we provide some definitions of several technical terms
commonly used:

• Swarm: Population of the algorithm.

• Particle: Member (individual) of the swarm. Each par-
ticle represents a potential solution to the problem being
solved. The position of a particle is determined by the
solution it currently represents.

• pbest(personal best): Personal best position of a given
particle, so far. That is, the position of the particle that
has provided the greatest success (measured in terms of
a scalar value analogous to the fitness adopted in evolu-
tionary algorithms).

• lbest(local best): Position of the best particle member
of the neighborhood of a given particle.

• gbest(global best): Position of the best particle of the
entire swarm.

• Leader: Particle that is used to guide another particle
towards better regions of the search space.

• Velocity (vector): This vector drives the optimization
process, that is, it determines the direction in which a
particle needs to “fly” (move), in order to improve its
current position.

• Inertia weight: Denoted byW , the inertia weight is
employed to control the impact of the previous history
of velocities on the current velocity of a given particle.

• Learning factor: Represents the attraction that a parti-
cle has toward either its own success or that of its neigh-
bors. Two are the learning factors used:C1 andC2. C1

is thecognitivelearning factor and represents the attrac-
tion that a particle has toward its own success.C2 is the
social learning factor and represents the attraction that
a particle has toward the success of its neighbors. Both,
C1 andC2, are usually defined as constants.

• Neighborhood topology: Determines the set of parti-
cles that contribute to the calculation of thelbestvalue
of a given particle.

In PSO, particles are “flown” through hyperdimensional
search space. Changes to the position of the particles within
the search space are based on the social-psychological ten-
dency of individuals to emulate the success of other individ-
uals.

The position of each particle is changed according to its
own experience and that of its neighbors. Let~xi(t) denote
the position of particlepi, at time stept. The position of
pi is then changed by adding a velocity~vi(t) to the current
position, i.e.:

~xi(t) = ~xi(t− 1) + ~vi(t) (4)

The velocity vector reflects the socially exchanged infor-
mation and, in general, is defined in the following way:

~vi(t) = W~vi(t− 1) + C1r1(~xpbesti
− ~xi(t))

+C2r2(~xleader − ~xi(t)) (5)

where andr1, r2 ∈ [0, 1] are random values.
Particles tend to be influenced by the success of anyone

they are connected to. These neighbors are not necessarily
particles which are close to each other in parameter (deci-
sion variable) space, but instead are particles that are close
to each other based on a neighborhood topology that defines
the social structure of the swarm [32].

Particles can be connected to each other in any kind of
neighborhood topology represented as a graph. In the fol-
lowing, list some typical neighborhood graphs used in PSO.

• Empty graph: In this topology, particles are isolated.
Each particle is connected only with itself, and it com-
pares its current position only to its own best position
found so far (pbest) [19]. In this case,C2 = 0 in Equa-
tion 5.

• Local best: In this topology, each particle is affected
by the best performance of itsk immediate neighbors.
Particles are influenced by the best position within their
neighborhood (lbest), as well as their own past experi-
ence (pbest) [19]. Whenk = 2, this structure is equiv-
alent to a ring topology such as the one shown in Fig-
ure 3. In this case,leader=lbestin Equation 5.

• Fully connected graph: This topology is the opposite
of theempty graph. The fully connected topology con-
nects all members of the swarm to one another. Each
particle uses its history of experiences in terms of its
own best solution so far (pbest) but, in addition, the par-
ticle uses the position of the best particle from the entire
swarm (gbest). This structure is also calledstar topol-
ogy in the PSO community [19]. See Figure 4. In this
case,leader=gbestin Equation 5.

• Star network: In this topology, one particle is con-
nected to all others and they are connected to only that
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Figure. 3: The ring neighborhood topology that represents
the local best scheme, whenk = 2. In this commonlocal
best case, each particle is affected only by its two immediate
adjacent neighbors. Each circle represents a particle.

Figure. 4: The fully connected graph represents thefully
connectedneighborhood topology (each circle represents a
particle). All members of the swarm are connected to one
another.

focal particle

Figure. 5: The star network topology (each circle represents
a particle). Tne focal particle is connected to all the other
particles and they are connected to only that one.

Figure. 6: The tree network topology (each circle represents
a particle). All particles are arranged in a tree. A particle is
influenced by its own best position so far (pbest) and by the
best position of the particle that is directly above in the tree.
Here, we show an example of a topology defined by a regular
tree with a height equal to 3, degree equal to 4 and a total of
21 particles.

one (calledfocal particle) [19]. See Figure 5. Parti-
cles are isolated from one another, as all information
has to be communicated through thefocal particle. The
focal particle compares performances of all particles in
the swarm and adjusts its trajectory towards the best of
them. That performance is eventually communicated
to the rest of the swarm. This structure is also called
wheel topology in the PSO community. In this case,
leader=focalin Equation 5.

• Tree network: In this topology, all particles are
arranged in a tree and each node of the tree contains
exactly one particle [28]. See Figure 6. A particle is
influenced by its own best position so far (pbest) and
by the best position of the particle that is directly above
in the tree (parent). If a particle at a child node has
found a solution that is better than the best so far solu-
tion of the particle at the parent node, both particles are
exchanged. In this way, this topology offers a dynamic
neighborhood. This structure is also calledhierarchical
topology in the PSO community. In this case,leader=
pbestparent in Equation 5.

The neighborhood topology is likely to affect the rate of
convergence as it determines how much time it takes to the
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Begin
Initialize swarm
Locate leader
g = 0
While g < gmax

For each particle
Update Position (Flight)
Evaluation
Updatepbest

EndFor
Update leader
g++

EndWhile
End

Figure. 7: Pseudocode of the general PSO algorithm.

particles to find out about the location of good (better) re-
gions of the search space. For example, since in thefully con-
nectedtopology all particles are connected to each other, all
particles receive the information of the best solution from the
entire swarm at the same time. Thus, when using such topol-
ogy, the swarm tends to converge more rapidly than when
using local besttopologies, since in this case, the informa-
tion of the best position of the swarm takes a longer time to
be transferred. However, for the same reason, thefully con-
nectedtopology is also more susceptible to suffer premature
convergence (i.e., to converge to local optima) [20].

Figure 7 shows the way in which the general (single-
optimization) PSO algorithm works. First, the swarm is ini-
tialized. This initialization includes both positions and ve-
locities. The correspondingpbestof each particle is initial-
ized and the leader is located (usually thegbestsolution is
selected as the leader). Then, for a maximum number of iter-
ations, each particle flies through the search space updating
its position (using (4) and (5)) and itspbestand, finally, the
leader is updated too.

IV. Particle Swarm Optimization for Multi-
Objective Problems

In order to apply the PSO strategy for solving multi-objective
optimization problems, it is obvious that the original scheme
has to be modified. As we saw in Section II, the solution
set of a problem with multiple objectives does not consist
of a single solution (as in global optimization). Instead, in
multi-objective optimization, we aim to find a set of different
solutions (the so-called Pareto optimal set). In general, when
solving a multi-objective problem, three are the main goals
to achieve [73]:

1. Maximize the number of elements of the Pareto optimal
set found.

2. Minimize the distance of the Pareto front produced by

our algorithm with respect to the true (global) Pareto
front (assuming we know its location).

3. Maximize the spread of solutions found, so that we can
have a distribution of vectors as smooth and uniform as
possible.

Given the population-based nature of PSO, it is desirable
to produce several (different) nondominated solutions with a
single run. So, as with any other evolutionary algorithm, the
three main issues to be considered when extending PSO to
multi-objective optimization are [13]:

1. How to select particles (to be used as leaders) in order
to give preference to nondominated solutions over those
that are dominated?

2. How to retain the nondominated solutions found during
the search process in order to report solutions that are
nondominated with respect to all the past populations
and not only with respect to the current one? Also, it is
desirable that these solutions are well spread along the
Pareto front.

3. How to maintain diversity in the swarm in order to avoid
convergence to a single solution?

As we could see in the previous section, when solving
single-objective optimization problems, the leader that each
particle uses to update its position is completely determined
once a neighborhood topology is stablished. However, in the
case of multi-objective optimization problems, each particle
might have a set of different leaders from which just one can
be selected in order to update its position. Such set of lead-
ers is usually stored in a different place from the swarm, that
we will call external archive4: This is a repository in which
the nondominated solutions found so far are stored. The so-
lutions contained in the external archive are used as leaders
when the positions of the particles of the swarm have to be
updated. Furthermore, the contents of the external archive is
also usually reported as the final output of the algorithm.

Figure 8 shows the way in which a general MOPSO al-
gorithm works. We have marked withitalics the processes
that make this algorithm different from the general PSO al-
gorithm for single objective optimization.

First, the swarm is initialized. Then, a set of leaders is also
initialized with the nondominated particles from the swarm.
As we mentioned before, the set of leaders is usually stored
in an external archive. Later on, some sort of quality measure
is calculated for all the leaders in order to select (usually)
one leader for each particle of the swarm. At each genera-
tion, for each particle, a leader is selected and the flight is
performed. Most of the existing MOPSOs apply some sort
of mutation operator5 after performing the flight. Then, the

4This external archiveis also used by many Multi-Objective Evolution-
ary Algorihtms (MOEAs).

5The mutation operators adopted in the PSO literature have also been
calledturbulenceoperators.
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Begin
Initialize swarm
Initialize leaders in an external archive
Quality(leaders)
g = 0
While g < gmax

For each particle
Select leader
Update Position (Flight)
Mutation
Evaluation
Updatepbest

EndFor
Update leaders in the external archive
Quality(leaders)
g++

EndWhile
Report results in the external archive

End

Figure. 8: Pseudocode of a general MOPSO algorithm.

particle is evaluated and its correspondingpbest is updated.
A new particle replaces itspbest particle usually when this
particle is dominated or if both are incomparable (i.e., they
are both nondominated with respect to each other). After all
the particles have been updated, the set of leaders is updated,
too. Finally, the quality measure of the set of leaders is re-
calculated. This process is repeated for a certain (usually
fixed) number of iterations.

As we can see, and given the characteristics of the PSO
algorithm, the issues that arise when dealing with multi-
objective problems are related with two main algorithmic de-
sign aspects [64]:

1. Selection and updating of leaders:

• How to select a single leader out of set of non-
dominated solutions which are all equally good?
Should we select this leader in a random way or
should we use an additional criterion (to promote
diversity, for example)?

• How to select the particles that should remain in
the external archive from one iteration to another?

2. Creation of new solutions:

• How to promote diversity through the two main
mechanisms to create new solutions: updating of
positions (Equations 4 and 5) and mutation (turbu-
lence) operator.

These issues are discussed in more detail in the next sub-
sections.

A. Leaders in Multi-Objective Optimization

Since the solution of a multi-objective problem consist of a
set of equally good solutions, it is evident that the concept of
leader traditionally adopted in PSO has to be changed.

A few researches have avoided the problem of defining a
new concept of leader for multi-objective problems by adopt-
ing aggregating functions (i.e., weighted sums of the objec-
tives) or approaches that optimize each objective separately.
We will briefly discuss these approaches in Section V.

However, it is important to indicate that the majority of the
currently proposed MOPSO approaches redefine the concept
of leader.

As we mentioned before, the selection of a leader is a key
component when designing a MOPSO approach. The most
straightforward approach is to consider every nondominated
solution as a new leader and then, just one leader has to be
selected. In this way, aquality measure that indicates how
good is a leader is very important. Obviously, such feature
can be defined in several different ways. As we will see in
Section V, there exist already different proposals to deal with
this issue.

One posible way of defining suchquality measure can be
related to density measures. Promoting diversity may be
done through this process by means of mechanisms based
on somequality measures that indicate the closeness of the
particles within the swarm.

Several authors have proposed leader selection techniques
that are based on density measures. In order to help un-
derstanding the specific approaches that are going to be de-
scribed later on, we present here two of the most important
density measures used in the area of multi-objective opti-
mization:

• Nearest neighbor density estimator[16]. The near-
est neighbor density estimator gives us an idea of how
crowded are the closest neighbors of a given particle, in
objective function space. This measure estimates the
perimeter of the cuboid formed by using the nearest
neighbors as the vertices. See Figure 9.

• Kernel density estimator [22, 15]: When a particle is
sharing resources with others, its fitness is degraded in
proportion to the number and closeness to particles that
surround it within a certain perimeter. A neighborhood
of a particle is defined in terms of a parameter called
σshare that indicates the radius of the neighborhood.
Such neighborhoods are calledniches. See Figure 10.

B. Retaining and Spreading Nondominated Solutions

As we mentioned before, it is important to retain the non-
dominated solutions found alongall the search process so
that we can report at the end those solutions that are non-
dominated with respect to all the previous populations. This
is important not only for pragmatic reasons, but also for the-
oretical ones [54].
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Figure. 9: The nearest neighbor density estimator for an ex-
ample with two objective functions. Particles with a larger
value of this estimator are preferred.

σ
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Figure. 10: For each particle, a niche is defined. Particles
whose niche is less crowded are preferred.

The most straightforward way of retaining solutions that
are nondominated with respect to all the previous populations
(or swarms) is to use an external archive. Such an archive
will allow the entrance of a solution only if: (a) it is non-
dominated with respect to the contents of the archive or (b)
it dominates any of the solutions within the archive (in this
case, the dominated solutions have to be deleted from the
archive).

This approach has, however, the drawback of increasing
the size of the archive very quickly. This is an important is-
sue because the archive has to be updated at each generation.
Thus, this update may become very expensive, computation-
ally speaking, if the size of the archive grows too much. In
the worst case, all members of the swarm may wish to enter
into the archive, at each generation. Thus, the correspond-
ing updating process, at each generation, has a complexity of
O(kN2), whereN is the size of the swarm andk is the num-
ber of objectives. In this way, the complexity of the updating
process for the complete run is ofO(kMN2), whereM is
the total number of iterations.

Thus, mainly due to practical reasons, archives tend to
be bounded [13], which makes necessary the use of an ad-
ditional criterion to decide which nondominated solutions
to retain, once the archive is full. In evolutionary multi-
objective optimization, researchers have adopted different
techniques to prune the archive (e.g., clustering [74] and
geographical-based schemes that place the nondominated so-
lutions in cells in order to favor less crowded cells when
deleting in-excess nondominated solutions [34]). However,
the use of an archive introduces additional issues: for ex-
ample, do we impose additional criteria to enter the archive
instead of just using nondominance (e.g., use the distribution
of solutions as an additional criterion)?

Note that, strictly speaking, three archives should be used
when extending PSO for multi-objective optimization: one
for storing the global best solutions, one for the personal best
values and a third one for storing the local best (if applica-
ble). However, in practice, few authors report the use of more
than one archive in their MOPSOs.

Besides the use of an external file, it is also possible to
use a plus selection in which parents compete with their chil-
dren and those which are nondominated (and possibly com-
ply with some additional criterion such as providing a better
distribution of solutions) are selected for the following gener-
ation. In the case of PSO, a plus selection involves selecting
from a merge of two consecutive swarms.

More recently, other researchers have proposed the use
of relaxed forms of dominance. The main one adopted in
PSO has beenε-dominance [36], which is illustrated in Fig-
ure 11. The main use of this concept in multi-objective PSO
has been to filter solutions in the external archive. By using
ε-dominance, we define a set of boxes of sizeε and only one
nondominated solution is retained for each box (e.g., the one
closest to the lower lefthand corner). This is illustrated in
Figure 12, for a bi-objective case. The use ofε-dominance,
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Figure. 11: To the left, we can see the area that is dominated
by a certain solution. To the right, we graphically depict the
ε-dominance concept. In this case, the area being dominated
has been extended by a value proportional to the parameterε
(which is defined by the user).
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Figure. 12: An example of the use ofε-dominance in an
external archive. Solution 1 dominates solution 2, therefore
solution 1 is preferred. Solutions 3 and 4 are incomparable.
However, solution 3 is preferred over solution 4, since solu-
tion 3 is the closer to the lower lefthand corner represented
by point (2ε,2ε). Solution 5 dominates solution 6, therefore
solution 5 is preferred. Solution 7 is not accepted since its
box, represented by point (2ε,3ε) is dominated by the box
represented by point (2ε,2ε).

as proposed in [36] and illustrated in Figure 12, guarantees
that the retained solutions are nondominated with respect to
all solutions generated during the run. It is worth noting,
however, that, when usingε-dominance, the size of the fi-
nal external archive depends on theε-value, which is nor-
mally a user-defined parameter [36]. Mostaghim and Teich
[43] have found that when comparingε-dominance against
existing clustering techniques for fixing the archive size, the
ε-dominance method can find solutions much faster (com-
putationally speaking) than the clustering technique with a
comparable (and even better in some cases) convergence and
diversity.

C. Promoting Diversity while Creating New Solutions

It is well-known that one of the most important features of
the PSO algorithm is its fast convergence. This is a positive
feature as long as we don’t have premature convergence (i.e.,
convergence to a local optimum).

Premature convergence is caused by the rapid loss of di-
versity within the swarm. So, the appropriate promotion of
diversity in PSO is a very important issue in order to control
its (normally fast) convergence.

As we mentioned in Section IV-A, when adopting PSO for
solving multi-objective optimization problems, it is possible
to promote diversity through the selection of leaders. How-
ever, this can be also done through the two main mechanisms
used for creating new solutions:

1. Updating of positions. As we mentioned in Section
III, the use of different neighborhood topologies deter-
mines how fast is the process of transfering the infor-
mation through the swarm (since a neighborhood deter-
mines who theleaderparticle is in Equation 5). Since
in a fully connectedtopology all particles are connected
with each other, the information is transferred faster
than in the case of alocal bestor atreetopology, since in
these cases particles have smaller neighborhoods. Un-
der the same argument, a specified neighborhood topol-
ogy also determines how fast is diversity lost within the
swarm. Since in afully connectedtopology, the tranfer
of information is fast, when using this topology, diver-
sity within the swarm is also lost rapidly. In this way,
topologies that define neighborhoods smaller than the
entire swarm for each particle can also preserve diver-
sity within the swarm a longer time.

On the other hand, diversity can also be promoted by
means of the inertia weight (W in Equation 5). As it was
defined in Section III, the inertia weight is employed to
control the impact of the previous history of velocities
on the current velocity. Thus, the inertia weight influ-
ences the trade-off between global (wide-ranging) and
local (nearby) exploration abilities [58]. A large inertia
weight facilitates global exploration (searching new ar-
eas) while a smaller inertia weight tends to facilitate lo-
cal exploration to fine-tune the current search area. The
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value of the inertia weight may vary during the opti-
mization process. Shi [59] asserted that by linearly de-
creasing the inertia weight from a relatively large value
to a small one through the course of the PSO run, the
PSO tends to have more global search ability at the be-
ginning of the run and have more local search ability
near the end of the run. On the other hand, Zheng et
al. [72] argue that either global or local search ability
associates with a small inertia and that a large inertia
weight provides the algorithm more chances to be sta-
bilized. In this way, inspired on the process of the sim-
ulated annealing algorithm, the authors proposed to use
an increasing inertia weight through the PSO run.

The addition of velocity to the current position to gen-
erate the next position is similar to the mutation opera-
tor in evolutionary algorithms, except that “mutation” in
PSO is guided by the experience of a particle and that of
its neighbors. In other words, PSO performs “mutation”
with a “conscience” [58].

2. Through the use of a mutation (or turbulence) oper-
ator.

As mentioned in the previous section, when a particle
updates its position, a mutation with “conscience” oc-
curs. Sometimes, however, some unconciousness or
“craziness”, as called by Kennedy and Eberhart in the
original proposal of PSO [30], is needed. Craziness,
also referred as turbulence, reflects the change in a par-
ticle’s flight which is out of its control [21].

In general, when a swarm stagnates, that is, when the
velocities of the particles are almost zero, it becomes
unable to generate new solutions which might lead the
swarm out of this state. This behavior can lead to the
whole swarm being trapped in a local optimum from
which it becomes impossible to escape. Since the global
best individual attracts all members of the swarm, it is
possible to lead the swarm away from a current location
by mutating a single particle if the mutated particle be-
comes the new global best. This mechanism potentially
provides a means both of escaping local optima and of
speeding up the search [62].

In this way, the use of a mutation operator is very impor-
tant in order to escape from local optima and to improve
the exploratory capabilities of PSO. When a solution is
chosen to be mutated each component is then mutated
(randomly changed) or not with certain probability. Ac-
tually, different mutation operators have been proposed
that mutate components of either the position or the ve-
locity of a particle.

In our experience, the choice of a good mutation oper-
ator is a difficult task that has a significant impact on
performance. On the other hand, once we have selected
a specific mutation operator another difficult task is to
decide how much mutation to apply: with how much

probability, in which moments of the process, in which
specific component of a particle, etc.

Several proposed approaches have used different mu-
tation operators, however, there are also approaches
which do not use any kind of mutation operator and that
show good performance. So, the use of mutation is an
issue that certainly deserves a more careful study.

V. A Taxonomy of Approaches

The taxonomy that we propose to classify the current MOP-
SOs is the following:

• Aggregating approaches

• Lexicographic ordering

• Sub-Population approaches

• Pareto-based approaches

• Combined approaches

• Other approaches

We will discuss next each of these types of approaches.
Also, Table 1 summarizes all the different approaches and
indicates their most important features.

A. Aggregating Approaches

Under this category we consider approaches that combine (or
“aggregate”) all the objectives of the problem into a single
one. In other words, the multi-objective problem is trans-
formed into a single-objective one. This is not a new idea,
since aggregating functions can be derived from the well-
known Kuhn-Tucker conditions for nondominated solutions
[35].

• Parsopoulos and Vrahatis [50]: This algorithm adopts
three types of aggregating functions: (1) a conventional
linear aggregating function (where weights are fixed
during the run), (2) a dynamic aggregating function
(were weights are gradually modified during the run)
and (3) the bang bang weighted aggregation approach
(were weights are abruptly modified during the run)6

[29]. In all cases, the authors adopt thefully connected
topology.

• Baumgartner et al. [6]: This approach, based on the
fully connectedtopology, uses linear aggregating func-
tions. In this case, the swarm is equally partitioned
into n subswarms, each of which uses a different set of
weights and evolves into the direction of its own swarm
leader. The approach adopts a gradient technique to
identify the Pareto optimal solutions.

6This approach has the peculiarity of being able to generate nonconvex
portions of the Pareto front, which is something that traditional linear aggre-
gating functions cannot do [14].
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B. Lexicographic Ordering

In this method, the user is asked to rank the objectives in or-
der of importance. The optimum solution is then obtained by
minimizing the objective functions separately, starting with
the most important one and proceeding according to the as-
signed order of importance of the objectives [40]. Lexico-
graphic ordering tends to be useful only when few objective
functions are used (two or three), and it may be sensitive to
the ordering of the objectives [10].

• Hu and Eberhart [24]: In this algorithm, only one objec-
tive is optimized at a time using a scheme similar to lex-
icographic ordering [13]. This approach adopts thering
(local best) topology. No external archive is adopted
in this case. However, in a further version of this ap-
proach [25], the authors incorporate an external archive
(called “extended memory”) and introduce some further
improvements to their dynamic neighborhood PSO ap-
proach.

C. Sub-Population Approaches

These approaches involve the use of several subpopulations
as single-objective optimizers. Then, the subpopulations
somehow exchange information or recombine among them-
selves aiming to produce trade-offs among the different so-
lutions previously generated for the objectives that were sep-
arately optimized.

• Parsopoulos et al. [49] studied a parallel version of
the Vector Evaluated Particle Swarm (VEPSO) method
for multi-objective problems. VEPSO is a multi-swarm
variant of PSO, which is inspired on the Vector Evalu-
ated Genetic Algorithm (VEGA) [56, 57]. In VEPSO,
each swarm is evaluated using only one of the objec-
tive functions of the problem under consideration, and
the information it possesses for this objective function
is communicated to the other swarms through the ex-
change of their best experience (gbestparticle). The au-
thors argue that this process can lead to Pareto optimal
solutions.

• Chow and Tsui [8]: In this paper, the authors use PSO
as an autonomous agent response learning algorithm.
For that sake, the authors propose to decompose the
award function of the autonomous agent into a set of
local award functions and, in this way, to model the re-
sponse extraction process as a multi-objective optimiza-
tion problem. A modified PSO called “Multi-Species
PSO” is introduced by considering each objective func-
tion as a species swarm. A communication channel is
established between the neighboring swarms for trans-
mitting the information of the best particles, in order to
provide guidance for improving their objective values.
Also, the authors use the flight formula of thefully con-
nectedtopology, but include aneighbor swarm refer-

ence velocity. Such velocity is directly related with the
best particle within each subswarm (similar tolbest).

D. Pareto-Based Approaches

These approaches use leader selection techniques based on
Pareto dominance. The basic idea of all the approaches con-
sidered here is to select as leaders to the particles that are
nondominated with respect to the swarm. Note however, that
several variations of the leader selection scheme are possi-
ble since most authors adopt additional information to select
leaders (e.g., information provided by a density estimator) in
order to avoid a random selection of a leader from the current
set of nondominated solutions.

• Moore and Chapman [41]: This algorithm was pre-
sented in an unpublished document and it is based on
Pareto dominance. The authors emphasize the impor-
tance of performing both an individual and a group
search (a cognitive component and a social component).
In this approach, the personal best (pbest) of a particle
is a list of all the nondominated solutions it has found
in its trajectory. When selecting apbest, a particle from
the list is randomly chosen. Since thering topology
is used, when selecting the best particle of the neigh-
borhood, the solutions contained in thepbestlists are
compared, and a nondominated solution with respect to
the neighborhood is chosen. The authors don’t indicate
how they choose thelbestparticle when more that one
nondominated solution is found in the neigborhood.

• Ray and Liew [53]: This algorithm (based on afully
connectedtopology) uses Pareto dominance and com-
bines concepts of evolutionary techniques with the par-
ticle swarm. The approach uses a nearest neighbor
density estimator to promote diversity (by means of a
roulette selection scheme of leaders based on this value)
and a multilevel sieve to handle constraints (for this, the
authors adopt the constraint and objective matrices pro-
posed in some of their previous research [52]). The set
of leaders maintained by the authors can be considered
an external archive.

• Fieldsend and Singh [21]: This approach uses an uncon-
strained elite external archive (in which a special data
structure called “dominated tree” is adopted) to store
the nondominated individuals found along the search
process. The archive interacts with the primary pop-
ulation in order to define leaders. The selection of the
gbestfor a particle in the swarm is based on the structure
defined by the dominated tree. First, a composite point
of the tree is located based on dominance relations, and
then the closest member (in objective function space)
of the composite point is chosen as the leader. On the
other hand, a set of personal best particles found (non-
dominated) is also maintained for each swarm member,
and the selection is performed uniformly. This approach
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also uses a “turbulence” operator that is basically a mu-
tation operator that acts on the velocity value used by
the PSO algorithm.

• Coello et al. [11, 12]: This proposal is based on the idea
of having an external archive in which every particle
will deposit its flight experiences after each flight cycle.
The updates to the external archive are performed con-
sidering a geographically-based system defined in terms
of the objective function values of each particle. The
search space explored is divided on hypercubes. Each
hypercube receives a fitness value based on the num-
ber of particles it contains. Thus, in order to select a
leader for each particle of the swarm, a roulette-wheel
selection using these fitness values is first applied, to se-
lect the hypercube from which the leader will be taken.
Once a hypercube has been selected, the leader is ran-
domly chosen. This approach also uses a mutation op-
erator that acts both on the particles of the swarm, and
on the range of each design variable of the problem to
be solved.

In more recent work, Toscano and Coello [66] use the
concept of Pareto dominance to determine the flight di-
rection of a particle. The authors adopt clustering tech-
niques to divide the population of particles into several
swarms. This aims to provide a better distribution of
solutions in decision variable space. Each sub-swarm
has its own set of leaders (nondominated particles). In
each sub-swarm, a PSO algorithm is executed (leaders
are randomly chosen) and, at some point, the different
sub-swarms exchange information: the leaders of each
swarm are migrated to a different swarm in order to vari-
ate the selection pressure. Also, this approach does not
use an external archive since elitism in this case is an
emergent process derived from the migration of leaders.

• Srinivasan and Hou [61]: This approach, called Parti-
cle Swarm Inspired Evolutionary Algorithm (PS-EA),
is a hybrid between PSO and an evolutionary algorithm.
The main aim is to use EA operators (mutation, for ex-
ample) to emulate the workings of PSO mechanisms,
based on afully connectedtopology. Since the authors
mention that the final swarm constitutes the final solu-
tion (Pareto front), we conclude that a plus selection is
performed at each iteration of the algorithm. Also, the
authors use a niche count and a Pareto ranking approach
in order to assign a fitness value to the particles of the
swarm. However, the selection technique used is not
described in the paper.

• Mostaghim and Teich [44]: They propose asigma
method in which the leader for each particle is selected
in order to improve the convergence and diversity of a
MOPSO approach. The idea of the sigma method is
similar to compromise programming [13]. In order to
select a leader for each particle of the swarm, asigma

value is assigned to each particle of the swarm and of
the external archive. Each particle of the swarm selects
as its leader the particle of the external archive with the
closest sigma value. The use of the sigma values makes
the selection pressure of PSO even higher, which may
cause premature convergence in some cases. The au-
thors also use a “turbulence” operator, which is applied
on decision variable space. This approach has been suc-
cessfully applied to the molecular force field parame-
trization problem [42].

In further work, Mostaghim and Teich [43] studied the
influence ofε-dominance [36] on MOPSO methods.ε-
dominance is compared with existing clustering tech-
niques for fixing the external archive size and the so-
lutions are compared in terms of computational time,
convergence and diversity. The results show that theε-
dominance method can find solutions much faster than
the clustering technique with a comparable (and even
better in some cases) convergence and diversity. The
authors suggest a new density measure (sigma method)
inspired on their previous work [44]. Also, based on
the idea that the initial external archive from which the
particles have to select a leader has influence on the
diversity of solutions, the authors propose the use of
successive improvements adopting a previous external
archive of solutions. In this way, in more recent work,
Mostaghim and Teich [45] propose a new method called
coveringMOPSO (cvMOPSO) which retakes this idea.
This method works in two phases. In phase 1, a MOPSO
algorithm is run with an external archive with restricted
size and the goal is to obtain a good approximation of
the Pareto-front. In the phase 2, the non-dominated so-
lutions obtained from the phase 1 are considered as the
input external archive of the cvMOPSO. The particles in
the swarm of the cvMOPSO are divided into subswarms
around each non-dominated solution after the first gen-
eration. The task of the subswarms is to cover the gaps
between the non-dominated solutions obtained from the
phase 1. No restrictions on the archive size are imposed
in the phase 2.

• Bartz et al. [5]: This approach starts from the idea
of introducing elitism (through the use of an external
archive) into PSO. Different methods for selecting and
deleting particles (leaders) from the archive are ana-
lyzed to generate a satisfactory approximation of the
Pareto front. The deletion methods analyzed are based
on the contribution of each particle to the diversity of
the Pareto front. Selecting methods are either inversely
related to the fitness value or based on the previous suc-
cess of each particle. The authors provide some statisti-
cal analysis in order to assess the impact of each of the
parameters used by their approach.

• Li [37]: This approach is based on afully connected
topology and incorporates the main mechanisms of the
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NSGA-II [16] to the PSO algorithm. In this approach,
once a particle has updated its position, instead of com-
paring the new position only against thepbestposition
of the particle, all thepbestpositions of the swarm and
all the new positions recently obtained are combined in
just one set (given a total of2N solutions, whereN is
the size of the swarm). Then, the approach selects the
best solutions among them to conform the next swarm
(by means of a nondominated sorting). The author
doesn’t specify which values are assigned to the velocity
of pbestpositions, in order to consider them as particles.
This approach also selects the leaders randomly from
the leaders set (stored in an external archive) among
the best of them, based on two different mechanisms:
a niche count and a nearest neighbor density estimator.
This approach uses a mutation operator that is applied at
each iteration step only to the particle with the smallest
density estimator value (or the largest niche count).

• Reyes and Coello [60]: This approach is based on
Pareto dominance and the use of a nearest neighbor den-
sity estimator for the selection of leaders (by means of
a binary tournament). This proposal uses two external
archives: one for storing the leaders currently used for
performing the flight and another for storing the final
solutions. The density estimator factor is used to filter
out the list of leaders whenever the maximum limit im-
posed on such list is exceeded. Only the leaders with
the best density estimator values are retained. On the
other hand, the concept ofε-dominance is used to se-
lect the particles that will remain in the archive of final
solutions. Additionally, the authors propose a scheme
in which they subdivide the population (or swarm) into
three different subsets. A different mutation operator is
applied to each subset. Note however, that for all other
purposes, a single swarm is considered (e.g., for select-
ing leaders). This approach is based on afully connected
topology.

• Alvarez-Benitez et al. [2]: The authors propose meth-
ods based exclusively on Pareto dominance for select-
ing leaders from an unconstrained nondominated (ex-
ternal) archive. Three different selection techniques are
presented: One technique that explicitly promotes di-
versity (calledRoundsby the authors), one technique
that explicitly promotes convergence (calledRandom)
and finally one technique that is a weighted probabilis-
tic method (calledProb) and forms a compromise be-
tweenRandomandRounds. Also, the authors propose
and evaluate four mechanisms for confining particles to
the feasible region, that is, constraint-handling meth-
ods. The authors show that probabilistic selection favor-
ing archival particles that dominate few particles pro-
vides good convergence towards the Pareto front while
properly covering it at the same time. Also, they con-
clude that allowing particles to explore regions close to

the constraint boundaries is important to ensure conver-
gence to the Pareto front. This approach uses a turbu-
lence factor that is added to the position of the particles
with certain probability.

• Ho et al. [23]: The authors propose a novel formula
for updating velocity and position particles, based on
three main modifications to the known flight formula
for the fully connectedtopology. First, since the au-
thors argue that the random factorsr1 andr2 in Equa-
tion 5 are not completely independent, they propose to
use: r2 = 1 − r1. Second, they propose to incorpo-
rate the term(1 −W ) in the second and third terms of
Equation 5, whereW = rnd(0, 1). Third (and last),
under the argument of allowing a particle to fly some-
times back, the authors propose to allow the first term of
Equation 5 being negative with a 50% probability. On
the other hand, the authors introduce a “craziness” op-
erator in order to promote diversity within the swarm.
This “craziness” operator is applied (with certain prob-
ability) to the velocity vector before updating the po-
sition of a particle. Finally, the authors introduce one
external archive for each particle and one global exter-
nal archive for the whole swarm. The archive of each
particle stores the latest Pareto solutions found by the
particle and the global archive stores the current Pareto
optimal set. Every time a particle updates its position,
it selects its personal best from its own archive and the
global best from the global archive. In both cases, the
authors use a roulette selection mechanism based on the
fitness values of the particles (assigned using the mech-
anism originally proposed by Zitzler et al. [74], for the
SPEA algorithm) and on an “age” variable that the au-
thors introduce and that is increased at each generation.

• Villalobos-Arias et al. [68]: The authors propose a new
mechanism to promote diversity in multi-objective opti-
mization problems. Although the approach is indepen-
dent of the search engine adopted, they incorporate it
into the MOPSO proposed in [12]. The new approach
is based on the use of stripes that are applied on the
objective function space. Based on an analysis for a
bi-objective problem, the main idea of the approach is
that the Pareto front of the problem is “similar” to the
line determined by the minimal points of the objective
functions. In this way, several points (that the authors
call stripe centers) are distributed uniformly along such
line, and the particles of the swarm are assigned to the
nearest stripe center. When using this approach for solv-
ing multi-objective problems with PSO, one leader is
used in each stripe. Such leader is selected minimiz-
ing a weighted sum of the minimal points of the ob-
jective functions. The authors show that their approach
overcomes the drawbacks on other popular mechanisms
such asε-dominance [36] and the sigma method pro-
posed in [44].
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• Salazar-Lechuga and Rowe [55]: The main idea of this
approach is to use PSO to guide the search with the help
of niche counts (applied on objective function space)
[22] to spread the particles along the Pareto front. The
approach uses an external archive to store the best parti-
cles (nondominated particles) found by the algorithm.
Since this external archive helps to guide the search,
the niche count is calculated for each of the particles
in the archive and the leaders are chosen from this set
by means of an stochastic sampling method (roulette
wheel). Also, the niche count is used as a criterion to
update the external archive. Each time the archive is
full and a new particle wants to get in, its niche count is
compared with the niche count of the worst solution of
the archive. If the new particle is better than the worst
particle, then the new particle enters into the archive and
the worst particle is deleted. Niche counts are updated
when inserting or deleting a particle from the archive.

• Raquel and Naval [51]: As in [60], this approach in-
corporates the concept of nearest neighbor density esti-
mator for selecting the global best particle and also for
deleting particles from the external archive of nondom-
inated solutions. When selecting a leader, the archive
of nondominated solutions is sorted in descending or-
der with respect to the density estimator, and a particle
is randomly chosen from the top part of the list. On the
other hand, when the external archive is full, it is again
sorted in descending order with respect to the density
estimator value and a particle is randomly chosen to be
deleted, from the bottom part of the list. This approach
uses the mutation operator proposed in [12] in such a
way that it is applied only during a certain number of
generations at the beginning of the process. Finally, the
authors adopt the constraint-handling technique from
the NSGA-II [16].

• Zhao and Cao [71]: This approach is very similar to the
proposal of Coello and Lechuga [11]. However, the au-
thors indicate that they maintain two external archives,
but one of them is actually a list that keeps thepbest
particle for each member of the swarm. The another ex-
ternal archive stores the nondominated solutions found
along the evolutionary process. This truncated archive
is similar to the adaptive grid of PAES [34]. The au-
thors apply their approach to solve the economic load
dispatch problem. With this aim, they employ a fuzzy-
based mechanism to extract the best compromise solu-
tion, in which they incorporate the preferences of the
decision maker. The approach adopts a linear mem-
bership function to represent the goals of each objec-
tive function. This membership function is adopted to
modify the ranking of the nondominated solutions as to
focus the search on the single solution that attains the
maximum membership in the fuzzy set.

Janson and Merkle [27] proposed a hybrid particle

swarm optimization algorithm for multi-objective op-
timization, called ClustMPSO. ClustMPSO combines
the PSO algorithm with clustering techniques to divide
all particles into several subswarms. For this aim, the
authors use theK-means algorithm. Each subswarm
has its own nondominated front and the total nondom-
inated front is obtained from the union of the fronts of
all the subswarms. Each particle randomly selects its
neighborhood best (lbest) particle from the nondomi-
nated front of the swarm to which it belongs. Also, a
particle only selects a newlbest particle when the cur-
rent is no longer a nondominated solution. On the other
hand, the personal best (pbest) of each particle is up-
dated based on dominance relations. Finally, the au-
thors define that a subswarm is dominated when none
of its particles belongs to the total nondominated front.
In this way, when a subwarm is dominated for a certain
number of consecutive generations, the subswarm is re-
located. The proposed algorithm is tested on an artifi-
cial multi-objective optimization function and on a real-
world problem from biochemistry, called the molecular
docking problem. The authors reformulate the molec-
ular docking problem as a multi-objective optimization
problem and, in this case, the updating of thepbest par-
ticle is also based on the weighted sum of the objec-
tives of the problem. ClustMPSO outperforms a well-
known Lamarckian Genetic Algorithm that had been
previously adopted to solve such problem.

E. Combined Approaches

• Mahfouf et al. [39]: The authors propose an Adaptive
Weighted PSO (AWPSO) algorithm, in which the veloc-
ity is modified by including an acceleration term that in-
creases as the number of iterations increases. This aims
to enhance the global search ability at the end of run and
to help the algorithm to jump out of local optima. Also,
a weighted aggregating function is introduced within
the algorithm for performance evaluation and to guide
the selection of the personal and global bests. The au-
thors use dynamic weights to generate Pareto optimal
solutions. When the population is losing diversity, a
mutation operator is applied to the positions of certain
particles and the best of them are retained. Finally, the
authors include a nondominated sorting algorithm to se-
lect the particles from one iteration to the next. Since
plus selection is adopted, an external archive is not nec-
essary in this case. This approach is applied in the opti-
mal design of heat-treated alloy steels.

• Xiao-hua et al. [69]: The authors propose an In-
telligent Particle Swarm Optimization (IPSO) algo-
rithm for multi-objective problems based on an Agent-
Environment-Rules (AER) model to provide an appro-
priate selection pressure to propel the swarm population
towards the Pareto optimal front. In this model, the au-
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thors modify thefully connectedflight formula includ-
ing the lbestposition of the neighborhood of each par-
ticle. The neighborhood of a particle is determined by
a lattice-like topology. On the other hand, each particle
is taken as an agent particle with the ability of mem-
ory, communication, response, cooperation and self-
learning. Each particle has its position, velocity and en-
ergy, which is related to its fitness. All particles live in
a latticelike environment, which is called an agent lat-
tice, and each particle is fixed on a lattice-point. In order
to survive in the system, they compete or cooperate with
their neighbors so that they can gain more resources (in-
crease energies). Each particle has the ability of cloning
itself, and the number of clones produced depends of
the energy of the particle. General agent particles and
latency agent particles (those who have smaller energy
but contain certain features—e.g., favoring diversity—
that make them good candidates to be cloned) will be
cloned. The aim of the clonal operator (which is mod-
eled in the clonal selection theory also adopted with ar-
tificial immune systems [46]) is to increase the compe-
tition among particles, maintain diversity of the swarm
and improving the convergence of the process. Also, a
clonal mutation operator is used. Leaders are selected
based on the energy values of the particles. Finally, this
approach adopts an external archive in order to store the
nondominated solutions found throughout the run and
to provide the final solution set.

F. Other Approaches

Here, we consider the approaches that could not fit any of the
main categories previously described.

• Li [38]: This author proposes themaximinPSO, which
uses a fitness function derived from the maximin strat-
egy proposed by Balling [4] to determine Pareto-
domination. The author shows that one advantage of
this approach is that no additional clustering or niching
technique is needed, since the maximin fitness of a so-
lution can tell us not only if a solution is dominated or
not, but also if it is clustered with other solutions, i.e.,
the approach also provides diversity information. In this
approach, for each particle, a different leader is selected
for each of the decision variables to conform a single
global best. Leaders (stored in an external archive) are
randomly selected based on the maximin fitness.

• Zhang et al. [70]: This approach (based on afully con-
nectedtopology) attempts to improve the selection of
gbest andpbest when the velocity of each particle is
updated. For each objective function, there exists both
agbest and apbest for each particle. In order to update
the velocity of a particle, the algorithm defines thegbest
of a particle as the average of the complete set ofgbest
particles. Analogously, thepbest is computed using ei-
ther a random choice or the average from the complete

set ofpbest values. This choice depends on the disper-
sion degree between thegbest andpbest values of each
particle.

VI. Convergence Properties of PSO and
MOPSO

Recently, some theoretical studies about the convergence
properties of PSO have been published. As in the case of
many evolutionary algorithms, these studies have concluded
that the performance of the PSO is sensitive to control para-
meter choices [20].

Most of the theoretical studies are based on simplified PSO
models, in which a swarm consisting of one particle of one
dimension is studied. Thepbestandgbestparticles are as-
sumed to be constant throughout the process. Also, the terms
φ1 = c1r1, φ2 = c2r2 (used in Equation 5) are assumed to
be constant. Under these conditions, particle trajectories and
convergence of the swarm have been analyzed.

In the theoretical studies developed about PSO, conver-
gence has been defined as follows:

Definition 6. Considering the sequence of global best so-
lutions{gbestt}∞t=0, we say that the swarm converges iff

lim t→∞gbestt = p

wherep is an arbitrary position in the search space.
Sincep refers to an arbitrary solution, Definition 6 does

not mean convergence to a local or global optimum.
The first studies on the convergence properties of PSO

were developed by Ozcan and Mohan [47, 48]. Ozcan and
Mohan studied a PSO under the conditions previously de-
scribed but, in addition, their model did not consider the in-
ertia weight. They concluded that, when0 < φ < 4, where
φ = φ1 + φ2, the trajectory of a particle is a sinusoidal wave
where the initial conditions and parameter choices determine
the amplitude and frequency of the wave. Also, they con-
cluded that the periodic nature of the trajectory may cause
a particle to repeatedly search regions of the search space
already visited, unless another particle in its neighborhood
finds a better solution.

In [67], van den Bergh developed a model of PSO under
the same conditions, but considering the inertia weight. Van
den Berg proved that, whenw > 1

2 (c1 + c2)− 1, the particle
converges to the point

φ1pbest + φ2gbest

φ1 + φ2
.

In this way, ifc1 = c2, the particle converges to the point

pbest + gbest

2
.

Since these conclusions were obtained under the assumption
of φ1 andφ2 being constants, van den Bergh generalized his
model considering the stochastic nature ofφ1 andφ2. In this
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neighborhood leaders selection external dynamic mutation
topology based on archive W operator

Aggregating approaches
Parsopolous and Vrahatis [50] fully connected single-objective no yes no

(1.0 → 0.4)
Baumgartner et al. [6] fully connected single-objective no no no
Lexicographic ordering
Hu and Eberhart [24] ring single-objective no yes no

rnd(0.5, 1.0)
Hu et al. [25] ring single-objective yes yes no

rnd(0.5, 1.0)
Sub-Population approaches
Parsopoulos et al. [49] fully connected single-objective yes no no
Chow and Tsui [8] fully connected single-objective no no no
Pareto-Based approaches
Moore and Chapman [41] ring dominance no no no
Ray and Liew [53] fully connected density estimator yes no no
Fieldsend and Singh [21] fully connected dominance & yes no yes

closeness
Coello et al. [11, 12] fully connected density of solutions yes no yes
Toscano and Coello [66] fully connected randomly no no no
Srinivasan and Hou [61] fully connected niche count & no no yes

dominance
Mostaghim and Teich [44] fully connected sigmavalue yes no yes
Mostaghim and Teich [43] fully connected sigmavalue yes no yes
Mostaghim and Teich [45] fully connected sigmavalue yes no yes
Bartz et al. [5] fully connected density of solutions; yes no no

success
Li [37] fully connected niche count; yes yes yes

density estimator (1.0 → 0.4)
Reyes and Coello [60] fully connected density estimator yes yes yes

rnd(0.1, 0.5)
Alvarez-Benitez et al. [2] fully connected dominance yes no yes
Ho et al. [23] fully connected fitness &age yes yes yes

proposed
Villalobos-Arias et al. [68] fully connected stripes yes no yes
Salazar-Lechuga and Rowe [55] fully connected niche count yes no no
Raquel and Naval [51] fully connected density estimator yes no yes
Zhao and Cao [71] fully connected fuzzy membership yes no no
Janson and Merkle [27] fully connected random yes no no
Combined approaches
Mahfouf et al. [39] fully connected single-objective no yes yes

rnd(0.15, 1.0)
Xiao-hua et al. [69] fully connected & energyvalue yes yes yes

lattice (0.6 → 0.2)
Other approaches
Li [38] fully connected maximinfitness yes yes no

(1.0 → 0.4)
Zhang et al. [70] fully connected composite leader no yes no

(0.8 → 0.4)

Table 1: Complete list of the MOPSO proposals reviewed. For each proposal, we indicate the corresponding neighborhood
topology adopted, leader selection scheme used and whether the approach incorporates some dynamic scheme for the inertia
weight (W ), an external archive and a mutation operator.
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case, he concluded (assuming uniform distributions) that the
particle then converges to the position:

(1− a)pbest + agbest

wherea = c2
c1+c2

. In this way, van den Bergh showed that a
particle converges to a weighted average between its personal
best and its neighborhood best position.

As we said before, in order to ensure convergence, the con-
dition w > 1

2 (c1 + c2)−1 must hold. However, it is possible
to choose values ofc1, c2 andw such that the condition is
violated, and the swarm still converges [67]: if

φratio =
φcrit

c1 + c2

is close to 1.0, whereφcrit = sup {φ | 0.5φ − 1 < w},
φ ∈ (0, c1 + c2], the swarm has convergent behavior. This
implies that the trajectory of the particle will convergemost
of the time, occasionally taking divergent steps.

The studies developed by Ozcan and Mohan, and van der
Bergh, consider trajectories that are not constricted. In [9],
Clerc and Kennedy provide a theoretical analysis of particle
behavior in which they introduce a constriction coefficient
whose objective is to prevent the velocity from growing out
of bounds.

As we could see, the convergence of PSO has been proved.
However, we can only ensure the convergence of PSO to the
best position visited by all the particles of the swarm. In
order to ensure convergence to the local or global optimum,
two conditions are necessary:

1. Thegbestt+1 solution can be no worse than thegbestt
solution (monotonic condition).

2. The algorithm must be able to generate a solution in the
neighborhood of the optimum with nonzero probability,
from any solutionx of the search space.

In [67], van den Bergh provides a proof to show that the
basic PSO is not a local (neither global) optimizer. This is
due to the fact that, although PSO satisfies the monotonic
condition indicated above, once the algorithm reaches the
state wherex = pbest = gbest for all particles in the
swarm, no further progress will be made. The problem is
that this state may be reached beforegbest reaches a mini-
mum, whether be local or global. The basic PSO is therefore
said to prematurely converge. In this way, the basic PSO al-
gorithm is not a local (global) search algorithm, since it has
no guaranteed convergence to a local (global) minimum from
an arbitrary initial state.

Also, van den Bergh suggests two ways of extending PSO
in order to make it a global search algorithm. The first is re-
lated to the generation of new random solutions. In general,
the introduction of a mutation operator is useful. Neverthe-
less, forcing PSO to perform a random search in an area sur-
rounding the global best position, that is, forcing the global
best position to change in order to prevent stagnation (by

means of a hill-climbing search, for example), is also a suit-
able mechanism [20]. On the other hand, van den Bergh also
proposes to use a “multi-start PSO”, in which when the algo-
rithm has converged (under some criteria), it records the best
solution found and the particles are randomly reinitialized.

To the best of our knowledge, until this date, there are no
studies about the convergence properties of MOPSOs. From
the discussion previously provided, we can conclude that it
is possible to ensure convergence, by correctly setting the
parameters of the flight formula. But, as in the case of single-
optimization, such property does not ensure the convergence
to the true Pareto front, in this case. In the case of multi-
objective optimization, we may conclude that we still need
conditions (1) and (2), to ensure convergence. However, in
this case, condition (1) may change to:

1. The solutions contained in the external archive at itera-
tion t + 1 should be nondominated with respect to the
solutions generated in all iterationsτ , 0 ≤ τ ≤ t+1, so
far (monotonic condition).

The use of theε-dominance based archiving as proposed in
[36] ensures this condition, but the normal dominance-based
strategies do not, unless they make sure that for any solution
discarded from the archive one with equal or dominating ob-
jective vector is accepted. In this way, given a MOPSO ap-
proach, and assuming it satisfies condition (1), it remains to
explore if it satisfies condition (2), to ensure global conver-
gence to the true Pareto front.

VII. Future Research Paths

As we have seen, despite the fact that MOPSOs started to be
developed less than ten years ago, the growth of this field has
exceeded even the most optimistic expectations. By looking
at the papers that we reviewed, the core of the work on MOP-
SOs has focused on algorithmic aspects, but there is much
more to do in this area. In this section, we will provide some
insights regarding some topics that we believe that are worth
investigating within the next few years:

• Emphasis on Efficiency: The current MOPSOs are
not algorithms particularly complex (in terms of their
data structures, memory management and so on), and
are quite effective (more than state-of-the-art multi-
objective evolutionary algorithms in some cases). So,
why to make things more complicated regarding algo-
rithmic design? Is there room for new developments
in this regard? We believe that there is, but we have
to focus our work in a new direction. For example,
few people have tried to exploit the very high conver-
gence rate commonly associated with PSO to design an
“ultra-efficient” MOPSO. It would be very useful (for
real-world applications) to have a MOPSO that could
produce reasonably good approximations of the Pareto
front of multi-objective optimization problems with 20
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or 30 decision variables with less than 5000 fitness func-
tion evaluations. A first attempt to design such a type of
MOPSO is reported in [64] but more work in that direc-
tion is certainly expected, since this topic has been re-
cently explored with other types of multi-objective evo-
lutionary algorithms as well [33].

• Self-Adaptation of Parameters in MOPSOs:The de-
sign of MOPSOs with no parameters that have to be
fine-tuned by the user is another topic that is worth
studying. In evolutionary multi-objective optimization
in general, the use of self-adaptation or on-line adapta-
tion mechanisms is scarce (see for example [63, 1, 7]),
and we are only aware of one multi-objective evolu-
tionary algorithm which was designed to be parameter-
less: the microGA2 [65]. The design of a parameterless
MOPSO requires a careful study of the velocity update
formula adopted in PSO, and an assessment of the im-
pact of each of its components in the performance of a
MOPSO. Even the inertia and learning factors which
are normally assumed constants in PSO may benefit
from an on-line adaptation mechanism when dealing
with multi-objective optimization problems.7

• Theoretical Developments:There is not much theoret-
ical work on PSO in general (see for example [9]) and,
therefore, the lack of research on theoretical aspects of
MOPSOs is, by no means, surprising. It would be inter-
esting to perform a theoretical study of the run-time and
convergence properties of a MOPSO (see Section VI).
Other aspects such as the fitness landscapes and dynam-
ics of a MOPSO are also very attractive theoretical re-
search topics.

• Applications: Evidently, no algorithm will ever be use-
ful if we cannot find a good application for it. MOPSOs
have been used in a few applications (see Section V),
but not so extensively as other multi-objective evolu-
tionary algorithms. The reason may be that MOPSOs
are younger and less known than, for example, multi-
objective genetic algorithms. However, a well-designed
MOPSO may be quite useful in real-world applications,
mainly if, as we mentioned before, its very fast conver-
gence rate is properly exploited. At some point in the
near future, we believe that there will be an important
growth in the number of applications that adopt MOP-
SOs as their search engine.

VIII. Conclusions

We have reviewed the state-of-the-art regarding extensions
of PSO to handle multiple objectives. We have started by
providing a short introduction to PSO in which we described

7Readers interested in this topic may be interested
in looking at the work of Maurice Clerc, available at:
http://clerc.maurice.free.fr/pso/ .

its basic algorithm and its main topologies. We have also
indicated the main issues that have to be considered when
extending PSO to multi-objective optimization, and then we
have analyzed each of them in more detail.

We have also proposed a taxonomy to classify the current
techniques reported in the specialized literature, and we have
provided a survey of approaches based on such a taxonomy.

Finally, we have provided some topics that seem (from the
authors’ perspective) as very promising paths for future re-
search in this area. Considering the current rate of growth of
this area, we expect a lot of more activity within the next few
years. However, the switch to new areas different from pure
algorithm development may attract newcomers to this field
and may contribute to keep it alive for several more years.
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Eckart Zitzler, editors,Third International Conference
on Evolutionary Multi-Criterion Optimization, EMO

2005, pages 176–190, Guanajuato, México, March
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