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Multiobjective optimization is about finding solutions to
problems with respect to multiple, often conflicting, deci-
sion criteria. Also termed multicriteria optimization or vec-
tor optimization, this area has been strongly developed in the
1970s within operations research, decision theory [1], and
engineering [17]. Typical application examples range from
expected profit versus risk in portfolio theory over model size
versus predictive accuracy in statistical machine learning to
cost versus power versus energy consumption in many engi-
neering design problems.

Optimal solutions of a multiobjective problem are mini-
mal elements with respect to the quasi-order (dominance re-
lation) given by the intersection of the linear orders due to
the different decision criteria. It has hence become custom-
ary to distinguish two steps: an objective one, where mini-
mal elements (nondominated or Pareto-optimal solutions) are
sought, and a subjective one, which makes use of preference
information for weighing or prioritizing the different criteria
to impose a linear preference order and arrive at a single final
solution. Different solution approaches are thus often classi-
fied according to when and how the subjective information
enters the search process [10].

Facing the traditional approaches that were almost en-
tirely based on transforming the multiobjective problem into
a single-objective surrogate problem, the evolutionary com-
putation community realized the potential of a different ap-
proach, namely to exploit the concept of a population within
evolutionary algorithms to search for a set of different solu-
tions concurrently in a single run. Early studies [19, 7, 11]
used the different criteria to affect the selection of different
parts of the population. During the mid-1990s, scalarization
was replaced entirely by the proposal to rank solutions di-
rectly by the quasi-order of comparing all criteria simultane-

ously. This mindset has given rise to a large research effort in
the area of evolutionary multiobjective optimization includ-
ing a dedicated bi-annual conference series [20, 6, 3], two
textbooks [5, 2] and more than 130 PhD theses [4].

This special issue presents recent results of leading re-
searchers in the area of evolutionary multiobjective optimiza-
tion. The type of results are mainly methodological and al-
gorithmic issues, some including example applications, but
each with a certain tutorial aspect, which makes them use-
ful also for novices to the field. The paper by Handl and
Knowles addresses the problem of feature selection in unsu-
pervised learning, which by itself is an interesting problem in
the area of computational intelligence. On the methodologi-
cal side, the article shows the benefits of using a secondary,
structural objective function to explicitly acknowledge that
different solutions are not entirely comparable by the pri-
mary objective as this involves a bias depending on cer-
tain structural properties of the potential solutions. Haubelt,
Schlichter and Teich also present a challenging application,
the design space exploration problem in computer engineer-
ing. The authors suggest a hierarchical approach: By fix-
ing certain decision variables, the objective values are deter-
mined, but choosing feasible values for the remaining vari-
ables is an NP-complete subproblem that can be reduced
to the satisfiability (SAT) problem. It is demonstrated how
domain-specific tools such as decision diagrams and heuris-
tic SAT solvers can be integrated into multiobjective evo-
lutionary algorithms (MOEAs)for solving difficult subprob-
lems, especially to quickly determine feasibility of the sub-
spaces sampled by the MOEA. The paper by Basseur and
Zitzler considers selection under uncertainty, i.e., which of
the generated potential solutions to retain during the run of a
MOEA when their objective values are only given as samples
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from an unknown random variable instead of deterministic
values. The authors show how the concept of performance
indicators, originally introduced for the empiricical assess-
ment of MOEAs [21], can be used to estimate the expected
contribution of each solution to the quality of the whole solu-
tion set. As computing these estimators exactly is exponen-
tial in the sample size, the paper presents and compares vari-
ous approximative estimators of lower complexity. A link to
the aforementioned traditional approaches to multiobjective
optimization is provided by Deb, Sundar, Rao Namagiri, and
Chaudhuri. They suggest a way to effectively incorporate
preference information into the evolutionary search process
in terms of reference points representing areas of interest to
the decision maker. Their simulation results show that this
reference-point based MOEA is still able to find a set of
different compromise solutions, but in this case focused on
the desired regions. Finally, the paper by Reyes-Sierra and
Coello Coello leaves the realm of evolutionary algorirthms
in the narrow sense and gives an introduction to a related
family of metaheurstic techniques called multiobjective par-
ticle swarm optimization (MOPSO). The authors highlight
the conceptual and differences between MOPSO and EMO,
but also show how certain important algorithmic aspects, es-
pecially with respect to the evaluation and selection of so-
lution under multiple objectives, are in fact very similar for
both techniques, which probably holds for any randomized
search heuristic in a multiobjective setting.

Not covered in this issue are theoretical studies concern-
ing the convergence and running time analysis of MOEAs for
certain problems or problem classes. Although the first at-
tempts have been made and rigorous results are available for,
e.g., the asymptotic behaviour in the limit t →∞ [18, 12] as
well as for the expected optimization time on simple pseudo-
Boolean functions [13, 8, 9] and easy combinatorial prob-
lems [14, 15, 16], more effort is certainly needed to broaden
the theoretical basis of the field and extend our understanding
of the methods beyond purely empricial validation.

Although it was not explicitly planned for, all contribu-
tions involved young researchers in or just after their PhD
studies. This is yet another indication of the liveliness and
potential of the field and generates prospects of interesting
results to be produced in the future.
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