
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 12 (2020) pp. 093-103 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

 

 

Dynamic Publishers, Inc., USA 

 

Received: 12 Jan, 2020; Accepted: 8 May, 2020; Published: 21 May, 2020 

Non-linear Simplex Shuffled Frog Leaping 

Algorithm 
  

Tarun K. Sharma1 and Ajith Abraham2 
 

1 Department of Computer Science & Engineering, Graphic Era Hill University,  

Bell Road, Dehradun, Uttarakhand, India 

taruniitr1@gmail.com 

 
2 Machine Intelligence Research Labs, USA 

ajith.abraham@ieee.org 

 

 

Abstract: Shuffled frog leaping algorithm (SFLA) is a recent 

addition to the family of memetic algorithms that takes its 

inspiration from the natural foraging behavior of frogs. In SFLA 

the colony of frogs is divided into memeplexes of equal size. SFLA 

gathered the interest of research fraternity to solve many real 

world complex optimization problems. The basic structure of 

SFLA posses some inherent limitations. In order to overcome the 

limitation, in this study an enhanced variant of SFLA is proposed 

and named as NL-SFLA. Generally the initial population is 

generated using a traditional pseudo-random numbers which 

may not be much efficient. In NL-SFLA an attempt has been 

made to initialize the population of frog by integrating the 

concept of nonlinear simplex method of Nelder and Mead. Later 

modification is done in the frog distribution scheme in 

memeplexes to handle continuous optimization problems. 

Numerical results of NL-SFLA are compared with the 

state-of-art algorithms over a set of benchmark problems. Also 

the efficiency of the proposal is investigated on four real world 

problems. Simulated results signify the efficacy of the proposal.  

 
Keywords: SFLA, Shuffled frog leaping algorithm, Nelder-Mead, 

Local Search, Simplex, Nonlinear.  

 

I. Introduction 

Since decades memetic algorithms gathered the attention of the 

academicians, researchers as well as industrialists to solve 

intrinsic complex optimization problems exists in different 

spheres. Memetic algorithms are basically inspired from the 

foraging behavior of biological metaphors. A detailed study of 

such algorithms can be found in [1]. Shuffled frog leaping 

algorithm (SFLA), pioneered by Eusuff and Lansey in 2003 [2], 

is a recent addition to the family of memetic algorithms. Since 

its introduction SFLA gained wide attraction of researchers 

and academicians. Many recent applications of SFLA and its 

enhanced variants can be seen in [3]-[12]. SFLA is inspired by 

socio-cooperative behavior of frogs while searching for better 

food positions. In SFLA, the population of frogs is divided in 

equal numbers in each memeplexes. This division is based on 

the fitness value and frog with best fitness is placed in first 

memeplex, however frog with worst fitness being placed in last 

memeplex. Initially SFLA was developed to solve discrete 

optimization problems [2]. Since then, SFLA has gained 

popularity in solving multimodal, nonlinear and complex 

optimization tasks required in various fields of science& 

engineering, social science and management. A brief overview 

of basic SFLA and modified variant of SFLA and their 

applications are discussed in the Section – III.  

Like other memetic algorithm SFLA too suffers from 

inherent limitations of sticking in local optima or premature 

convergence while searching for global solutions [13]. In this 

study an attempt is made to handle this inherent limitation. The 

initial population is generated by amalgamating non-linear 

simplex method of Nelder and Mead [14] with pseudo random 

generated by programming method.  Secondly, basic SFLA 

performs better for discrete optimizations problems. A 

modification is done in the frog distribution scheme in 

memeplexes to handle continuous optimization problems. 

 

 The paper is structured as follows: In Section II, a brief 

overview and working of basic SFLA is presented. Literature 

review of SFLA and various variants of SFLA are discussed in 

Section III. Section IV discusses the motivation and methods 

used to enhance the efficacy of the basic SFLA. Test bed and 

real word problems are presented in Section V. Parameter 

Settings, Results and discussions are presented in Section VI. 

Finally conclusion drawn from the study is mentioned in 

Section VII. 

II. Brief Overview: SFLA 

Main idea behind the working model of SFLA is the 

combination of group evolution and exchange of information 

by shuffling at global level. First, the population is initialized, 

and the members (frogs) are arranged in the descending order 

of their fitness. Then the frogs are divided into memeplexes 

having equal number of frogs in each of it. Then, each 

memeplex is allowed to evolve for a predefined number of 

times. Every time, the worst frog moves towards the best frog 

in the memeplex. This modified position is kept only in case it 
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improves the fitness of the worst frog; otherwise the worst frog 

is moved towards the global best frog. Still, if the position of 

the frog is not improved then the worst frog is discarded from 

the population and a new random frog replaces it. This 

elimination of a non-improving frog is known as censorship. 

After repeating this local search process for a fixed number of 

rounds for each memeplex, all the memeplexes are merged and 

the frogs are arranged in the descending order of their 

objective function values. These iterations continue till the 

termination criterion is not satisfied. 

Local search within a memeplex encourages exploitation of the 

search space. As the evolution within a memeplex progresses, 

the frogs tend to converge near the best frog of the memeplex. 

Shuffling towards, the end of each evolutionary round depicts 

exploration. As the execution progresses, all the frogs 

converge towards the global best frog. The whole process of 

SFLA has been summarized in four steps below:  

A. .Initialization Process 

The population of frogs is initialized randomly between lower 

and upper bounds of the feasible search space in each 

dimension. This step is very similar to the process adopted in 

most of the metaheuristic algorithms. Set of all frogs is denoted 

by XFi = (xfi1, xfi2, ...,xfiD). Individual frogs are generated using 

Eq. (1). 

 

(0,1) ( )ij j j jxf lb rand ub lb                                     

(1) 

where i = 1 to F, j = 1 to D, lbj is the lower bound for 

dimension and ubj is the upper bound for dimension j 

B. Sorting and Division Process 

All the members are evaluated for the objective function and 

sorted in decreasing order of their fitness values. Then an 

ordered distribution of these frogs is done between m subsets 

called memeplexes. Number of frogs in each memeplex is n so 

that F = m x n. This distribution is done in a specific order. 

Frogs 1 to m goes to memeplex1 to m. Frogs m+1 to 2m goes 

again to memeplex1 to m in the serial order. After this 

arrangement, the best frog Xb and the worst frog Xw in each 

memeplex are identified. 

C. Local Search Process 

This step performs intensification component of the search 

process. Worst frog is modified using Eq. (2) & (3). 

 

(0,1) ( )i b wDS rand X X                                            

(2) 

, max max;w new w i iX X DS DS DS DS                          

(3) 

where i = 1 to D denotes the dimension. DSmax is the maximum 

allowed step size to avoid violation of the feasible space. Xw,new 

is evaluated for its fitness. In case of improvement Xw is 

replaced by Xw,new. If the position is not improved than the 

same process is repeated by replacing Xb by the global best frog 

Xg in Eq. (2). Still if not improved then the Xw is replaced by a 

random new frog. This process of eliminating non-improving 

frog is called censorship.  

This process of moving of worst frog is called leaping. Leaping 

is repeated for Ngen times in each memeplex. Process of leaping 

is represented in Fig. 1. 

D. Shuffling Process 

After repeating the local search for the m memeplexes, all frogs 

are combined and arranged in the descending order of their 

fitness again. This shuffling facilitates the exchange of 

information at global level.  

Steps (b), (c) and (d) are repeated until satisfaction of 

termination criterion. 

Fig. 2, 3 and 4 illustrate the position of frogs in the search 

space after initialization, after evolution in memeplexes and 

towards convergence at the end, respectively. Fig .5 illustrates 

all the steps of the algorithm. 

 

 

Figure 1. Leaping process of the worst frog during local 

iteration 

 

Figure 2. Illustration of randomly distributed frogs after 

initialization in SFLA 

 

 

Figure 3. Illustration of convergence of frogs in respective 

memeplexes 
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Figure 4. Illustration of convergence of frogs towards 

global best frog after the execution 

 

 

Figure 5. Flowchart of SFLA 

III. Literature Review – SFLA  

Moayedi et.al, in 2020 [8] embedded SFLA and WDO with 

ANN in order to magnify its prediction aptitude to simulate the 

shear strength of Soil. Tang et al.(2020) [9] proposed discrete 

SFLA (DSFLA) that embeds deterministic and random walk 

strategies to enhance the local search strategy in each 

memeplexes. This hybrid DSFLA is employed to maximize the 

strength of influential nodes in social networks.  Sharma et al. 

(2020) [6] introduced local search strategy in SFLA and 

employed to solve a human resource problem.  Li and Yan 

(2019) [10] introduced a hybrid model based on SFLA and 

bacterial foraging algorithm (BFA) in which levy flight is 

embedded to enhance the global search while maintain the 

diversity of the population using random grouping strategy. 

Further local search is improved using migration operation 

method to handle the optimization problem of redundancy 

allocation and system reliability. Huang and Song (2019) [11] 

modified local search in SFLA using the multi agent model to 

optimize the land use.  Elattar (2019) [12], proposed a variant 

of SFLA that includes movement inertia concept of PSO and 

crossover and mutation operators of GA to improve local and 

global searching mechanism respectively. Later the variant is 

applied to solve heat, emission and economic dispatch problem. 

Janani et al. (2018) [15], applied SFLA to detect protein 

complexes in protein-protein interaction. Rajamohana and 

Umamaheswari (2018) [16] proposed a binary SFLA to 

address the problem of feature selection to assist customers 

with reliable reviews. Dash in 2018 [17], developed an 

improved variant of SFLA that embeds functional link artificial 

neural network (FLANN) to predict the currency conversion 

rate. Kaur and Mehta (2017) [18] proposed augmented SFLA 

to solve the workflow scheduling of resources in the cloud 

environment. Sharma and Pant (2017) [19] introduced the 

opposition based learning method to initialize the virtual 

population of frogs and applied to solve unimodal and 

multimodal benchmark problems. Tang et al. (2016) [20] 

introduced a new framework of SFLA using lévy flight. The 

local search mechanism is modified with lévy flight method 

whereas global search is enhanced with interaction learning 

rule. Dalavi et al. (2016) [21] designed a modified SFLA to 

improve premature convergence and implemented to 

determine the operations of hole making sequences optimally. 

Tripathy et al. (2015) [22] employed SFLA to solve the 

problem of multiprocessor scheduling. Jadidoleslam and 

Ebrahimi (2015) [23] proposed modified SFLA that 

encompasses a modified frog leaping strategy in each 

memeplexes to improve exploitation process. Further author(s) 

enhance the efficiency by introducing mapping procedure, 

penalty factor and integer encoding. Later this modified SFLA 

is applied to solve a generation expansion planning (GEP), a 

critical problem in power systems. Sharma et al. (2015) [24] 

embedded geometric centroid mutation, a probability based 

operator in SFLA to enhance the convergence rate.  

Bhattacharjee and Sarmah (2014) [25] introduced discrete 

SFLA that embeds local search mechanism of PSO and 

shuffled complex evolution. The proposal is implemented to 

solve 0/1 knapsack problem. Kumar and Kumar (2014) [26] 

applied SFLA to handle bidding strategy problem. Sarkheyli et 

al. (2014) [27] presented a brief literature review of SFLA. 

IV. Motivation behind the Study 

Two antagonists factor i.e. exploration (diversification) and 

exploitation (intensification) plays a significant role in the 

success of any memetic, nature/bio inspired and evolutionary 

algorithms. These two factors need to be balanced or justified 

to avoid trapping in local optima or slow/premature 

convergence. Population initialization plays an important role 

in any memetic algorithm. Generally random population of 

solutions is generated using defined pseudo random generator 

with the defined upper and lower bounds of feasible region. 

This population does not have any idea about the optimum 

locations in the search space that may help in expediting the 

search of global solution. In order to enhance the diversity as 

well as acceleration rate non-linear simplex method is 
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embedded in the structure of SFLA.  Secondly, the basic SFLA 

performs well on discrete optimization problems [2], so a 

modification is embedded while distributing frogs in different 

memeplexes to solve continuous optimization problems 

efficiently. These two modifications are introduced in SFLA 

and the resulting variant is termed as Nelder-Mead Shuffled 

Frog Leaping Algorithm (NL-SFLA).  

Nelder-Mead and formation of memeplexes to handle the 

continuous problems are discussed below: 

A. Nelder Mead 

Non-Linear Simplex method (NLSM) a derivate free technique, 

introduced in 1965 by Nelder and Mead [14]. NLSM being the 

local direct search technique is best suited to solve 

unconstrained optimization problems especially the cases of 

minimization. In general there are four NLSM geometric 

transformations namely expansion, reduction, contraction and 

reflection. This transformation helps simplex in self improving 

as well as in converging to optimum. The objective fitness 

function value at the vertex of the simplex is used to select the 

suitable transformation. The worst vertex function value is 

updated with the better one in each transformation. 

Brief Overview of geometric transformations 

Considering the minimization case, initially only the vertex of 

the simplex having worst objective fitness value (worst point) 

is moved and an adjacent image of the worst point is generated. 

This is termed as reflection. If the reflected image of the point 

has the better fitness value in comparison to all other points, 

the simplex is expanded in that direction. Otherwise reflection 

is again performed with other worst fitness value. If the worst 

fitness value is comparatively good as the reflected one then 

contraction is performed. If the point generated through 

contraction is worse than the worst point, reduction 

transformation is initiated.   

The transformation sequences are plotted in Fig 7(a – d). 

B. Formation of Memeplexes 

The memeplexes in SFL algorithm are formed by dividing a set 

of frogs based on their fitness value i.e. frog with best fitness 

value will be the part of 1stmemeplex and the 2nd frog would be 

part of 2ndmemeplex and so on (Fig. 6) 

 

B

A

C

D

M

d

 
(a) Reflection of D to C 

 

(b) Expansion of D to C 

 
(c) Contraction of D to F 

C

A

D

B

C’

A’B’

M

 
(d) Reduction of ABC to A’B’C’ 

Figure 7.  (a – d) Processes involved in Non-Linear Simplex 

Method 

 

x1  x2 … XM 

xm+1  xm+2 … x2m 

xn  x2n … xmn 

Memeplex 

(m1) 

 Memeplex 

(m2) 

… Memeplex 

(mn) 

Figure 6. Formation of memeplexes in SFLA 

This formation of memeplexes leads to imbalance i.e. the 

performance of 1st memeplex would always be better than the 

last memeplex. This also leads to poor learning process and 

enhancing the performance of worst frog. To make the uniform 

performance of each memeplex, the formation of memeplex is 

done using the following [28] Eq. (4). 
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(4) 

For an example if there are 6 frogs and divided into 2 

memeplexes than as per the Eq. (4) 1st memeplex will have 1st, 

3rd& 5th frog and 2nd, 4th and 6th will go to memeplex 2nd. This 

modification also supports in solving continuous optimization 

problems as initially SFL algorithm was proposed to solve 

discrete optimization problems 

V. Test Bed and Experimental Setup 

Two test bed are referred in this study. First test bed consists of 

fifteen benchmark problems [29] taken from literature to 

validate the proposal. Their characteristics are stated in Table 1. 

There are four unimodal (UM) and eleven multimodal (MM) 

problems. Unimodal problems validate the proposal in terms of 

local searching capability where as the rest of the problems 

verify the global searching capability of the proposed algorithm. 

Further to validate the efficacy of proposed algorithm, second 

test bed of four real life time problems (RLTP) [30]-[32] are 

taken into consideration to validate the efficiency of the 

proposal.  

For unbiased simulated statistical result comparison nine (9) 

state-of-art algorithms (off course enhanced variants of some 

algorithms) are considered. The parameter settings of the 

state-of-art algorithms are presented in Table 2. 30 runs are 

performed with (different seeds/population each time) with the 

frog population size (XF) of 20; dimension (D) 30 with 5 (m) 

memeplexes i.e. in each memeplexes there would be 4 frogs (n).  

C++ is used to program and executed on windows 7 with 

i3-5005U CPU@2.00GHz having 4.00 GB RAM. D x 1E4 is 

fixed as maximum number of function evaluations as a 

termination criterion. 

Stat. Dimension  Limit Lower Upper Limit F(x)* Problem Type 

F1: Sphere 30 -100 100 0 UM 

F2: Schwefel's (2.22) 30 -10 10 0 UM 

F3: Schwefel's (1.2) 30 -100 100 0 UM 

F4: Quartic 30 -1.28 1.28 0 UM 

F5: Rastrigin 30 -5.12 5.12 0 MM 

F6: Ackley 30 -32 32 0 MM 

F7: Griekwank 30 -600 600 0 MM 

F8: Rosenbrock 30 -10 10 0 MM 

F9: Penalized 30 -50 50 0 MM 

F10: Weierstrass's 30 -0.5 0.5 0 MM 

F11: Zakharov 30 -5 10 0 MM 

F12: Alpine 30 -10 10 0 MM 

F13: Saloman 30 -100 100 0 MM 

F14: Periodic 30 -10 10 0.9 MM 

F15: Inversted Cosine 30 -1 1 0 MM 

Table 1. Characteristics of benchmark problems

A. RLTP-1: Estimation of Parameters of Frequency 

Modulated Sound Waves [31][32] 

In most of the music systems in modern era, synthesis of 

frequency modulation plays a significant role. In general there 

are six sound wave parameters that need to be optimized for an 

FM Synthesizer namely α1, ω1, α2, ω2, α3, and ω43. 

Estimated and targeted sound waves are presented below: 

 

1 1 2 2 3 3( ) sin( sin( sin( )))sw t t t t            

0 ( ) 1.0sin(5.0 1.5sin(4.8 2.0sin(4.9 )))sw t t t t      

Range for the parameters is [-6.4, 6.35] and 
2

100


  .  

The objective (Eq. (2)) is to optimize the sum of squared errors 

between the estimated and targeted sound waves: 
100

2
0

0

( ) ( ( ) ( ))
t

f X sw t sw t


   

B. RLTP-2: Optimal Thermohydralic Performance of an 

Artificially Roughened Air Heater [30] 

This is a simple maximize optimization problem. The 

mathematical formulation of this problem is given as below: 

 

2.51 ln 5.5 0.1 R GMaximize F e M H      

and  

0.53 0.28 0.57
20.95 ; 4.5( ) (0.7)R GM x H e   

1

2
1 3( ) ; ( ) / 2

2
s r

f
e x x f f f     

0.25 0.53 2 2
3 2

1

1
0.079 ; 2(0.95 2.51 ln( ) 3.75)

2
s rf x f x

x

       

The variables are bounded as: 

1

2

3
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10 40

3000 40000

x

x

x
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C. RLTP-3: Spread Spectrum Radar Poly phase Code 

Design [30] [31] 

This problem is modeled as minmax non-convex nonlinear 

optimization problem having numerous local optima’s in 

continuous search space.  
 

1 2 2( ) max { ( ), ( ),..., ( )}nMinimize f X imize X X X    

The vector  

1 2( , ,.. ) | 0 2 , 1,2,...,D
D iX x x x R x i D      

where  

2 1n D   

|2 1| 12 1( ) cos( ), 1,2,...,
D

i
k j ij k

i j

X x j D    


    

2
1 |2 | 1

( ) 0.5 cos , 1,2,..., 1
D i

j k
i j k j i

X x j D
    

 
     

 
 

( ) ( ), 1,2,...n j jX X j n      

Here the objective is to minimize the module of the biggest 

among the samples of the so-called auto-correlation function 

which is related to the complex envelope of the compressed 

radar pulse at the optimal receiver output, while the variables 

represent symmetrized phase differences. According to [24], 

the above problem has no polynomial time solution. 

D. RLTP-4: Transistor Design Modeling [32] 

 
2 2 24

1( ) ( )k k kMinimize f X       

where 

3
1 2 3 5 1 3 7

3
5 8 5 4 2

(1 ) {exp[ ( 10

10 )] 1}

k K k

k k k

x x x x g g x

g x g g x

 



   

   
 

3
1 2 4 6 1 2 3 7

3
4 9 5 1 4

(1 ) {exp[ ( 10

10 )] 1}

k k k k

k k k

x x x x g g g x

g x g x g

 



    

   
 

1 3 2 4x x x x    

subject to: 0ix   

The given below matrix defines the numerical constants (gik)  

0.485 0.752 0.869 0.982

0.369 1.254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

 
 
 
 
 
 
 
 

 

VI. Statistically Simulated Results 

The comparative simulated statistical (Stat.) results for the 15 

benchmark functions are presented in Table 3(A & B). The 

observed mean, median and SD for each function is taken for 

result comparison. Firstly NL-SFLA is able to solve all the 15 

problems. The result from the Table 3(A & B) shows that the 

proposed variant performed at par with the state-of-art 

algorithms, especially when the results are compared with 

basic SFLA, DE, CA, GSA, and SaDE for all most all 

functions. For SPSO, GbABC, JADE, and jDE the evaluated 

results are at par. The bold faces show the best results. GbABC 

has better results for F5, F6, F8 and F12. SPSO presented 

better results for F11 and 13. JADE performed better for F1, 

F2, and F3 whereas better standard deviation is observed by 

NL-SFLA. For the function F4, F7 and F14 again NL-SFLA 

performed comparatively better than the state-of-art 

algorithms.  

The statistical simulated results for the four real time problems 

are presented in Tables 4 – 8. For RLTP – 1 statistical results 

(mean, best, worst and SD) are presented in Table 1. The 

results are compared with DE, variant of DE i.e. MDE and 

basic SFLA.  NL-SFLA and MDE able to evaluate same best 

fitness value however the SD for NL-SFLA was better. In 

other Table 2, parameter values of the problem are presented 

and compared with DE, basic SFLA and NSDE.  

For the RLTP – 2, results are discussed and compared with DE, 

SFLA and MDE in Table 6. It is clearly observed that 

NL-SFLA achieved better results with significant SD.  

Similarly, the results for RLTP – 3 and 4 are presented in Table 

7 and 8. For RLTP – 3 results are compared with DE, MDE 

and basic SFLA. For the RLTP – 4 results are presented along 

with parametric values and compared with DE, SFLA and 

NSDE. 

From the results it can be concluded that the proposed variant 

performed well on all four problems and achieved better or at 

par best fitness values. Also the observed SD is better for all 

problems, which reflects accuracy. 

 

State of Art Algorithms Experimental Settings 

SFLA [33] c = 1; le = 5 

DE  [28][34] CR = 0.9; F = 0.5 

SPSO [29][35] w = 1/(2 * log(2)); Cl = 0.5 

jDE [30][36] CR = 0.9; F = 0.5 

SaDE [30][36] Not pre-specified 

JADE [30][36] c = 1/10; p = 0.05; Afactor = 1 

GSA [31][37] Elitist Check = 1; Rpower = 2; Rnorm = 2 

CS [32][38] beta = 1.5; pa = 0.25 

GbABC [33][39] SN = 12;  C = 1.507; lf = 1.12 

Table 2. State-of-art Algorithms taken for statistical comparisons  
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Problem(Fi) Stat. SFLA DE SPSO GbABC GSA 

F1 

Mean  1.09250E-21 2.87010E-74 0.00000E+00 5.06790E-16 1.47630E+04 

Median  4.44570E-23 1.36650E-87 0.00000E+00 5.55600E-16 1.51050E+04 

SD 2.90420E-21 1.54830E-73 0.00000E+00 1.28720E-16 3.04970E+03 

F2 

Mean  2.11750E-23 3.33330E+00 0.00000E+00 5.36270E-16 5.62480E-09 

Median  5.38800E-25 1.60790E-89 0.00000E+00 4.85900E-16 5.49970E-09 

SD 5.84650E-23 1.82570E+01 0.00000E+00 1.80140E-16 1.58610E-09 

F3 

Mean  3.2039E+00 3.59460E-42 1.15110E-50 4.6682E+03 4.5775E+04 

Median  2.8127E+00 4.23040E-45 1.06280E-51 4.6226E+03 4.2754E+04 

SD 1.4048E+00 1.68300E-41 3.42530E-50 1.8280E+03 1.6455E+04 

F4 

Mean  2.07940E-03 1.81270E-02 1.49360E-03 1.81270E-02 4.2480E-02 

Median  2.08950E-03 1.48510E-02 1.20800E-03 1.48510E-02 4.1547E-02 

SD 7.45060E-04 1.25680E-02 8.17800E-04 1.25680E-02 8.2225E-03 

F5 

Mean  2.4447E+01 7.0012E+01 4.4914E+01 1.8957E-11 3.0147E+01 

Median  2.3891E+01 6.9647E+01 3.9798E+01 1.1369E-13 3.1839E+01 

SD 5.3640E+00 1.9182E+01 2.1653E+01 4.7447E-11 6.8443E+00 

F6 

Mean  9.7550E-03 1.0721E+01 2.1516E+00 5.6962E-14 5.5644E-05 

Median  2.5160E-07 1.0620E+01 2.3168E+00 5.6843E-14 5.5620E-05 

SD 5.2082E-02 2.5977E+00 4.7042E-01 1.1407E-14 5.3296E-06 

F7 

Mean  3.9635E-02 3.9197E-01 7.7154E-03 1.4200E-02 5.9557E+02 

Median  2.7037E-02 1.0991E-01 7.3960E-03 7.6361E-03 5.9949E+02 

SD 3.7907E-02 8.0794E-01 7.9842E-03 1.7787E-02 8.2391E+01 

F8 

Mean  3.6924E+01 1.6965E+01 7.1336E+00 6.5351E-01 7.3253E+00 

Median  2.7230E+01 6.9737E+00 6.5930E+00 2.9508E-01 7.3361E+00 

SD 2.2323E+01 3.1387E+01 1.8580E+00 9.9064E-01 6.0670E-01 

F9 

Mean  3.4889E+01 4.0227E+00 7.2796E-01 5.7739E-16 1.5408E-01 

Median  6.8430E-17 1.2555E+00 5.1912E-01 5.5804E-16 4.6459E-11 

SD 1.9109E-02 6.0936E+00 8.8114E-01 2.2063E-16 2.8020E-01 

F10 

Mean  4.4492E+00 1.2421E+01 9.8602E+00 2.2945E-16 9.8496E-02 

Median  4.5651E+00 1.1552E+01 9.4740E+00 0.0000E+00 9.7545E-02 

SD 2.1069E+00 3.3714E+00 1.9998E+00 7.8121E-16 1.0691E-02 

F11 

Mean  3.2900E+00 7.3727E+00 3.2166E-66 2.8802E+02 5.7899E-08 

Median  3.0721E+00 5.0946E-62 8.0527E-68 2.9517E+02 5.5031E-08 

SD 1.2968E+00 1.8712E+01 1.6273E-65 5.8734E+01 1.8167E-08 

F12 

Mean  3.6686E-04 2.0081E-10 1.3919E+00 5.6660E-04 2.6247E-05 

Median  2.4658E-05 1.5465E-12 9.2397E-01 2.4409E-08 2.6567E-05 

SD 9.4918E-04 1.0415E-09 1.4960E+00 1.9155E-03 3.2402E-06 

F13 

Mean  4.0654E-01 2.6599E+00 2.1321E-01 1.2133E+00 1.2696E+01 

Median  3.9987E-01 2.5999E+00 1.9987E-01 1.1999E+00 1.2600E+01 

SD 7.8492E-02 1.2050E+00 3.4575E-02 1.9773E-01 1.3020E+00 

F14 

Mean  1.0126E+00 1.7596E+00 2.8661E+00 1.0126E+00 1.0000E+00 

Median  1.0000E+00 1.5919E+00 2.8628E+00 1.0000E+00 1.0000E+00 

SD 3.7334E-02 6.0045E-01 6.6970E-01 3.7334E-02 1.2410E-09 

F15 

Mean  1.4779E-02 1.5164E+00 6.1084E-01 1.6502E-16 4.9262E-03 

Median  2.8497E-17 1.4778E+00 5.9114E-01 9.0526E-17 6.9378E-08 

SD 5.9495E-02 4.5606E-01 2.5666E-01 2.2903E-16 2.6982E-02 

Table 3(A). Statistical Comparison of results with state-of-art algorithms.  

Problem(Fi) Stat. CS SaDE JADE jDE NL-SFLA 

F1 

Mean  2.53880E-38 1.18750E-101 1.10710E-223 3.49790E-212 1.5545E-209 

Median  3.63700E-39 1.34990E-115 1.79720E-246 1.87050E-221 3.7646E-211 

SD 6.55640E-38 6.44140E-101 0.00000E+00 0.00000E+00 5.9742E-112 

F2 

Mean  4.48950E-39 2.07670E-103 3.30170E-221 2.01120E-205 4.7861E-172 

Median  1.18410E-39 7.31530E-118 1.34490E-234 1.13300E-222 3.0911E-213 

SD 8.69760E-39 1.11700E-102 0.00000E+00 0.00000E+00 2.0293E-121 

F3 

Mean  2.92310E-05 8.83320E-02 2.14460E-55 1.39870E-11 2.6456E-47 

Median  1.42620E-05 1.70420E-04 6.35760E-57 2.28260E-12 3.7355E-51 

SD 3.62270E-05 4.49610E-01 1.02700E-54 3.47770E-11 1.9039E-44 

F4 

Mean  9.08690E-03 9.1211E-03 3.24140E-03 6.71590E-03 1.2643E-03 

Median  8.71540E-03 8.0039E-03 3.21450E-03 4.49160E-03 2.8231E-03 

SD 3.68140E-03 4.8538E-03 1.73980E-03 5.64550E-03 6.0878E-04 
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F5 

Mean  1.1528E+01 3.3829E+00 1.3266E-01 1.4593E+00 1.2988E+00 

Median  1.2322E+01 3.9798E+00 0.0000E+00 9.9496E-01 1.1388E+00 

SD 3.5613E+00 1.4216E+00 3.4400E-01 1.4949E+00 2.3971E+00 

F6 

Mean  1.2417E-01 1.9051E+00 7.6297E-01 6.5272E-01 4.5213E-04 

Median  3.5527E-15 1.8978E+00 9.3130E-01 2.1316E-14 4.5433E-07 

SD 3.2199E-01 6.2596E-01 8.4242E-01 1.4677E+00 1.3841E-02 

F7 

Mean  1.0678E-03 7.1937E-02 7.6256E-03 1.2328E-02 1.1276E-03 

Median  0.0000E+00 3.9382E-02 0.0000E+00 1.4433E-15 1.9336E-03 

SD 3.4040E-03 1.5602E-01 1.2744E-02 1.9931E-02 4.0882E-03 

F8 

Mean  3.5345E+00 2.4080E+01 1.7272E+00 3.8558E+00 3.8919E+00 

Median  3.6292E+00 2.2900E+01 6.6871E-02 3.7318E+00 3.6789E+00 

SD 1.8282E+00 1.8179E+01 4.5235E+00 4.8032E+00 2.1900E+00 

F9 

Mean  7.5065E-30 8.2957E-02 8.9972E-02 4.8404E-02 2.1977E-02 

Median  1.5705E-32 2.0869E-32 1.5705E-32 1.6996E-32 1.8663E-02 

SD 2.2671E-29 1.6204E-01 2.8058E-01 1.3820E-01 2.6788E-02 

F10 

Mean  1.6957E-01 7.3606E-01 5.2637E-01 1.3573E-01 2.6423E-02 

Median  6.7130E-02 6.5443E-01 2.3098E-01 7.4871E-03 2.2655E-02 

SD 2.5386E-01 5.7344E-01 7.2053E-01 2.5827E-01 1.5454E-02 

F11 

Mean  6.4823E-07 6.3595E-02 2.8179E-09 2.1659E-19 8.5433E-10 

Median  4.3043E-07 1.9753E-05 7.0518E-63 1.4699E-21 7.2387E-10 

SD 7.0728E-07 3.3502E-01 1.5435E-08 9.2580E-19 1.0848E-10 

F12 

Mean  6.6568E-01 3.4446E-16 4.7184E-16 5.6321E-17 1.0933E-10 

Median  6.9049E-01 2.2204E-16 2.2204E-16 1.2014E-25 4.9837E-12 

SD 6.2163E-01 4.1040E-16 7.3741E-16 1.8760E-16 1.7837E-14 

F13 

Mean  3.2990E-01 5.7654E-01 5.1987E-01 3.9321E-01 3.1623E-01 

Median  2.9987E-01 5.9987E-01 4.9987E-01 2.9987E-01 2.3636E-01 

SD 5.9585E-02 1.7555E-01 1.9191E-01 2.2733E-01 1.9786E-01 

F14 

Mean  1.0480E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

Median  1.0474E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 

SD 1.0279E-02 0.0000E+00 1.0286E-07 1.2370E-16 5.8374E-17 

F15 

Mean  4.9261E-03 1.0838E-01 2.6109E-01 5.4188E-02 1.2334E-02 

Median  2.0670E-04 1.4778E-01 1.4778E-01 6.8282E-02 4.0838E-02 

SD 2.6982E-02 1.1600E-01 2.2524E-01 1.1304E-01 2.0018E-01 

Table 3(B). Statistical Comparison of results with state-of-art algorithms. 

Stat. DE SFLA MDE NL-SFLA 

Best 4.21417 4.21412 4.21421 4.21421 

Mean 4.20422 4.21421 4.21418 4.21422 

Worst 4.21312 4.21514 4.21418 4.21431 

SD(σ) 0.01056 0.01105 0.00504 0.00429 

Table 4. Statistical Comparison of RLTP – 1 results. 

Stat. DE SFLA NSDE NL-SFLA 

x1 1.00008 1.00019 1.0015 1.00149 

x2 4.99993 4.999981 4.99998 4.999929 

x3 1.49979 1.50008 1.50006 1.50002 

x4 4.79993 4.79999 4.79999 4.79999 

x5 -2.00031 -2.000045 -2.00004 -2.000037 

x6 -4.90005 -4.900034 -4.90003 -4.900032 

F(x) 4.700E-06 2.985E-06 2.341E-06 2.340E-06 

Table 5. Parametric values of RLTP – 1 for DE, SFLA, NSDE and NLSFLA 

Stat. DE SFLA MDE NL-SFLA 

Best 15.2875 15.2912 14.4301 8.87449 

Mean 17.2614 17.2891 15.735 13.714 

Worst 19.3476 20.011 16.4621 12.9581 

SD(σ) 4.55E-02 4.69E-02 5.53E-03 6.09E-03 

Table 6. Statistical Comparison of RLTP – 2 results. 

Stat. DE SFLA MDE NL-SFLA 
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Best 0.6745 0.6751 0.6625 0.6625 

Mean 0.7952 0.8125 0.7523 0.7496 

Worst 0.9009 0.9122 0.8551 0.8966 

SD(σ) 8.22E-02 8.12E-02 4.66E-02 2.23E-03 

Table 7. Statistical Comparison of RLTP – 3 results. 

Stat. DE SFLA NSDE NL-SFLA 

x1 0.901341 0.901342 0.901336 0.9013359 

x2 0.891174 0.891176 0.891053 0.8910531 

x3 3.87757 3.87867 3.87933 3.879329 

x4 3.94642 3.94652 3.94662 3.94662 

x5 5.32623 5.32625 5.32509 5.32511 

x6 10.6239 10.6241 10.6162 10.6161 

x7 0.0000 0.0000 0.0000 0.0000 

x8 1.08914 1.089214 1.08881 1.0889 

x9 0.705575 0.706105 0.706727 0.706726 

F(x) 0.054371 0.054372 0.054366 0.0543679 

Table 8. Parametric values of RLTP – 4 for DE, SFLA, NSDE and NLSFLA 

 

Figure 7. A schematic of proposed NL-SFLA 
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VII. Conclusions and future scope  

Present study is focused on the population diversity and 

handling the continuous optimization problems by Shuffled 

Frog Leaping Algorithm. Two modifications are done to in the 

basic structure of SFLA. The population of virtual frogs is 

generated using nonlinear simplex method of Nelder and Mead 

along with the traditional method of initializing population i.e. 

random. Then elite population is taken as initial solution. 

Secondly, the distribution of frogs in different memeplexes is 

modified to handle continuous optimization problems. The 

variant embedded with two modifications is named as 

NL-SFLA.  This variant is applied to solve 15 benchmark 

problems (unimodal and multimodal) and four real life time 

optimization problems. The statistically simulated results 

present the efficiency and accuracy to solve the problems.  

In future an attempt would be made to enhance the application 

area of the proposed variant of SFLA as it performed will on 

continuous optimization problems as well as on constrained 

problems 
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