
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 12 (2020) pp. 093-103

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Received: 12 Jan, 2020; Accepted: 8 May, 2020; Published: 21 May, 2020

Non-linear Simplex Shuffled Frog Leaping

Algorithm

Tarun K. Sharma1 and Ajith Abraham2

1 Department of Computer Science & Engineering, Graphic Era Hill University,

Bell Road, Dehradun, Uttarakhand, India

taruniitr1@gmail.com

2 Machine Intelligence Research Labs, USA

ajith.abraham@ieee.org

Abstract: Shuffled frog leaping algorithm (SFLA) is a recent

addition to the family of memetic algorithms that takes its

inspiration from the natural foraging behavior of frogs. In SFLA

the colony of frogs is divided into memeplexes of equal size. SFLA

gathered the interest of research fraternity to solve many real

world complex optimization problems. The basic structure of

SFLA posses some inherent limitations. In order to overcome the

limitation, in this study an enhanced variant of SFLA is proposed

and named as NL-SFLA. Generally the initial population is

generated using a traditional pseudo-random numbers which

may not be much efficient. In NL-SFLA an attempt has been

made to initialize the population of frog by integrating the

concept of nonlinear simplex method of Nelder and Mead. Later

modification is done in the frog distribution scheme in

memeplexes to handle continuous optimization problems.

Numerical results of NL-SFLA are compared with the

state-of-art algorithms over a set of benchmark problems. Also

the efficiency of the proposal is investigated on four real world

problems. Simulated results signify the efficacy of the proposal.

Keywords: SFLA, Shuffled frog leaping algorithm, Nelder-Mead,

Local Search, Simplex, Nonlinear.

I. Introduction

Since decades memetic algorithms gathered the attention of the

academicians, researchers as well as industrialists to solve

intrinsic complex optimization problems exists in different

spheres. Memetic algorithms are basically inspired from the

foraging behavior of biological metaphors. A detailed study of

such algorithms can be found in [1]. Shuffled frog leaping

algorithm (SFLA), pioneered by Eusuff and Lansey in 2003 [2],

is a recent addition to the family of memetic algorithms. Since

its introduction SFLA gained wide attraction of researchers

and academicians. Many recent applications of SFLA and its

enhanced variants can be seen in [3]-[12]. SFLA is inspired by

socio-cooperative behavior of frogs while searching for better

food positions. In SFLA, the population of frogs is divided in

equal numbers in each memeplexes. This division is based on

the fitness value and frog with best fitness is placed in first

memeplex, however frog with worst fitness being placed in last

memeplex. Initially SFLA was developed to solve discrete

optimization problems [2]. Since then, SFLA has gained

popularity in solving multimodal, nonlinear and complex

optimization tasks required in various fields of science&

engineering, social science and management. A brief overview

of basic SFLA and modified variant of SFLA and their

applications are discussed in the Section – III.

Like other memetic algorithm SFLA too suffers from

inherent limitations of sticking in local optima or premature

convergence while searching for global solutions [13]. In this

study an attempt is made to handle this inherent limitation. The

initial population is generated by amalgamating non-linear

simplex method of Nelder and Mead [14] with pseudo random

generated by programming method. Secondly, basic SFLA

performs better for discrete optimizations problems. A

modification is done in the frog distribution scheme in

memeplexes to handle continuous optimization problems.

 The paper is structured as follows: In Section II, a brief

overview and working of basic SFLA is presented. Literature

review of SFLA and various variants of SFLA are discussed in

Section III. Section IV discusses the motivation and methods

used to enhance the efficacy of the basic SFLA. Test bed and

real word problems are presented in Section V. Parameter

Settings, Results and discussions are presented in Section VI.

Finally conclusion drawn from the study is mentioned in

Section VII.

II. Brief Overview: SFLA

Main idea behind the working model of SFLA is the

combination of group evolution and exchange of information

by shuffling at global level. First, the population is initialized,

and the members (frogs) are arranged in the descending order

of their fitness. Then the frogs are divided into memeplexes

having equal number of frogs in each of it. Then, each

memeplex is allowed to evolve for a predefined number of

times. Every time, the worst frog moves towards the best frog

in the memeplex. This modified position is kept only in case it

Sharma and Abraham

94

improves the fitness of the worst frog; otherwise the worst frog

is moved towards the global best frog. Still, if the position of

the frog is not improved then the worst frog is discarded from

the population and a new random frog replaces it. This

elimination of a non-improving frog is known as censorship.

After repeating this local search process for a fixed number of

rounds for each memeplex, all the memeplexes are merged and

the frogs are arranged in the descending order of their

objective function values. These iterations continue till the

termination criterion is not satisfied.

Local search within a memeplex encourages exploitation of the

search space. As the evolution within a memeplex progresses,

the frogs tend to converge near the best frog of the memeplex.

Shuffling towards, the end of each evolutionary round depicts

exploration. As the execution progresses, all the frogs

converge towards the global best frog. The whole process of

SFLA has been summarized in four steps below:

A. .Initialization Process

The population of frogs is initialized randomly between lower

and upper bounds of the feasible search space in each

dimension. This step is very similar to the process adopted in

most of the metaheuristic algorithms. Set of all frogs is denoted

by XFi = (xfi1, xfi2, ...,xfiD). Individual frogs are generated using

Eq. (1).

(0,1) ()ij j j jxf lb rand ub lb

(1)

where i = 1 to F, j = 1 to D, lbj is the lower bound for

dimension and ubj is the upper bound for dimension j

B. Sorting and Division Process

All the members are evaluated for the objective function and

sorted in decreasing order of their fitness values. Then an

ordered distribution of these frogs is done between m subsets

called memeplexes. Number of frogs in each memeplex is n so

that F = m x n. This distribution is done in a specific order.

Frogs 1 to m goes to memeplex1 to m. Frogs m+1 to 2m goes

again to memeplex1 to m in the serial order. After this

arrangement, the best frog Xb and the worst frog Xw in each

memeplex are identified.

C. Local Search Process

This step performs intensification component of the search

process. Worst frog is modified using Eq. (2) & (3).

(0,1) ()i b wDS rand X X

(2)

, max max;w new w i iX X DS DS DS DS

(3)

where i = 1 to D denotes the dimension. DSmax is the maximum

allowed step size to avoid violation of the feasible space. Xw,new

is evaluated for its fitness. In case of improvement Xw is

replaced by Xw,new. If the position is not improved than the

same process is repeated by replacing Xb by the global best frog

Xg in Eq. (2). Still if not improved then the Xw is replaced by a

random new frog. This process of eliminating non-improving

frog is called censorship.

This process of moving of worst frog is called leaping. Leaping

is repeated for Ngen times in each memeplex. Process of leaping

is represented in Fig. 1.

D. Shuffling Process

After repeating the local search for the m memeplexes, all frogs

are combined and arranged in the descending order of their

fitness again. This shuffling facilitates the exchange of

information at global level.

Steps (b), (c) and (d) are repeated until satisfaction of

termination criterion.

Fig. 2, 3 and 4 illustrate the position of frogs in the search

space after initialization, after evolution in memeplexes and

towards convergence at the end, respectively. Fig .5 illustrates

all the steps of the algorithm.

Figure 1. Leaping process of the worst frog during local

iteration

Figure 2. Illustration of randomly distributed frogs after

initialization in SFLA

Figure 3. Illustration of convergence of frogs in respective

memeplexes

Non-linear Simplex Shuffled Frog Leaping Algorithm 95

XW:Worst

XB:Best

XW:Worst

XB:Best

Xg:Global

Figure 4. Illustration of convergence of frogs towards

global best frog after the execution

Figure 5. Flowchart of SFLA

III. Literature Review – SFLA

Moayedi et.al, in 2020 [8] embedded SFLA and WDO with

ANN in order to magnify its prediction aptitude to simulate the

shear strength of Soil. Tang et al.(2020) [9] proposed discrete

SFLA (DSFLA) that embeds deterministic and random walk

strategies to enhance the local search strategy in each

memeplexes. This hybrid DSFLA is employed to maximize the

strength of influential nodes in social networks. Sharma et al.

(2020) [6] introduced local search strategy in SFLA and

employed to solve a human resource problem. Li and Yan

(2019) [10] introduced a hybrid model based on SFLA and

bacterial foraging algorithm (BFA) in which levy flight is

embedded to enhance the global search while maintain the

diversity of the population using random grouping strategy.

Further local search is improved using migration operation

method to handle the optimization problem of redundancy

allocation and system reliability. Huang and Song (2019) [11]

modified local search in SFLA using the multi agent model to

optimize the land use. Elattar (2019) [12], proposed a variant

of SFLA that includes movement inertia concept of PSO and

crossover and mutation operators of GA to improve local and

global searching mechanism respectively. Later the variant is

applied to solve heat, emission and economic dispatch problem.

Janani et al. (2018) [15], applied SFLA to detect protein

complexes in protein-protein interaction. Rajamohana and

Umamaheswari (2018) [16] proposed a binary SFLA to

address the problem of feature selection to assist customers

with reliable reviews. Dash in 2018 [17], developed an

improved variant of SFLA that embeds functional link artificial

neural network (FLANN) to predict the currency conversion

rate. Kaur and Mehta (2017) [18] proposed augmented SFLA

to solve the workflow scheduling of resources in the cloud

environment. Sharma and Pant (2017) [19] introduced the

opposition based learning method to initialize the virtual

population of frogs and applied to solve unimodal and

multimodal benchmark problems. Tang et al. (2016) [20]

introduced a new framework of SFLA using lévy flight. The

local search mechanism is modified with lévy flight method

whereas global search is enhanced with interaction learning

rule. Dalavi et al. (2016) [21] designed a modified SFLA to

improve premature convergence and implemented to

determine the operations of hole making sequences optimally.

Tripathy et al. (2015) [22] employed SFLA to solve the

problem of multiprocessor scheduling. Jadidoleslam and

Ebrahimi (2015) [23] proposed modified SFLA that

encompasses a modified frog leaping strategy in each

memeplexes to improve exploitation process. Further author(s)

enhance the efficiency by introducing mapping procedure,

penalty factor and integer encoding. Later this modified SFLA

is applied to solve a generation expansion planning (GEP), a

critical problem in power systems. Sharma et al. (2015) [24]

embedded geometric centroid mutation, a probability based

operator in SFLA to enhance the convergence rate.

Bhattacharjee and Sarmah (2014) [25] introduced discrete

SFLA that embeds local search mechanism of PSO and

shuffled complex evolution. The proposal is implemented to

solve 0/1 knapsack problem. Kumar and Kumar (2014) [26]

applied SFLA to handle bidding strategy problem. Sarkheyli et

al. (2014) [27] presented a brief literature review of SFLA.

IV. Motivation behind the Study

Two antagonists factor i.e. exploration (diversification) and

exploitation (intensification) plays a significant role in the

success of any memetic, nature/bio inspired and evolutionary

algorithms. These two factors need to be balanced or justified

to avoid trapping in local optima or slow/premature

convergence. Population initialization plays an important role

in any memetic algorithm. Generally random population of

solutions is generated using defined pseudo random generator

with the defined upper and lower bounds of feasible region.

This population does not have any idea about the optimum

locations in the search space that may help in expediting the

search of global solution. In order to enhance the diversity as

well as acceleration rate non-linear simplex method is

Sharma and Abraham

96

embedded in the structure of SFLA. Secondly, the basic SFLA

performs well on discrete optimization problems [2], so a

modification is embedded while distributing frogs in different

memeplexes to solve continuous optimization problems

efficiently. These two modifications are introduced in SFLA

and the resulting variant is termed as Nelder-Mead Shuffled

Frog Leaping Algorithm (NL-SFLA).

Nelder-Mead and formation of memeplexes to handle the

continuous problems are discussed below:

A. Nelder Mead

Non-Linear Simplex method (NLSM) a derivate free technique,

introduced in 1965 by Nelder and Mead [14]. NLSM being the

local direct search technique is best suited to solve

unconstrained optimization problems especially the cases of

minimization. In general there are four NLSM geometric

transformations namely expansion, reduction, contraction and

reflection. This transformation helps simplex in self improving

as well as in converging to optimum. The objective fitness

function value at the vertex of the simplex is used to select the

suitable transformation. The worst vertex function value is

updated with the better one in each transformation.

Brief Overview of geometric transformations

Considering the minimization case, initially only the vertex of

the simplex having worst objective fitness value (worst point)

is moved and an adjacent image of the worst point is generated.

This is termed as reflection. If the reflected image of the point

has the better fitness value in comparison to all other points,

the simplex is expanded in that direction. Otherwise reflection

is again performed with other worst fitness value. If the worst

fitness value is comparatively good as the reflected one then

contraction is performed. If the point generated through

contraction is worse than the worst point, reduction

transformation is initiated.

The transformation sequences are plotted in Fig 7(a – d).

B. Formation of Memeplexes

The memeplexes in SFL algorithm are formed by dividing a set

of frogs based on their fitness value i.e. frog with best fitness

value will be the part of 1stmemeplex and the 2nd frog would be

part of 2ndmemeplex and so on (Fig. 6)

B

A

C

D

M

d

(a) Reflection of D to C

(b) Expansion of D to C

(c) Contraction of D to F

C

A

D

B

C’

A’B’

M

(d) Reduction of ABC to A’B’C’

Figure 7. (a – d) Processes involved in Non-Linear Simplex

Method

x1 x2 … XM

xm+1 xm+2 … x2m

xn x2n … xmn

Memeplex

(m1)

 Memeplex

(m2)

… Memeplex

(mn)

Figure 6. Formation of memeplexes in SFLA

This formation of memeplexes leads to imbalance i.e. the

performance of 1st memeplex would always be better than the

last memeplex. This also leads to poor learning process and

enhancing the performance of worst frog. To make the uniform

performance of each memeplex, the formation of memeplex is

done using the following [28] Eq. (4).

Non-linear Simplex Shuffled Frog Leaping Algorithm 97

(1),

1,'

(1),

1,

1,3,...,

2, 4,...,
,

1,3,...,

2, 4,...,

i m j

j
mj

i j j

i m j

j
mj

x j n
x

x j n
M x f

x j n
f

x j n

(4)

For an example if there are 6 frogs and divided into 2

memeplexes than as per the Eq. (4) 1st memeplex will have 1st,

3rd& 5th frog and 2nd, 4th and 6th will go to memeplex 2nd. This

modification also supports in solving continuous optimization

problems as initially SFL algorithm was proposed to solve

discrete optimization problems

V. Test Bed and Experimental Setup

Two test bed are referred in this study. First test bed consists of

fifteen benchmark problems [29] taken from literature to

validate the proposal. Their characteristics are stated in Table 1.

There are four unimodal (UM) and eleven multimodal (MM)

problems. Unimodal problems validate the proposal in terms of

local searching capability where as the rest of the problems

verify the global searching capability of the proposed algorithm.

Further to validate the efficacy of proposed algorithm, second

test bed of four real life time problems (RLTP) [30]-[32] are

taken into consideration to validate the efficiency of the

proposal.

For unbiased simulated statistical result comparison nine (9)

state-of-art algorithms (off course enhanced variants of some

algorithms) are considered. The parameter settings of the

state-of-art algorithms are presented in Table 2. 30 runs are

performed with (different seeds/population each time) with the

frog population size (XF) of 20; dimension (D) 30 with 5 (m)

memeplexes i.e. in each memeplexes there would be 4 frogs (n).

C++ is used to program and executed on windows 7 with

i3-5005U CPU@2.00GHz having 4.00 GB RAM. D x 1E4 is

fixed as maximum number of function evaluations as a

termination criterion.

Stat. Dimension Limit Lower Upper Limit F(x)* Problem Type

F1: Sphere 30 -100 100 0 UM

F2: Schwefel's (2.22) 30 -10 10 0 UM

F3: Schwefel's (1.2) 30 -100 100 0 UM

F4: Quartic 30 -1.28 1.28 0 UM

F5: Rastrigin 30 -5.12 5.12 0 MM

F6: Ackley 30 -32 32 0 MM

F7: Griekwank 30 -600 600 0 MM

F8: Rosenbrock 30 -10 10 0 MM

F9: Penalized 30 -50 50 0 MM

F10: Weierstrass's 30 -0.5 0.5 0 MM

F11: Zakharov 30 -5 10 0 MM

F12: Alpine 30 -10 10 0 MM

F13: Saloman 30 -100 100 0 MM

F14: Periodic 30 -10 10 0.9 MM

F15: Inversted Cosine 30 -1 1 0 MM

Table 1. Characteristics of benchmark problems

A. RLTP-1: Estimation of Parameters of Frequency

Modulated Sound Waves [31][32]

In most of the music systems in modern era, synthesis of

frequency modulation plays a significant role. In general there

are six sound wave parameters that need to be optimized for an

FM Synthesizer namely α1, ω1, α2, ω2, α3, and ω43.

Estimated and targeted sound waves are presented below:

1 1 2 2 3 3() sin(sin(sin()))sw t t t t

0 () 1.0sin(5.0 1.5sin(4.8 2.0sin(4.9)))sw t t t t

Range for the parameters is [-6.4, 6.35] and
2

100

 .

The objective (Eq. (2)) is to optimize the sum of squared errors

between the estimated and targeted sound waves:
100

2
0

0

() (() ())
t

f X sw t sw t

B. RLTP-2: Optimal Thermohydralic Performance of an

Artificially Roughened Air Heater [30]

This is a simple maximize optimization problem. The

mathematical formulation of this problem is given as below:

2.51 ln 5.5 0.1 R GMaximize F e M H

and

0.53 0.28 0.57
20.95 ; 4.5() (0.7)R GM x H e

1

2
1 3() ; () / 2

2
s r

f
e x x f f f

0.25 0.53 2 2
3 2

1

1
0.079 ; 2(0.95 2.51 ln() 3.75)

2
s rf x f x

x

The variables are bounded as:

1

2

3

0.02 0.8

10 40

3000 40000

x

x

x

Sharma and Abraham

98

C. RLTP-3: Spread Spectrum Radar Poly phase Code

Design [30] [31]

This problem is modeled as minmax non-convex nonlinear

optimization problem having numerous local optima’s in

continuous search space.

1 2 2() max { (), (),..., ()}nMinimize f X imize X X X

The vector

1 2(, ,..) | 0 2 , 1,2,...,D
D iX x x x R x i D

where

2 1n D

|2 1| 12 1() cos(), 1,2,...,
D

i
k j ij k

i j

X x j D

2
1 |2 | 1

() 0.5 cos , 1,2,..., 1
D i

j k
i j k j i

X x j D

() (), 1,2,...n j jX X j n

Here the objective is to minimize the module of the biggest

among the samples of the so-called auto-correlation function

which is related to the complex envelope of the compressed

radar pulse at the optimal receiver output, while the variables

represent symmetrized phase differences. According to [24],

the above problem has no polynomial time solution.

D. RLTP-4: Transistor Design Modeling [32]

2 2 24

1() ()k k kMinimize f X

where

3
1 2 3 5 1 3 7

3
5 8 5 4 2

(1) {exp[(10

10)] 1}

k K k

k k k

x x x x g g x

g x g g x

3
1 2 4 6 1 2 3 7

3
4 9 5 1 4

(1) {exp[(10

10)] 1}

k k k k

k k k

x x x x g g g x

g x g x g

1 3 2 4x x x x

subject to: 0ix

The given below matrix defines the numerical constants (gik)

0.485 0.752 0.869 0.982

0.369 1.254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

VI. Statistically Simulated Results

The comparative simulated statistical (Stat.) results for the 15

benchmark functions are presented in Table 3(A & B). The

observed mean, median and SD for each function is taken for

result comparison. Firstly NL-SFLA is able to solve all the 15

problems. The result from the Table 3(A & B) shows that the

proposed variant performed at par with the state-of-art

algorithms, especially when the results are compared with

basic SFLA, DE, CA, GSA, and SaDE for all most all

functions. For SPSO, GbABC, JADE, and jDE the evaluated

results are at par. The bold faces show the best results. GbABC

has better results for F5, F6, F8 and F12. SPSO presented

better results for F11 and 13. JADE performed better for F1,

F2, and F3 whereas better standard deviation is observed by

NL-SFLA. For the function F4, F7 and F14 again NL-SFLA

performed comparatively better than the state-of-art

algorithms.

The statistical simulated results for the four real time problems

are presented in Tables 4 – 8. For RLTP – 1 statistical results

(mean, best, worst and SD) are presented in Table 1. The

results are compared with DE, variant of DE i.e. MDE and

basic SFLA. NL-SFLA and MDE able to evaluate same best

fitness value however the SD for NL-SFLA was better. In

other Table 2, parameter values of the problem are presented

and compared with DE, basic SFLA and NSDE.

For the RLTP – 2, results are discussed and compared with DE,

SFLA and MDE in Table 6. It is clearly observed that

NL-SFLA achieved better results with significant SD.

Similarly, the results for RLTP – 3 and 4 are presented in Table

7 and 8. For RLTP – 3 results are compared with DE, MDE

and basic SFLA. For the RLTP – 4 results are presented along

with parametric values and compared with DE, SFLA and

NSDE.

From the results it can be concluded that the proposed variant

performed well on all four problems and achieved better or at

par best fitness values. Also the observed SD is better for all

problems, which reflects accuracy.

State of Art Algorithms Experimental Settings

SFLA [33] c = 1; le = 5

DE [28][34] CR = 0.9; F = 0.5

SPSO [29][35] w = 1/(2 * log(2)); Cl = 0.5

jDE [30][36] CR = 0.9; F = 0.5

SaDE [30][36] Not pre-specified

JADE [30][36] c = 1/10; p = 0.05; Afactor = 1

GSA [31][37] Elitist Check = 1; Rpower = 2; Rnorm = 2

CS [32][38] beta = 1.5; pa = 0.25

GbABC [33][39] SN = 12; C = 1.507; lf = 1.12

Table 2. State-of-art Algorithms taken for statistical comparisons

Non-linear Simplex Shuffled Frog Leaping Algorithm 99

Problem(Fi) Stat. SFLA DE SPSO GbABC GSA

F1

Mean 1.09250E-21 2.87010E-74 0.00000E+00 5.06790E-16 1.47630E+04

Median 4.44570E-23 1.36650E-87 0.00000E+00 5.55600E-16 1.51050E+04

SD 2.90420E-21 1.54830E-73 0.00000E+00 1.28720E-16 3.04970E+03

F2

Mean 2.11750E-23 3.33330E+00 0.00000E+00 5.36270E-16 5.62480E-09

Median 5.38800E-25 1.60790E-89 0.00000E+00 4.85900E-16 5.49970E-09

SD 5.84650E-23 1.82570E+01 0.00000E+00 1.80140E-16 1.58610E-09

F3

Mean 3.2039E+00 3.59460E-42 1.15110E-50 4.6682E+03 4.5775E+04

Median 2.8127E+00 4.23040E-45 1.06280E-51 4.6226E+03 4.2754E+04

SD 1.4048E+00 1.68300E-41 3.42530E-50 1.8280E+03 1.6455E+04

F4

Mean 2.07940E-03 1.81270E-02 1.49360E-03 1.81270E-02 4.2480E-02

Median 2.08950E-03 1.48510E-02 1.20800E-03 1.48510E-02 4.1547E-02

SD 7.45060E-04 1.25680E-02 8.17800E-04 1.25680E-02 8.2225E-03

F5

Mean 2.4447E+01 7.0012E+01 4.4914E+01 1.8957E-11 3.0147E+01

Median 2.3891E+01 6.9647E+01 3.9798E+01 1.1369E-13 3.1839E+01

SD 5.3640E+00 1.9182E+01 2.1653E+01 4.7447E-11 6.8443E+00

F6

Mean 9.7550E-03 1.0721E+01 2.1516E+00 5.6962E-14 5.5644E-05

Median 2.5160E-07 1.0620E+01 2.3168E+00 5.6843E-14 5.5620E-05

SD 5.2082E-02 2.5977E+00 4.7042E-01 1.1407E-14 5.3296E-06

F7

Mean 3.9635E-02 3.9197E-01 7.7154E-03 1.4200E-02 5.9557E+02

Median 2.7037E-02 1.0991E-01 7.3960E-03 7.6361E-03 5.9949E+02

SD 3.7907E-02 8.0794E-01 7.9842E-03 1.7787E-02 8.2391E+01

F8

Mean 3.6924E+01 1.6965E+01 7.1336E+00 6.5351E-01 7.3253E+00

Median 2.7230E+01 6.9737E+00 6.5930E+00 2.9508E-01 7.3361E+00

SD 2.2323E+01 3.1387E+01 1.8580E+00 9.9064E-01 6.0670E-01

F9

Mean 3.4889E+01 4.0227E+00 7.2796E-01 5.7739E-16 1.5408E-01

Median 6.8430E-17 1.2555E+00 5.1912E-01 5.5804E-16 4.6459E-11

SD 1.9109E-02 6.0936E+00 8.8114E-01 2.2063E-16 2.8020E-01

F10

Mean 4.4492E+00 1.2421E+01 9.8602E+00 2.2945E-16 9.8496E-02

Median 4.5651E+00 1.1552E+01 9.4740E+00 0.0000E+00 9.7545E-02

SD 2.1069E+00 3.3714E+00 1.9998E+00 7.8121E-16 1.0691E-02

F11

Mean 3.2900E+00 7.3727E+00 3.2166E-66 2.8802E+02 5.7899E-08

Median 3.0721E+00 5.0946E-62 8.0527E-68 2.9517E+02 5.5031E-08

SD 1.2968E+00 1.8712E+01 1.6273E-65 5.8734E+01 1.8167E-08

F12

Mean 3.6686E-04 2.0081E-10 1.3919E+00 5.6660E-04 2.6247E-05

Median 2.4658E-05 1.5465E-12 9.2397E-01 2.4409E-08 2.6567E-05

SD 9.4918E-04 1.0415E-09 1.4960E+00 1.9155E-03 3.2402E-06

F13

Mean 4.0654E-01 2.6599E+00 2.1321E-01 1.2133E+00 1.2696E+01

Median 3.9987E-01 2.5999E+00 1.9987E-01 1.1999E+00 1.2600E+01

SD 7.8492E-02 1.2050E+00 3.4575E-02 1.9773E-01 1.3020E+00

F14

Mean 1.0126E+00 1.7596E+00 2.8661E+00 1.0126E+00 1.0000E+00

Median 1.0000E+00 1.5919E+00 2.8628E+00 1.0000E+00 1.0000E+00

SD 3.7334E-02 6.0045E-01 6.6970E-01 3.7334E-02 1.2410E-09

F15

Mean 1.4779E-02 1.5164E+00 6.1084E-01 1.6502E-16 4.9262E-03

Median 2.8497E-17 1.4778E+00 5.9114E-01 9.0526E-17 6.9378E-08

SD 5.9495E-02 4.5606E-01 2.5666E-01 2.2903E-16 2.6982E-02

Table 3(A). Statistical Comparison of results with state-of-art algorithms.

Problem(Fi) Stat. CS SaDE JADE jDE NL-SFLA

F1

Mean 2.53880E-38 1.18750E-101 1.10710E-223 3.49790E-212 1.5545E-209

Median 3.63700E-39 1.34990E-115 1.79720E-246 1.87050E-221 3.7646E-211

SD 6.55640E-38 6.44140E-101 0.00000E+00 0.00000E+00 5.9742E-112

F2

Mean 4.48950E-39 2.07670E-103 3.30170E-221 2.01120E-205 4.7861E-172

Median 1.18410E-39 7.31530E-118 1.34490E-234 1.13300E-222 3.0911E-213

SD 8.69760E-39 1.11700E-102 0.00000E+00 0.00000E+00 2.0293E-121

F3

Mean 2.92310E-05 8.83320E-02 2.14460E-55 1.39870E-11 2.6456E-47

Median 1.42620E-05 1.70420E-04 6.35760E-57 2.28260E-12 3.7355E-51

SD 3.62270E-05 4.49610E-01 1.02700E-54 3.47770E-11 1.9039E-44

F4

Mean 9.08690E-03 9.1211E-03 3.24140E-03 6.71590E-03 1.2643E-03

Median 8.71540E-03 8.0039E-03 3.21450E-03 4.49160E-03 2.8231E-03

SD 3.68140E-03 4.8538E-03 1.73980E-03 5.64550E-03 6.0878E-04

Sharma and Abraham

100

F5

Mean 1.1528E+01 3.3829E+00 1.3266E-01 1.4593E+00 1.2988E+00

Median 1.2322E+01 3.9798E+00 0.0000E+00 9.9496E-01 1.1388E+00

SD 3.5613E+00 1.4216E+00 3.4400E-01 1.4949E+00 2.3971E+00

F6

Mean 1.2417E-01 1.9051E+00 7.6297E-01 6.5272E-01 4.5213E-04

Median 3.5527E-15 1.8978E+00 9.3130E-01 2.1316E-14 4.5433E-07

SD 3.2199E-01 6.2596E-01 8.4242E-01 1.4677E+00 1.3841E-02

F7

Mean 1.0678E-03 7.1937E-02 7.6256E-03 1.2328E-02 1.1276E-03

Median 0.0000E+00 3.9382E-02 0.0000E+00 1.4433E-15 1.9336E-03

SD 3.4040E-03 1.5602E-01 1.2744E-02 1.9931E-02 4.0882E-03

F8

Mean 3.5345E+00 2.4080E+01 1.7272E+00 3.8558E+00 3.8919E+00

Median 3.6292E+00 2.2900E+01 6.6871E-02 3.7318E+00 3.6789E+00

SD 1.8282E+00 1.8179E+01 4.5235E+00 4.8032E+00 2.1900E+00

F9

Mean 7.5065E-30 8.2957E-02 8.9972E-02 4.8404E-02 2.1977E-02

Median 1.5705E-32 2.0869E-32 1.5705E-32 1.6996E-32 1.8663E-02

SD 2.2671E-29 1.6204E-01 2.8058E-01 1.3820E-01 2.6788E-02

F10

Mean 1.6957E-01 7.3606E-01 5.2637E-01 1.3573E-01 2.6423E-02

Median 6.7130E-02 6.5443E-01 2.3098E-01 7.4871E-03 2.2655E-02

SD 2.5386E-01 5.7344E-01 7.2053E-01 2.5827E-01 1.5454E-02

F11

Mean 6.4823E-07 6.3595E-02 2.8179E-09 2.1659E-19 8.5433E-10

Median 4.3043E-07 1.9753E-05 7.0518E-63 1.4699E-21 7.2387E-10

SD 7.0728E-07 3.3502E-01 1.5435E-08 9.2580E-19 1.0848E-10

F12

Mean 6.6568E-01 3.4446E-16 4.7184E-16 5.6321E-17 1.0933E-10

Median 6.9049E-01 2.2204E-16 2.2204E-16 1.2014E-25 4.9837E-12

SD 6.2163E-01 4.1040E-16 7.3741E-16 1.8760E-16 1.7837E-14

F13

Mean 3.2990E-01 5.7654E-01 5.1987E-01 3.9321E-01 3.1623E-01

Median 2.9987E-01 5.9987E-01 4.9987E-01 2.9987E-01 2.3636E-01

SD 5.9585E-02 1.7555E-01 1.9191E-01 2.2733E-01 1.9786E-01

F14

Mean 1.0480E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

Median 1.0474E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

SD 1.0279E-02 0.0000E+00 1.0286E-07 1.2370E-16 5.8374E-17

F15

Mean 4.9261E-03 1.0838E-01 2.6109E-01 5.4188E-02 1.2334E-02

Median 2.0670E-04 1.4778E-01 1.4778E-01 6.8282E-02 4.0838E-02

SD 2.6982E-02 1.1600E-01 2.2524E-01 1.1304E-01 2.0018E-01

Table 3(B). Statistical Comparison of results with state-of-art algorithms.

Stat. DE SFLA MDE NL-SFLA

Best 4.21417 4.21412 4.21421 4.21421

Mean 4.20422 4.21421 4.21418 4.21422

Worst 4.21312 4.21514 4.21418 4.21431

SD(σ) 0.01056 0.01105 0.00504 0.00429

Table 4. Statistical Comparison of RLTP – 1 results.

Stat. DE SFLA NSDE NL-SFLA

x1 1.00008 1.00019 1.0015 1.00149

x2 4.99993 4.999981 4.99998 4.999929

x3 1.49979 1.50008 1.50006 1.50002

x4 4.79993 4.79999 4.79999 4.79999

x5 -2.00031 -2.000045 -2.00004 -2.000037

x6 -4.90005 -4.900034 -4.90003 -4.900032

F(x) 4.700E-06 2.985E-06 2.341E-06 2.340E-06

Table 5. Parametric values of RLTP – 1 for DE, SFLA, NSDE and NLSFLA

Stat. DE SFLA MDE NL-SFLA

Best 15.2875 15.2912 14.4301 8.87449

Mean 17.2614 17.2891 15.735 13.714

Worst 19.3476 20.011 16.4621 12.9581

SD(σ) 4.55E-02 4.69E-02 5.53E-03 6.09E-03

Table 6. Statistical Comparison of RLTP – 2 results.

Stat. DE SFLA MDE NL-SFLA

Non-linear Simplex Shuffled Frog Leaping Algorithm 101

Best 0.6745 0.6751 0.6625 0.6625

Mean 0.7952 0.8125 0.7523 0.7496

Worst 0.9009 0.9122 0.8551 0.8966

SD(σ) 8.22E-02 8.12E-02 4.66E-02 2.23E-03

Table 7. Statistical Comparison of RLTP – 3 results.

Stat. DE SFLA NSDE NL-SFLA

x1 0.901341 0.901342 0.901336 0.9013359

x2 0.891174 0.891176 0.891053 0.8910531

x3 3.87757 3.87867 3.87933 3.879329

x4 3.94642 3.94652 3.94662 3.94662

x5 5.32623 5.32625 5.32509 5.32511

x6 10.6239 10.6241 10.6162 10.6161

x7 0.0000 0.0000 0.0000 0.0000

x8 1.08914 1.089214 1.08881 1.0889

x9 0.705575 0.706105 0.706727 0.706726

F(x) 0.054371 0.054372 0.054366 0.0543679

Table 8. Parametric values of RLTP – 4 for DE, SFLA, NSDE and NLSFLA

Figure 7. A schematic of proposed NL-SFLA

Sharma and Abraham

Dynamic Publishers, Inc., USA

102

VII. Conclusions and future scope

Present study is focused on the population diversity and

handling the continuous optimization problems by Shuffled

Frog Leaping Algorithm. Two modifications are done to in the

basic structure of SFLA. The population of virtual frogs is

generated using nonlinear simplex method of Nelder and Mead

along with the traditional method of initializing population i.e.

random. Then elite population is taken as initial solution.

Secondly, the distribution of frogs in different memeplexes is

modified to handle continuous optimization problems. The

variant embedded with two modifications is named as

NL-SFLA. This variant is applied to solve 15 benchmark

problems (unimodal and multimodal) and four real life time

optimization problems. The statistically simulated results

present the efficiency and accuracy to solve the problems.

In future an attempt would be made to enhance the application

area of the proposed variant of SFLA as it performed will on

continuous optimization problems as well as on constrained

problems

Acknowledgment
Author(s) declare that there is no conflict of interest.

References

[1] J Rajpurohit, T.K. Sharma, A. Abraham, Vaishali.

“Glossary of Metaheuristic Algorithms”, International

Journal of Computer Information Systems and Industrial

Management Applications, 9(2017), pp. 181 – 205,

2017.

[2] E. Muzaffar M., and K. E. Lansey “Optimization of water

distribution network design using the shuffled frog

leaping algorithm”, Journal of Water Resources

Planning and Management, 129(3), pp. 210-225, 2003.

[3] J, Cai, R. Zhou, D. Lei. “Dynamic shuffled frog-leaping

algorithm for distributed hybrid flow shop scheduling

with multiprocessor tasks”, Engineering Applications of

Artificial Intelligence, 90, pp. 103540, 2020

[4] R. Dash, R. Dash, R. Rautray. “An evolutionary

framework based microarray gene selection and

classification approach using binary shuffled frog leaping

algorithm”, Journal of King Saud University - Computer

and Information Sciences, 2020

https://doi.org/10.1016/j.jksuci.2019.04.002

[5] Y. Guo, X. Tian, G. Fang, Yue-Ping Xu. “Many-objective

optimization with improved shuffled frog leaping

algorithm for inter-basin water transfers”, Advances in

Water Resources, 138 Article 103531, 2020

[6] T.K. Sharma, J. Rajpurohit, D. Prakash. “Enhanced Local

Search in Shuffled Frog Leaping Algorithm”, In

Proceedings of Soft Computing: Theories and

Applications, 1053. Springer, Singapore, pp. 1441-1448,

2020.

[7] Q. Huang, W. Song. “A land-use spatial optimum

allocation model coupling a multi-agent system with the

shuffled frog leaping algorithm”, Computers,

Environment and Urban Systems, 77, Article 101360,

2019.

[8] H. Moayedi, D. T. Bui, Phuong T. T. N.. “Shuffled Frog

Leaping Algorithm and Wind-Driven Optimization

Technique Modified with Multilayer Perceptron”, Appl.

Sci., 10(2), pp. 689, 2020.

[9] J. Tang, R. Zhang, P. Wang, Z. Zhao, L. Fan, X. Liu. “A

discrete shuffled frog-leaping algorithm to identify

influential nodes for influence maximization in social

networks”, Knowledge-Based Systems, 187, 104833,

2020

[10] Y. Li, Z. Yan. “Improved shuffled frog leaping algorithm

on system reliability analysis”, Brain Inform., 6(1), pp.

1-7, 2019.

[11] Q. Huang, W. Song. “A land-use spatial optimum

allocation model coupling a multi-agent system with the

shuffled frog leaping algorithm”, Computers,

Environment and Urban Systems, 77, Article 101360,

2019.

[12] E. E. Elattar. “Environmental economic dispatch with heat

optimization in the presence of renewable energy based

on modified shuffle frog leaping algorithm”, Energy,

17115, pp. 256-269, 2019.

[13] T.K. Sharma, M. Pant. “Shuffled artificial bee colony

algorithm,” Soft Computing, 21, 6085–6104, 2017.

https://doi.org/10.1007/s00500-016-2166-2

[14] J.A. Nelder, R. Mead. “A simplex method for function

minimization”, Computer Journal, 7, pp. 308–13, 1965.

[15] S. Janani, D. Ramyachitra, R. Ranjani Rani. “PCD-DPPI:

Protein complex detection from dynamic PPI using

shuffled frog-leaping algorithm”, Gene Reports, 12, pp.

89-98, 2018

[16] S. P. Rajamohana, K. Umamaheswari. “Hybrid approach

of improved binary particle swarm optimization and

shuffled frog leaping for feature selection”, Computers &

Electrical Engineering, 67, pp. 497-508, 2018.

[17] R. Dash. “An improved shuffled frog leaping algorithm

based evolutionary framework for currency exchange

rate prediction”, Physica A: Statistical Mechanics and

its Applications, 48615, pp. 782-796, 2017.

[18] P. Kaur, S. Mehta. “Resource provisioning and work flow

scheduling in clouds using augmented Shuffled Frog

Leaping Algorithm”, Journal of Parallel and Distributed

Computing, 101, pp. 41-50, 2017.

[19] T. K. Sharma, M. Pant. “Opposition based learning

ingrained shuffled frog-leaping algorithm”, Journal of

Computational Science, 21, pp. 307-315, 2017

[20] D. Tang, J. Yang, S. Dong, Z. Liu. “A lévy flight-based

shuffled frog-leaping algorithm and its applications for

continuous optimization problems”, Applied Soft

Computing, 49, pp. 641-662, 2016.

[21] A. M. Dalavi, P. J. Pawar, T. P. Singh. “Tool path

planning of hole-making operations in ejector plate of

injection mould using modified shuffled frog leaping

algorithm”, Journal of Computational Design and

Engineering, 3(3), pp. 266-273, 2016.

[22] B. Tripathy, S. Dash, S. K. Padhy. “Multiprocessor

scheduling and neural network training methods using

shuffled frog-leaping algorithm”, Computers &

Industrial Engineering, 80, pp. 154-158, 2015.

[23] M. Jadidoleslam, A. Ebrahimi. “Reliability constrained

generation expansion planning by a modified shuffled

frog leaping algorithm”, International Journal of

Electrical Power & Energy Systems, 64, pp. 743-751,

2015.

Non-linear Simplex Shuffled Frog Leaping Algorithm 103

[24] S. Sharma, T. K. Sharma, M. Pant, J.Rajpurohit, B.

Naruka. “Centroid Mutation Embedded Shuffled

Frog-Leaping Algorithm”, Procedia Computer Science,

46, pp. 127-134, 2015.

[25] K. K. Bhattacharjee, S. P. Sarmah. “Shuffled frog leaping

algorithm and its application to 0/1 knapsack problem”,

Applied Soft Computing, 19, pp. 252-263, 2014.

[26] J. Vijaya Kumar, D. M. Vinod Kumar. “Generation

bidding strategy in a pool based electricity market using

Shuffled Frog Leaping Algorithm”, Applied Soft

Computing, 21, pp. 407-414, 2014.

[27] A. Sarkheyli, A.M. Zain, S. Sharif. “The role of basic,

modified and hybrid shuffled frog leaping algorithm on

optimization problems: a review”, Soft Comput., 19, pp.

2011–2038, 2015.

[28] H. Pu, Z. Zhen, D. Wang. “Modified shuffled frog leaping

algorithm for optimization of UAV flight controller”,

International Journal of Intelligent Computing and

Cybernetics, 4(1) pp. 25 -39, 2011.

[29] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P.

Chen, A. Auger, S. Tiwari, Problem Definitions and

Evaluation Criteria for the CEC 2005 Special Session on

Real-Parameter Optimization, Technical Report,

Nanyang Technological University, Singapore And

KanGAL Report Number 2005005 (Kanpur Genetic

Algorithms Laboratory, IIT Kanpur) , 2005.

[30] S. Das, A. Abraham, U. Chakraborty and A. Konar.

“Differential Evolution Using a Neighborhood Based

Mutation Operator,” IEEE Transaction of Evolutionary

Computing, 13(3), pp. 526–553, 2009.

[31] A.E. Dor, M. Clerc and P. Siarry, “―Hybridization of

Differential Evolution and Particle Swarm Optimization

in a New Algorithm: DEPSO-2S”, In Proceeding of

SIDE 2012 and EC 2012, LNCS 7269, Springer-Verlag

Berlin Heidelberg, pp. 57–65, 2012.

[32] M. Ali, M. Pant, A. Abraham. “A simplex differential

evolution algorithm: development and applications,”

Transactions of the Institute of Measurement and

Control, 34(6), pp. 691–704, 2011.

[33] D. Tang, J. Yang, S. Dong, Z. Liu. “A lévy flight-based

shuffled frog-leaping algorithm and its applications for

continuous optimization problems,” Applied Soft

Computing, 49, pp. 641-662, 2016.

[34] N. Veček , M. Mernik, M. Črepinšek. “A chess rating

system for evolutionary algorithms: A new method for

the comparison and ranking of evolutionary algorithms,”

Information Sciences, 277, pp. 656-679, 2014.

[35] M.G.H. Omran, M. Clerc, 2011.

<http://www.particleswarm.info/> (accessed 15.10.12)

[36] Q. Zhang, 2011. <http://dces.essex.ac.uk/staff/qzhang/>

(accessed 6.10.13).

[37] E. Rashedi, H. Nezamabadi-pour, Saeid Saryazdi. “GSA:

A Gravitational Search Algorithm,” Information

Sciences, 179, pp. 2232-2248, 2009.

[38] X. Yang, S. Deb. “Cuckoo search via Levy flights,” In

Proceedings of World Congress on Nature &

Biologically Inspired Computing USA, 210-214, 2009.

[39] T. Liao, D. Aydın, T. Stützle, “Artificial bee colonies for

continuous optimization: Experimental analysis and

improvements,” Swarm Intelligence, 7(4), pp. 327-356,

2013

Author Biographies

Tarun K. Sharma presently associated with Department

of Computer Science and Engineering, Graphic Era Hill

University, Dehradun, Uttarakhand, India. He did his PhD

in Computational Intelligence from Indian Institute of

Technology (IIT) Roorkee, India. His research interest

includes designing hybrid variants of nature inspired

algorithms and their engineering applications. He has

published several research papers in peer reviewed

International Journals and Conferences of repute. He has

also edited several books in Springer. He served in Editorial

board and reviewers of several International Journals. He is

also the founding members of International Conference on

Soft Computing: Theories and Applications (SoCTA)

Series

Prof. Ajith Abraham received his Ph.D. degree in

Computer Science from Monash University, Melbourne,

Australia. He is currently coordinating the efforts of

Machine Intelligence Research Labs (MIR Labs),

Scientific Network for Innovation and Research Excellence,

USA, which has members from more than 100+ countries.

He has a worldwide academic experience with formal

appointments in several Universities in Asia, Australia,

Europe and the US. He serves/has served the editorial board

of over 50 International journals and has also guest edited

50 special issues on various topics related to machine

intelligence. He is a co-author of more than 1000+ research

publications, and some of the works have also won best

paper awards at international conferences. He is also the

founder member of several International Conferences of

repute.

