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Abstract—Scheduling is one of the core steps to efficiently
exploit the capabilities of heterogeneous distributed computing
systems and it is also an appealing NP-complete problem. There
is a number of heuristic and meta-heuristic algorithms that were
tailored to deal with scheduling of independent jobs. In this
paper we investigate the efficiency of differential evolution on
the scheduling problem.
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I. INTRODUCTION

Grid computing and distributed computing, dealing with
large scale and complex computing problems, is a hot topic
in the computer science and research. Mixed-machine hetero-
geneous computing (HC) environments utilize a distributed
suite of different machines, interconnected with computer
network, to perform different computationally intensive appli-
cations that have diverse requirements [1], [2]. Miscellaneous
resources should be orchestrated to perform a number of tasks
in parallel or to solve complex tasks atomized to variety of
independent subtasks [8]. Proper scheduling of the tasks on
available resources is one of the main challenges of a mixed-
machine HC environment.

To exploit the different capabilities of a suite of hetero-
geneous resources, a resource management system (RMS)
allocates the resources to the tasks and the tasks are ordered
for execution on the resources. At a time interval in HC
environment a number of tasks are received by RMS. Task
scheduling is mapping a set of tasks to a set of resources to
efficiently exploit the capabilities of such.

It has been shown, that an optimal mapping of compu-
tational tasks to available machines in an HC suite is a
NPcomplete problem [3] and as such, it is a subject to various
heuristic and meta-heuristic algorithms. The heuristics applied
to the task scheduling problem include min-min heuristic,
max-min heuristic, longest job to fastest resource- shortest
job to fastest resource heuristic, sufferage heuristic, work
queue heuristic and others [2], [11], [10]. The meta-heuristics
applied to the task scheduling problem include hybrid ant
colony optimization [7], simulated annealing [9] and genetic
algorithms [5], [4]. The meta-heuristic algorithms usually

operate with a population of prospective problem solutions
task schedules that are evolved (optimized) in order to obtain
an improved schedule which is optimized according to some
criteria.

In this paper is applied a powerful populational meta-
heuristic algorithm the differential evolution to the task
scheduling problem and its results are compared to selected
existing algorithms. Moreover, to improve the efficiency of
the general meta-heuristic solver, several widely used heuristic
algorithms for scheduling in HC environments were used to
improve the initial population for differential evolution.

II. HEURISTIC ALGORITHMS FOR MAPPING TASKS IN HC
ENVIRONMENT

There is a number of heuristic algorithms designed to
schedule independent tasks in heterogeneous computing envi-
ronments. Each algorithm exploits a heuristic based on certain
intuition that helps to map tasks to machines so that selected
objective is optimized. Unfortunately, different heuristics per-
form under various circumstances differently [11], [10].

From the optimization point of view, each heuristic repre-
sents a strategy, that finds a local optimum among all possible
schedules. Number of papers compared known scheduling
heuristics. A recent study [10] proposed new heuristic, called
min-max, that outperformed some other popular heuristic
algorithms. As for other algorithms, also the performance of
min-max varies by the circumstances. Although it delivered the
best result among the investigated algorithms in most cases, it
was not the best in some experiments. Moreover, while min-
max obtained best makespan, it did not delivered the best
flowtime at the same time [10].

Efficient heuristic algorithms for scheduling in HC environ-
ments include [11], [10], [2]:

• Min-min heuristic that prioritizes tasks that can be com-
pleted earliest.

• Max-min heuristic that prioritizes tasks with the maxi-
mum earliest completion time. It aims to overlap long-
running tasks with short-running ones.

• Sufferage heuristic that is based on the idea that better
mappings can be generated by assigning a machine to
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a task that would suffer most in terms of expected
completion time if that particular machine is not assigned
to it.

• Min-max heuristic that combines two metrics, the mini-
mum execution time and the minimum completion time.
It aims to assign the task to a machine that can handle
it with lower execution time in comparison with other
machines.

Despite the fact that the heuristic methods obtain good
suboptimal results, its inconsistent behavior (different per-
formance under different circumstances) encourages the re-
search of global optimization methods for scheduling in HC
environments. This paper deals with differential evolution for
scheduling of independent tasks.

III. DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a reliable, versatile and easy to
use stochastic evolutionary optimization algorithm [6]. DE is a
population-based optimizer that evolves real encoded vectors
representing the solutions to given problem. The real-valued
nature of population vectors differentiates the DE notably from
GAs that were designed to evolve solution encoded into binary
or finite alphabets.

The DE starts with an initial population of N real-valued
vectors. The vectors are initialized with real values either
randomly or so, that they are evenly spread over the problem
domain. The latter initialization usually leads to better results
of the optimization process [6].

During the optimization, DE generates new vectors that are
perturbations of existing population vectors. The algorithm
perturbs vectors with the scaled difference of two randomly
selected population vectors and adds the scaled random vector
difference to a third randomly selected population vector to
produce so called trial vector. The trial vector competes with
a member of the current population with the same index. If
the trial vector represents a better solution than the population
vector, it takes its place in the population [6].

Differential evolution is parameterized by two parameters
[6]. Scale factor F ∈ (0, 1+) controls the rate at which the
population evolves and the crossover probability C ∈ [0, 1]
determines the ratio of bits that are transferred to the trial
vector from its opponent. The number of vectors in the
population is also an important parameter of the population.
The outline of DE is shown in Figure 1.

There are more variants of differential evolution. They differ
mostly in the way new vectors are generated.

IV. DIFFERENTIAL EVOLUTION FOR SCHEDULING

OPTIMIZATION

An HC environment is composed of computing resources
where these resources can be a single PC, a cluster of work-
stations or a supercomputer. Let T = {T1, T2, . . . , Tn} denote
the set of tasks that is in a specific time interval submitted to
RMS. Assume the tasks are independent of each other with no
intertask data dependencies and preemption is not allowed (the
tasks cannot change the resource they have been assigned to).

Initialize the population P consisting of M1

vectors
Evaluate an objective function ranking the vectors2

in the population
while Termination criteria not satisfied do3

for i ∈ {1, . . . , M} do4

Create trial vector vi
t = v1

r + F (v2
r − v3

r),5

where F ∈ [0, 1] is a parameter and v1
r , v2

r

and v3
r are three random vectors from the

population P . This step is in DE called
mutation.

Validate the range of coordinates of vi
t.6

Optionally adjust coordinates of vi
t so,

that vi
t is valid solution to given problem.

Perform uniform crossover. Select7

randomly one point (coordinate) l in vi
t.

With probability 1 − C let vi
t[m] = vi[m]

for each m ∈ {1, . . . , N} such that m �= l

Evaluate the trial vector. If the trial vector8

vi
t represent a better solution than

population vector vi, replace vi in P by vi
t

end9

end10

Fig. 1. A summary of Differential Evolution

Also assume at the time of receiving these tasks by RMS,
m machines M = {M1,M2, . . . , Mm} are within the HC
environment. For our purpose, scheduling is done on machine
level and it is assumed that each machine uses First-Come,
First-Served (FCFS) method for performing the received tasks.
We assume that each machine in HC environment can estimate
how much time is required to perform each task. In [2]
Expected Time to Compute (ETC) matrix is used to estimate
the required time for executing a task in a machine. An ETC
matrix is a n × m matrix in which n is the number of tasks
and m is the number of machines. One row of the ETC matrix
contains the estimated execution time for a given task on each
machine.

Similarly one column of the ETC matrix consists of the
estimated execution time of a given machine for each task.
Thus, for an arbitrary task Tj and an arbitrary machine Mi

, [ETC]j,i is the estimated execution time of Tj on Mi.
In ETC model we take the usual assumption that we know
the computing capacity of each resource, an estimation or
prediction of the computational needs of each job, and the
load of prior work of each resource.

The objectives to optimize during the task mapping are
makespan and flowtime. Optimum makespan (metatask exe-
cution time) and flowtime of a set of jobs can be defined as:

makespan = min
S∈Sched

{ max
j∈Jobs

Fj} (1)
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flowtime = min
S∈Sched

{
∑

j∈Jobs

Fj} (2)

where Sched is the set of all possible schedules, Jobs stands
for the set of all jobs and Fj represents the time in which job j
finalizes. Assume that [C]j,i (j = 1, 2, . . . , n, i = 1, 2, . . . ,m)
is the completion time for performing j-th task in i-th machine
and Wi (i = 1, 2, . . . ,m) is the previous workload of Mi, then∑

(Ci + Wi) is the time required for Mi to complete the tasks
included in it. According to the aforementioned definition,
makespan and flowtime can be evaluated using Eq. (3) and
Eq. (4) respectively.

makespan = min
i∈{1,...,m}

{
∑

Ci + Wi} (3)

flowtime =
m∑

i=1

Ci (4)

Minimizing makespan aims to execute the whole metatask
as fast as possible while minimizing flowtime aims to utilize
the computing environment efficiently.

A. Schedule encoding

A schedule of n independent tasks executed on m ma-
chines can be naturally expressed as a string of n integers
S = (s1, s2, . . . , sn) that are subject to si ∈ 1, . . . , m.
The value at i-the position in S represents the machine on
which is the i-the job scheduled in schedule S. Since the
differential evolution uses for problem encoding real vectors,
real coordinates must be used instead of discrete machine
numbers. The real-encoded DE vector is translated to schedule
representation by truncation of its elements.

B. Schedule evaluation

Assume schedule S from the set of all possible schedules
Sched. For the purpose of differential evolution, we define
a fitness function fit(S) : Sched → R that evaluates each
schedule:

fit(S) = λ · makespan(S) + (1 − λ) · flowtime(S)
m

(5)

The function fit(S) is a sum of two objectives, the
makespan of schedule S and flowtime of schedule S divided
by number of machines m to keep both objectives in approx-
imately the same magnitude. The influence of makespan and
flowtime in fit(S) is parameterized by the variable λ. The
same schedule evaluation was used also in [4].

Flowtime and makespan are computed using a binary sched-
ule matrix B(S) : Sched → {0, 1}2 which is constructed as
follows: for a n × m ETC matrix that describes estimated
execution times of n jobs on m machines, the m×n schedule
matrix B(S) has in i-th row and j-th column 1 iff the
task j is scheduled for execution on machine i. Otherwise,
B(S)i,j is equal to 0. Then flowtime(S) : Sched → R and
makespan(S) : Sched → R can be defined with the help of
matrix multiplication as:

TABLE I
A SUMMARY OF DE PARAMETERS.

Parameter Value
Population size 20

Terminating generation 100000
Probability of crossover C = 0.9

Scaling factor F = 0.1
Makespan / flowtime ratio λ = 0.5

makespan(S) =
∑

[B(S) · ETC]j,j (6)

flowtime(S) = max
j∈{1,...,m}

∑
[B(S) · ETC]j,j (7)

Less formally, makespan equals to the sum of all elements
on the main diagonal of B(S) · ETC and flowtime equals to
maximal value on the main diagonal on B(S) · ETC.

V. EXPERIMENTS

We have implemented differential evolution for scheduling
of independent tasks on heterogeneous independent environ-
ments. The differential evolution algorithm was implemented
in its classic variant referred to as DE/rand/1/bin [6]. To
evaluate the performance of DE for minimizing makespan
and flowtime, we have used the benchmark proposed in [2].
The simulation model is based on expected time to compute
(ETC) matrix for 512 jobs and 16 machines. The instances of
the benchmark are classified into 12 different types of ETC
matrices according to the following properties [2]:

• task heterogeneity – represents the amount of variance
among the execution times of tasks for a given machine

• machine heterogeneity – represents the variation among
the execution times for a given task across all the ma-
chines

• consistency – an ETC matrix is said to be consistent
whenever a machine Mj executes any task Ti faster than
machine Mk; in this case, machine Mj executes all tasks
faster than machine Mk

• inconsistency – machine Mj may be faster than machine
Mk for some tasks and slower for others

The DE algorithm was used with parameters summarized in
Table I. The parameters were set after brief initial tuning. The
factor λ was set to 0.5 to have equal contribution of makespan
and mean flowtime to the fitness value.

The experiments were conducted with two different settings
for initial population. In the first case, whole initial population
was generated randomly. In the second case, the initial popula-
tion contained some vectors obtained by scheduling heuristics.

A. Experiments with random initial population

Table II and Table III show makespan and flowtime obtained
by max-min heuristic, sufferage heuristic, min-min heuristic,
and min-max heuristic. Table V and IV show makespan and
flowtime of experimental schedule optimization by differential
evolution with random initial population.

Each ETC matrix was named using the pattern x − y −
z, where x describes task heterogeneity (high or low), y
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TABLE II
MAKESPAN OBTAINED BY HEURISTIC ALGORITHMS.

ETC max-min sufferage min-min min-max
l-l-c 6753 5461 5468 5310
l-l-s 5947 3443 3599 3327
l-l-i 4998 2577 2734 2523
l-h-c 400222 333413 279651 273467
l-h-s 314048 163846 157307 146953
l-h-i 232419 121738 113944 102543
h-l-c 203684 170663 164490 164134
h-l-s 169782 105661 106322 103321
h-l-i 153992 77753 82936 77873
h-h-c 11637786 9228550 8145395 7878374
h-h-s 9097358 4922677 4701249 4368071
h-h-i 7016532 3366693 3573987 2989993

TABLE III
FLOWTIME OBTAINED BY HEURISTIC ALGORITHMS.

ETC max-min sufferage min-min min-max
l-l-c 108014 86643 80354 84717
l-l-s 95091 54075 51399 52935
l-l-i 79882 40235 39605 39679
l-h-c 6400684 5271246 3918515 4357089
l-h-s 5017831 2568300 2118116 2323396
l-h-i 3710963 1641220 1577886 1589574
h-l-c 3257403 2693264 2480404 2613333
h-l-s 2714227 1657537 1565877 1640408
h-l-i 2462485 1230495 1214038 1205625
h-h-c 185988129 145482572 115162284 125659590
h-h-s 145337260 76238739 63516912 69472441
h-h-i 112145666 47237165 45696141 46118709

describes machine heterogeneity (high or low) and z de-
scribes the type of consistency (incosnsistent, consistent or
semiconsistent).

As shown in the first four tables, DE with random initial
population cannot compete with domain specific heuristics
when optimizing makespan. It ranks fourth and its results are
usually better than max-min heuristics, but worse than suffer-
age heuristics, min-min heuristics and min-max heuristics.

Table III and Table IV show the flowtime of optimized
schedules. In this case, DE reached the best value for two of
experimental matrices (l-h-c and h-h-c). Also in other cases,
DE delivered quite competitive results. Obviously, used setting
of scheduling DE suited better to the optimization of flowtime.

TABLE IV
FLOWTIME OBTAINED BY DE WITH RANDOM INITIAL POPULATION.

ETC DE best DE avg
l-l-c 85422 891272.4
l-l-s 53675 53964.4
l-l-i 43941 44846.2
l-h-c 3783520 3788428
l-h-s 2277816 2383501
l-h-i 1890529 1935355.4
h-l-c 2699241 2765402.2
h-l-s 1597594 1625219.6
h-l-i 1359241 1380342
h-h-c 100921177 104753227
h-h-s 67874790 70281581
h-h-i 57808847 58216428

TABLE V
MAKESPAN OBTAINED BY DE WITH RANDOM INITIAL POPULATION.

ETC DE best DE avg
l-l-c 7151 7303.2
l-l-s 4479 4582.2
l-l-i 3127 3203
l-h-c 451815 457741
l-h-s 212828 220334
l-h-i 141635 152186
h-l-c 212175 220142.2
h-l-s 141176 142405.2
h-l-i 99413 100307
h-h-c 13325802 13595908
h-h-s 6138124 6545734
h-h-i 4418167 454678

TABLE VI
FLOWTIME OBTAINED BY DE WITH UPGRADED INITIAL POPULATION.

ETC DE best DE avg
l-l-c 79580 80785.4
l-l-s 52729 52754.8
l-l-i 39674 39724.6
l-h-c 3829129 3983780.4
l-h-s 2280929 2288328.2
l-h-i 1586502 1589414.8
h-l-c 2468081 2496781.6
h-l-s 1573431 1580786.8
h-l-i 1204845 1206638.4
h-h-c 114841390 118413991.8
h-h-s 64502140 67964923.8
h-h-i 45446258 45954812.2

B. Experiments with optimized initial population

In the second set of experiments, the initial population
of DE was upgraded with vectors obtained by scheduling
heuristics. Max-min heuristic, sufferage heuristic, min-min
heuristic, and min-max heuristic were used to obtain four
vectors that were included in initial population of DE. Those
vectors were superior to the rest of the initial population in
terms of makespan and flowtime. The factor lambda was set
to 0.9 in order to preserve the suboptimal makespan from
the initial population because initial experiment showed the
tendency to improve flowtime at the expense of good initial
makespan.

The results of second DE optimization are summarized in
Table VI and VII respectively.

TABLE VII
MAKESPAN OBTAINED BY DE WITH UPGRADED INITIAL POPULATION.

ETC DE best DE avg
l-l-c 5250 5271
l-l-s 3326 3326.8
l-l-i 2498 2502.2
l-h-c 267773 270912.4
l-h-s 146125 146759.4
l-h-i 100904 101254.6
h-l-c 159770 161262.2
h-l-s 101824 102440.2
h-l-i 76096 76297.4
h-h-c 7775829 7856042.8
h-h-s 4368071 4372414.6
h-h-i 2922633 2953782.6
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The best schedules obtained by DE with upgraded initial
population were superior in terms of makespan in all cases.
For all ETC matrices, except of h-h-s, outperformed also the
average DE makespan scheduling heuristics.

The flowtime obtained by DE with upgraded initial pop-
ulation was not the best in all cases. However, differential
evolution managed to optimize makespan and flowtime at once
whereas the heuristic algorithms were not able to do that. Also,
the value of lambda used during the experiment prioritized
makespan.

VI. CONCLUSIONS

This paper presents an algorithm for scheduling independent
tasks on heterogeneous distributed environments based on
differential evolution. The algorithm was implemented and
experimental results suggest that it can deliver competitive
results. With random initial population, the algorithm managed
to optimize schedules for few ETC matrices so that the
flowtime was best.

Much better results were obtained when we upgraded the
initial population with candidate solutions obtained by the
heuristic algorithms. In such case, the algorithm managed
to exploit the different sub-optimal solutions provided at the
beginning and converged to better schedules.

Presented algorithm has a number of parameters including
C, F and λ. Fine tuning of DE parameters is subject of
our future work. Moreover, the performance of the algorithm
will be compared to other meta-heuristics for scheduling of
independent tasks in heterogeneous computing environments.

ACKNOWLEDGMENT

This work was supported by the Czech Science Foundation
under the grant no. 102/09/1494.

REFERENCES

[1] Ali, S., Braun, T., Siegel, H., Maciejewski, A.: Heterogeneous computing
(2002). citeseer.ist.psu.edu/ali02heterogeneous.html

[2] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L., Maheswaran, M.,
Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D.,
Freund, R.F.: A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing
systems (2001)

[3] Fernandez-Baca, D.: Allocating modules to processors in a distributed
system. IEEE Trans. Softw. Eng. 15(11), 1427–1436 (1989).

[4] Javier Carretero, Fatos Xhafa, Ajith Abraham: Genetic Algorithm Based
Schedulers for Grid Computing Systems. In: International Journal of
Innovative Computing, Information and Control, vol. 3 (2007)

[5] Page, A.J., Naughton, T.J.: Framework for task scheduling in het-
erogeneous distributed computing using genetic algorithms. Artificial
Intelligence Review 24, 137–146 (2004)

[6] Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution A
Practical Approach to Global Optimization. Natural Computing Series.
Springer-Verlag, Berlin, Germany (2005).

[7] Ritchie, G., Levine, J.: A hybrid ant algorithm for scheduling indepen-
dent jobs in heterogeneous computing environments. In: Proceedings of
the 23rd Workshop of the UK Planning and Scheduling Special Interest
Group (2004)

[8] Tracy, M.M., Braun, T.D., Siegel, H.J.: High-performance mixed-
machine heterogeneous computing. In: 6th Euromicro Workshop on
Parallel and Distributed Processing, pp. 3–9 (1998)

[9] YarKhan, A., Dongarra, J.: Experiments with scheduling using simulated
annealing in a grid environment. In: GRID ’02: Proceedings of the Third
International Workshop on Grid Computing, pp. 232–242. Springer-
Verlag, London, UK (2002)
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