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Abstract 
Many times we need to plot 3-D functions e.g., 

in many scientific experiments. To plot the 3-D 

functions on 2-D screen it requires some kind of 

mapping. Though OpenGL, DirectX etc 3-D 

rendering libraries have made this job very 

simple, still these libraries come with many 

complex pre-operations that are simply not 

intended, also to integrate these libraries with 

any kind of system is often a tough trial. This 

article presents a very simple method of 

mapping from 3-D to 2-D, that is free from any 

complex pre-operation, also it will work with 

any graphics system where we have some 

primitive 2-D graphics function. Also we discuss 

the inverse transform and how to do basic 

computer graphics transformations using our 

coordinate mapping system. 
 

1. Introduction 
 

We have a function R  R : f 2 → , and our 

intention is to draw the function in  D-2  plane. 

The function y) f(x,  z =  is a 2-variable function 

and each tuple
3R  y)) f(x, y, (x, ∈ . Let’s say we 

want to graphically plot f onto computer screen 

using a primitive graphics library (like Turbo C 

graphics), which supports only the basic 

putPixel (to draw a pixel in D-2 screen) -like 

D-2 rendering function, but no D-3 rendering; 

i.e., our graphics library’s putPixel’s domain is 
2R and it’s not

3R .  

Hence in order to draw the function ‘f’ using our 

graphics library, we must design a coordinate 

conversion system, that will provide us with a 

function that will take as input 3-tuples 

y)) f(x, y, (x,  and produce as output a 2-

tuple  ) y ,x( ′′ that can be directly passed to our 

graphics library to plot it onto the screen, but 

with D-3 look & feel. As we discussed, it’s 

essential that we have a simple coordinate 

mapping system that maps 
3R to 

2R and still 

gives us a hypothetical feeling of drawing 

D-3 functions. It’s very easy to find such a 

map, i.e., a function h that maps from 
3R to

2R , 

i.e.,
 23 R  R :h → and in this paper we try to find 

such a simple map. 
 

2. Proposed approach 
 

We have a pictorial representation (Figure – 1) 

of our D-3 to D-2  mapping system:   
                                                                                                               

        
 Figure 1. Basic Model of a simple  

               D-3  to D-2 mapping system  
 

 But, how the function f should look like after 

mapping and plotting? Here we simulate the 3rd 

coordinate (namely Z) in our D-2 x-y plane. 

We perform the logical to physical coordinate 

transform and everything by the map function h, 

which will basically turn out to be a 

23× matrix. The basic mapping technique is 

shown in figure-2, which we are shortly going to 

explain.       
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    Figure 2.The basic coordinate mapping (w, h)                                              

   If we have our Origin O at (xo, yo) screen    

   coordinate, we have,  
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i.e., we have our 3-D to 2-D transformation  

matrix:  
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Again we have shifting (change of origin) by the 

matrix  yo] [xo,  O2D = , so that we have 

following,  P  M  P  O 2D3X23D2D =×+ ,  

where ×denotes matrix multiplication and  +  

denotes matrix addition, the 3-tuple 

z]y [x   P3D = , the 2-tuple  y][x   P2D = i.e., 
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By default we keep the angle between 

4 /   & πθ ==−− axisZaxisX , that one can 

change if required, but with the following 

inequality strictly satisfied: 2 /     0 πθ << . 

 

One can optionally use a compression factor to 

control the dimension along Z-axis by a 

compression factor zρ and slightly modifying 

the equations:  
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z

   (4) 

 

Obviously, 1.0   0.0  z << ρ  

By default we take 0 1.  z =ρ  

3. Sample Output Surfaces drawn 

using the above mapping:  

 

Following surfaces (figure-3 and figure-4) are 

drawn in Turbo C++ version 3.0 (BGI graphics) 

using the above simple 3-D to 2-D mapping: 

 

 
Figure 3. Sine function drawn in TurboC++ Ver 

3.0 (BGI Graphics) using 3-D to 2-D mapping 
 

 
Figure 4. Sync function drawn in TurboC++ 

Ver3.0 (BGI Graphics) using the D-3 to D-2  

mapping 



4. Inverse Transformation - Obtaining 

original 3-D coordinate from the 

transformed 2-D coordinate 
 

Here, our transformation function (matrix) is: 

       

)+=
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θ

θ

 x.cos( z - yo  y'

 x.sin(-y    xo x'
    (5) 

 

As we can see, it is impossible to re-convert and 

obtain the original set of coordinates, namely 

z) y, (x, , because we have 3 unknowns and 2 

equations.  So, in order to be able to get the 

original coordinates back, we at least need to 

store 3 tuples as result of the transformation, for 

instance, z) ,y ,x(  z) y, (x, ′′→ , the z-coordinate 

being stored only to get the inverse transform of 

the form z) y, (x,  z) ,y ,x( →′′  and the  )y ,x( ′′  

pair is used to plot the point. So, in order to get 

the inverse transformation, we need to solve the 

equations for x, y, since we already know z, we 

have 2-equations and 2 unknown variables: 
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Solving the above 2 equations we get,   
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Put it in another way, our transformation matrix 

is a 33× matrix 
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Since a non-square matrix, no question of 

existence of its inverse. So, in order to be able to 

get the inverse transform as well, we need a 

33×  invertible square matrix, e.g.,  
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Now, 2 /    0 πθ << , hence 0≠ )θcos( , hence 

0≠ )Det(M3X3 and the inverse exists. 
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But, we have,  
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Hence,  
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So, the inverse transform is: 
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[ ]z) tan(z).  yo - y'(')sec( z).  yo - y'( θθ ++−+= xox  
                (14)   

This exactly matches with our previous 

derivation. 

 

5. Rotation and affine transformations 
 

A point in 3-D, after being mapped to 2-D 

screen, following the above mapping procedure, 

may be required to be transformed using 

standard computer graphics transformations 

(translation, rotation about an axis etc). But in 

order to undergo such a graphics transformation 

and to show the point back to the screen after 

the transformation, it needs to go through the 

following steps in our previously-described 

coordinate mapping system: 

 

• First obtain the inverse coordinate 

transformation to obtain the original 

D-3  coordinates from the mapped 

D-2  coordinates 

• Multiply the D-3 coordinate matrix by 

proper graphics transformation matrix in 

order to achieve graphical 

transformation. 

• Use the same D-3 to D-2 map again to 

plot the point onto the screen. 

 

 

These steps can be mathematically represented 

as: 
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Or, by a single-line expression, 
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Here, as before ×  denotes matrix multiplication, 

and 3X3T
 denotes the traditional graphics 

transformation matrix. 

 

But, since we know the fact that matrix 

multiplication is associative, we have, 
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where 3X33X3

1-  

3X3 M  T  M  M' ××=  

  

So, using this simple technique we can escape 

the 3 successive matrix multiplications every-

time a point on screen needs to transformed – 

instead what we can simply do is pre-compute 

3X33X3

1-  

3X3 M  T  M  M' ××= .            (18)   

 

This matrix M'  is needed to be computed once 

for a given graphics transformation (e.g., 

rotation about an axis) and applied to all points 

on the screen, so that using a single matrix  

multiplication thereafter any point on the screen 

can undergo graphics transformation, by,  

 2D2D M'  P   'P ×= , where 2DP  represents the point 

mapped before transformation 33T ×  and 
′

2DP is 

the point re-mapped after the transformation, as 

obvious. 

  

Hence, using the above tricks we are able to 

make the transformation more computationally 

efficient. 



Moreover, if a transformation is needed to be 

applied simultaneously, we can use the property 
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integer) simultaneous matrix multiplication of 

3X3T . Let’s say we have already undergone a 

3X3T  transformation, so that we have already 

computed 3X33X3
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3X3 M  T  M  M ××=′ , and let’s say 

that we also have frequent simultaneous 
n

3X3 )(T  

transformation. In order to undergo a 
n
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transformation, we first need to compute the 

matrix
n

3X3 )(T , then we need to compute our 

new matrix 3X3
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need total n + 2 matrix multiplications, every-
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to compute our new matrix in the following 

manner: 
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Here we need not compute 
n

3X3 )(T and M ′′  

every-time, instead we need to compute 
n)M( ′  

only (that can be incremental multiplication to 

increase efficiency). 

 

6. Conclusions 
 

This article presented a very simple method of 

mapping from D-3  to D-2 , that is free from 

any complex pre-operation. The proposed 

technique works with any graphics system 

where we have some primitive D-2 graphics 

function. We also discussed the inverse 

transform and how to do basic computer 

graphics transformations using our coordinate 

mapping system. 
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