

A Very Simple Approach for 3-D to 2-D Mapping

 Sandipan Dey
(1)

, Ajith Abraham
 (2)

, Sugata Sanyal
(3)

Sandipan Dey
(1)

 Anshin Software Private Limited

 INFINITY, Tower–II, 10
th

 Floor,

 Plot No. - 43. Block – GP,

Salt Lake Electronics Complex,

 Sector–V, Kolkata – 700091

Ajith Abraham
(2)

IITA Professorship Program,

School of Computer Science,

Yonsei University,

134 Shinchon-dong, Sudaemoon-ku,

Seoul 120-749, Republic of Korea

Email: ajith.abraham@ieee.org

 Sugata Sanyal
(3)

 School of Technology & Computer Science

 Tata Institute of Fundamental Research

Homi Bhabha Road, Mumbai - 400005, INDIA

 email: sanyal@tifr.res.in

Abstract
Many times we need to plot 3-D functions e.g.,

in many scientific experiments. To plot the 3-D

functions on 2-D screen it requires some kind of

mapping. Though OpenGL, DirectX etc 3-D

rendering libraries have made this job very

simple, still these libraries come with many

complex pre-operations that are simply not

intended, also to integrate these libraries with

any kind of system is often a tough trial. This

article presents a very simple method of

mapping from 3-D to 2-D, that is free from any

complex pre-operation, also it will work with

any graphics system where we have some

primitive 2-D graphics function. Also we discuss

the inverse transform and how to do basic

computer graphics transformations using our

coordinate mapping system.

1. Introduction

We have a function R R : f 2 → , and our

intention is to draw the function in D-2 plane.

The function y) f(x, z = is a 2-variable function

and each tuple
3R y)) f(x, y, (x, ∈ . Let’s say we

want to graphically plot f onto computer screen

using a primitive graphics library (like Turbo C

graphics), which supports only the basic

putPixel (to draw a pixel in D-2 screen) -like

D-2 rendering function, but no D-3 rendering;

i.e., our graphics library’s putPixel’s domain is
2R and it’s not

3R .

Hence in order to draw the function ‘f’ using our

graphics library, we must design a coordinate

conversion system, that will provide us with a

function that will take as input 3-tuples

y)) f(x, y, (x, and produce as output a 2-

tuple) y ,x(′′ that can be directly passed to our

graphics library to plot it onto the screen, but

with D-3 look & feel. As we discussed, it’s

essential that we have a simple coordinate

mapping system that maps
3R to

2R and still

gives us a hypothetical feeling of drawing

D-3 functions. It’s very easy to find such a

map, i.e., a function h that maps from
3R to

2R ,

i.e.,
 23 R R :h → and in this paper we try to find

such a simple map.

2. Proposed approach

We have a pictorial representation (Figure – 1)

of our D-3 to D-2 mapping system:

 Figure 1. Basic Model of a simple

 D-3 to D-2 mapping system

 But, how the function f should look like after

mapping and plotting? Here we simulate the 3rd

coordinate (namely Z) in our D-2 x-y plane.

We perform the logical to physical coordinate

transform and everything by the map function h,

which will basically turn out to be a

23× matrix. The basic mapping technique is

shown in figure-2, which we are shortly going to

explain.

(0, 0)

 Figure 2.The basic coordinate mapping (w, h)

 If we have our Origin O at (xo, yo) screen

 coordinate, we have,

)+=

)+=

θ

θ

 x.cos(z - yo y'

 x.sin(-y xo x'
 (1)

i.e., we have our 3-D to 2-D transformation

matrix:

















−

−

=

10

01

)cos()sin(

23

θθ

XM (2)

Again we have shifting (change of origin) by the

matrix yo] [xo, O2D = , so that we have

following, P M P O 2D3X23D2D =×+ ,

where ×denotes matrix multiplication and +

denotes matrix addition, the 3-tuple

z]y [x P3D = , the 2-tuple y][x P2D = i.e.,

[] [] []

matrix matrix matrix matrix

2 1 2 3 3 1 2 1

''

10

01

cossin

.

××××

=

















−

−

+ yxzyxyoxo

θθ

 (3)

By default we keep the angle between

4 / & πθ ==−− axisZaxisX , that one can

change if required, but with the following

inequality strictly satisfied: 2 / 0 πθ << .

One can optionally use a compression factor to

control the dimension along Z-axis by a

compression factor zρ and slightly modifying

the equations:

)+=

)+=

θρ

θ

 x.cos(z . - yo y'

 x.sin(-y xo x'

z

 (4)

Obviously, 1.0 0.0 z << ρ

By default we take 0 1. z =ρ

3. Sample Output Surfaces drawn

using the above mapping:

Following surfaces (figure-3 and figure-4) are

drawn in Turbo C++ version 3.0 (BGI graphics)

using the above simple 3-D to 2-D mapping:

Figure 3. Sine function drawn in TurboC++ Ver

3.0 (BGI Graphics) using 3-D to 2-D mapping

Figure 4. Sync function drawn in TurboC++

Ver3.0 (BGI Graphics) using the D-3 to D-2

mapping

4. Inverse Transformation - Obtaining

original 3-D coordinate from the

transformed 2-D coordinate

Here, our transformation function (matrix) is:

)+=

)+=

θ

θ

 x.cos(z - yo y'

 x.sin(-y xo x'
 (5)

As we can see, it is impossible to re-convert and

obtain the original set of coordinates, namely

z) y, (x, , because we have 3 unknowns and 2

equations. So, in order to be able to get the

original coordinates back, we at least need to

store 3 tuples as result of the transformation, for

instance, z) ,y ,x(z) y, (x, ′′→ , the z-coordinate

being stored only to get the inverse transform of

the form z) y, (x, z) ,y ,x(→′′ and the)y ,x(′′

pair is used to plot the point. So, in order to get

the inverse transformation, we need to solve the

equations for x, y, since we already know z, we

have 2-equations and 2 unknown variables:

z yo - y').cos(

')sin(.

+=

−=−

θ

θ

x

xoxxy
 (6)

Solving the above 2 equations we get,

) tan(z). yo - y'('

)sec(z). yo - y'(

θ

θ

++−=

+=

xoxy

x
 (7)

Put it in another way, our transformation matrix

is a 33× matrix

















−

−

=

10

01

)cos()sin(

23

θθ

XM (8)

Since a non-square matrix, no question of

existence of its inverse. So, in order to be able to

get the inverse transform as well, we need a

33× invertible square matrix, e.g.,

















−

−

=

110

001

0)cos()sin(

33

θθ

XM (9)

with

)cos(
01

)cos()sin(
.1

110

001

0)cos()sin(

det)(33

θ
θθ

θθ

−=
−

=

















−

−

=XMDet

 (10)

Now, 2 / 0 πθ << , hence 0≠)θcos(, hence

0≠)Det(M3X3 and the inverse exists.

[] [] []

matrix matrix matrix matrix

3 1 3 3 3 1 3 1

''

110

001

0)cos()sin(

.0

××××

=

















−

−

+ zyxzyxyoxo

θθ

 (11)

But, we have,

0)(

,
)(

)(
)()(

33

33

331
3333

≠

== −

X

X

X
XX

MDet

MDet

MAdj
MMInv

and

















−−−

−−

−

=

)cos()sin(1

0)sin(1

0)cos(0

)(33

θθ

θ

θ

XMAdj

 (12)

Hence,

















== −

1)tan()sec(

0)tan()sec(

010

)(1

3333

θθ

θθXX MMInv

Here 0 ≠)θcos((13)

So, the inverse transform is:

[] [] []0''

110

001

0)cos()sin(

. yoxozyxzyx −=

















−

− θθ

[] []
















−−=∴

1)tan()sec(

0)tan()sec(

010

.''

θθ

θθzyoyxoxzyx

[]z) tan(z). yo - y'(')sec(z). yo - y'(θθ ++−+= xox
 (14)

This exactly matches with our previous

derivation.

5. Rotation and affine transformations

A point in 3-D, after being mapped to 2-D

screen, following the above mapping procedure,

may be required to be transformed using

standard computer graphics transformations

(translation, rotation about an axis etc). But in

order to undergo such a graphics transformation

and to show the point back to the screen after

the transformation, it needs to go through the

following steps in our previously-described

coordinate mapping system:

• First obtain the inverse coordinate

transformation to obtain the original

D-3 coordinates from the mapped

D-2 coordinates

• Multiply the D-3 coordinate matrix by

proper graphics transformation matrix in

order to achieve graphical

transformation.

• Use the same D-3 to D-2 map again to

plot the point onto the screen.

These steps can be mathematically represented

as:

•
-1

3X32D3D)(M P P ×=

• 3X33D3D T P 'P ×=

• 3X33D2D M 'P 'P ×= (15)

Or, by a single-line expression,

3X33X3

-1

3X32D2D M)T))(M ((P 'P ×××= (16)

Here, as before × denotes matrix multiplication,

and 3X3T
 denotes the traditional graphics

transformation matrix.

But, since we know the fact that matrix

multiplication is associative, we have,

M' P 'P

)M T (M P

M T M P

M) T)M ((P 'P

2D2D

3X33X3

1-

3X3 2D

3X333X

1-

3X32D

3X33X3

1-

3X32D2D

×=∴

×××=

×××=

×××=

 (17)

where 3X33X3

1-

3X3 M T M M' ××=

So, using this simple technique we can escape

the 3 successive matrix multiplications every-

time a point on screen needs to transformed –

instead what we can simply do is pre-compute

3X33X3

1-

3X3 M T M M' ××= . (18)

This matrix M' is needed to be computed once

for a given graphics transformation (e.g.,

rotation about an axis) and applied to all points

on the screen, so that using a single matrix

multiplication thereafter any point on the screen

can undergo graphics transformation, by,

 2D2D M' P 'P ×= , where 2DP represents the point

mapped before transformation 33T × and
′

2DP is

the point re-mapped after the transformation, as

obvious.

Hence, using the above tricks we are able to

make the transformation more computationally

efficient.

Moreover, if a transformation is needed to be

applied simultaneously, we can use the property
n)M T (M M)(T M 3X33X3

1-

3X33X3

n

3X3

1-

3X3 ××=×× ,

where
n

3X3)(T denotes (n times, n is a positive

integer) simultaneous matrix multiplication of

3X3T . Let’s say we have already undergone a

3X3T transformation, so that we have already

computed 3X33X3

1-

3X3 M T M M ××=′ , and let’s say

that we also have frequent simultaneous
n

3X3)(T

transformation. In order to undergo a
n

3X3)(T

transformation, we first need to compute the

matrix
n

3X3)(T , then we need to compute our

new matrix 3X3

n

3X3

1-

3X3 M)(T M M ××=′′ , so we

need total n + 2 matrix multiplications, every-

time we want a
n

3X3)(T transform, for each n.

But if we have computed 3X33X3

1-

3X3 M T M ××

initially, here the trick is that we can reuse this it

to compute our new matrix in the following

manner:

n
M)()M T (M

M)(T M M

n

3X33X3

1-

3X3

3X3

n

3X3

1-

3X3

′=××=

××=′′
 (19)

Here we need not compute
n

3X3)(T and M ′′

every-time, instead we need to compute
n)M(′

only (that can be incremental multiplication to

increase efficiency).

6. Conclusions

This article presented a very simple method of

mapping from D-3 to D-2 , that is free from

any complex pre-operation. The proposed

technique works with any graphics system

where we have some primitive D-2 graphics

function. We also discussed the inverse

transform and how to do basic computer

graphics transformations using our coordinate

mapping system.

7. References

[1] Rogers David F, Procedural elements for

computer Graphics, 2
nd

 edition, McGraw-Hill,

1998, pp. 65-87.

[2] Rogers David F., Adams J. Alan,

Mathematical Elements for Computer Graphics,

2
nd

 edition, McGraw-Hill, 1990, pp. 61-206.

[3] Ng C. M., Bustard D. W., A New Real

Time Geometric Transformation Matrix and its

Efficient VLSI Implementation, Computer

Graphics Forum, December 1994, Vol. 13, pp.

284-285.

[4] Shreiner Dave, Woo Mason, Neider Jackie,

Davis Tom, OpenGL Programming Guide,

Version 1.4, Fourth Edition, Pearson Education,

2004, pp. 100-158.

[5] Turkowski Ken, Fixed-Point Trigonometry

with CORDIC Iterations, Graphics Gems I,

Academic Press, 1990, pp. 494-497.

[6] Turkowski Ken, The Use of Coordinate

Frames in Computer Graphics, Graphics Gems

I, Academic Press, 1990, pp. 522-532.

[7] Joy Ken, On-Line Computer Graphics

Notes, Computer Science Department,

University of California, Davis, 1999.

[8] Ducker Mike, Matrix and Vector

Manipulation for Computer Graphics,

November 9, 2000.

[9] Howland John E., Computer Graphics

Department of Computer Science, Trinity

University, October 24, 2005.

[10] Keith Stephan R., A Transformation

Structure for Animated 3-D Computer Graphics,

ACM SIGGRAPH Computer Graphics, Vol. 15,

Issue 1, April 1981, pp 72-91.

