
Comparison of Heuristics for Scheduling Independent Tasks on Heterogeneous
Distributed Environments

Hesam Izakian¹, Ajith Abraham², Senior Member, IEEE, Václav Snášel³
¹ Islamic Azad University, Ramsar Branch, Ramsar, Iran

² Norwegian Center of Excellence, Center of Excellence for Quantifiable Quality of Service,
Norwegian University of Science and Technology, Trondheim, Norway

³Faculty of Electrical Engineering and Computer Science VSB-Technical University of Ostrava,
Czech Republic

Hesam.izakian@gmail.com, Ajith.abraham@ieee.org, vaclav.snasel@vsb.cz

Abstract

Scheduling is one of the core steps to efficiently

exploit the capabilities of heterogeneous distributed
computing systems and is an NP-complete problem.
Therefore using meta-heuristic algorithms is a
suitable approach in order to cope with its difficulty.
In meta-heuristic algorithms, generating individuals
in the initial step has an important effect on the
convergence behavior of the algorithm and final
solutions. Using some heuristics for generating one or
more near-optimal individuals in the initial step can
improve the final solutions obtained by meta-heuristic
algorithms. Different criteria can be used for
evaluating the efficiency of scheduling algorithms, the
most important of which are makespan and flowtime.
In this paper we propose an efficient heuristic method
and then we will compare with five popular heuristics
for minimizing makespan and flowtime in
heterogeneous distributed computing systems.

1. Introduction

Mixed-machine heterogeneous computing (HC)
environments utilize a distributed suite of different
high-performance machines, interconnected with
high-speed links, to perform different computationally
intensive applications that have diverse computational
requirements [1, 2]. To exploit the different
capabilities of a suite of heterogeneous resources,
typically a resource management system (RMS)
allocates the resources to the tasks and the tasks are
ordered for execution on the resources. At a time
interval in HC environment a number of tasks are

received by RMS from different users. Different tasks
have different requirements and different resources
have different capabilities. Optimally scheduling is
mapping a set of tasks to a set of resources to
efficiently exploit the capabilities of such systems and
is one of the key problems in HC environments. As
mentioned in [9] optimal mapping tasks to machines
in an HC suite is an NP-complete problem and
therefore the use of meta-heuristics is one of the
suitable approaches. The most popular of meta-
heuristic algorithms are genetic algorithm (GA), tabu
search (TS), simulated annealing (SA), ant colony
optimization (ACO) and particle swarm optimization
(PSO).

Ritchie and Levine [4] used a hybrid ant colony
optimization, Yarkhan and Dongarra [5] used
simulated annealing approach and Page and Naughton
[3], used genetic algorithm for task scheduling in HC
systems.

The algorithmic flow in meta-heuristic algorithms
starts with randomly generating population of
individuals that are potential solutions. Then in a
fixed number of iterations the algorithm tries to obtain
optimal or near-optimal solutions using predefined
operators (such as crossover and mutation in GA etc)
and a fitness function that evaluates the optimality of
solutions. Generating potential solutions at the
beginning of the algorithm has an important effect in
obtaining final solutions and if in this step of the
algorithm bad solutions are generated randomly, then
the algorithm provides bad solutions or local optimal
solutions. To overcome the posed problem, we usually
generate one or more individuals using well-known
heuristics and others randomly in the initial step of the
algorithm. These heuristics generate near-optimal

mailto:Hesam.izakian@gmail.com
mailto:Ajith.abraham@ieee.org
mailto:vaclav.snasel@vsb.cz

solutions and the meta-heuristic algorithm combines
random solutions with them for obtaining better
solutions. Using this method we can obtain better
solutions using meta-heuristic algorithms.

Existing scheduling heuristics can be divided into
two classes [6]: on-line mode (immediate mode) and
batch-mode heuristics. In the on-line mode, a task is
mapped onto a host as soon as it arrives at the
scheduler. In the batch mode, tasks are not mapped
onto hosts immediately and they are collected into a
set of tasks that is examined for mapping at
prescheduled times called mapping events. The online
mode heuristic is suitable for the low arrival rate,
while batch-mode heuristics can achieve higher
performance when the arrival rate of tasks is high
because there will be a sufficient number of tasks to
keep hosts busy between the mapping events, and
scheduling is according to the resource requirement
information of all tasks in the set [6]. In this paper, we
considered batch-mode heuristics.

Different criteria can be used for evaluating the
efficiency of scheduling algorithms, the most
important of which are makespan and flowtime.
Makespan is the time when an HC system finishes the
latest job and flowtime is the sum of finalization times
of all the jobs. An optimal schedule will be the one
that optimizes the flowtime and makespan.

In this paper, we proposed an efficient heuristic
called min-max. Also we investigate the efficacy of
min-max and 5 popular heuristics for minimizing
makespan and flowtime. These heuristics are min-
min, max-min, LJFR-SJFR, sufferage, and
WorkQueue. These heuristics are popular, effective
and are used in many studies. So far, some of works
have been done for investigating number of these
heuristics for minimizing makespan, yet no attempt
has been made to minimize flowtime or both flowtime
and makespan. Also the efficiency of these heuristics
is investigated on simple benchmarks and the various
characteristics of machines and tasks in HC
environments are not considered. In this paper, we
investigate the efficiency of these heuristics on HC
environments with various characteristics of both
machines and tasks.

The remainder of this paper is organized in the
following manner: Section 2 formulates the problem,
in Section 3 we provide the definitions of heuristics,
and Section 4 reports the experimental results. Finally
Section 5 concludes this work.

2. Problem formulation

An HC environment is composed of computing
resources where these resources can be a single PC, a
cluster of workstations or a supercomputer. Let

},...,,{ 21 nTTTT = denote the set of tasks that in a
specific time interval is submitted to RMS. Assume
the tasks are independent of each other (with no inter-
task data dependencies) and preemption is not allowed
(they cannot change the resource they have been
assigned to). Also assume at the time of receiving
these tasks by RMS, m machines

},...,,{ 21 mMMMM = are within the HC
environment. In this paper scheduling is done at
machine level and it is assumed that each machine
uses First-Come, First-Served (FCFS) method for
performing the received tasks. We assume that each
machine in HC environment can estimate how much
time is required to perform each task. In [2] Expected
Time to Compute (ECT) matrix is used to estimate the
required time for executing a task in a machine. An
ETC matrix is an mn× matrix in which n is the
number of tasks and m is the number of machines.
One row of the ETC matrix contains the estimated
execution time for a given task on each machine.
Similarly one column of the ETC matrix consists of
the estimated execution time of a given machine for
each task. Thus, for an arbitrary task jT and an

arbitrary machine iM ,),(ij MTETC is the estimated

execution time of jT on iM . In ETC model we take

the usual assumption that we know the computing
capacity of each resource, an estimation or prediction
of the computational needs of each job, and the load of
prior work of each resource.
 Assume that jiC , }),...,2,1{},,...,2,1{(njmi ∈∈ is

the completion time for performing jth task in ith
machine and iW }),...,2,1{(mi ∈ is the previous
workload of iM , then Eq. (1) shows the time required
for iM to complete the tasks included in it. According
to the aforementioned definition, makespan and
flowtime can be estimated using Eq. (2) and Eq. (3)
respectively.

∑ + ii WC (1)

 (2)
},...,2,1{

},max{

mi

WCmakespan ii

∈

+= ∑

 (3)∑
=

=
m

i
iCflowtime

1

As mentioned in the previous section, the goal of the
scheduler in this paper is to minimize makespan and
flowtime.
3. Heuristic descriptions

 This section provides the description of 5 popular
heuristics for mapping tasks to available machines in
HC environments. Then we propose an efficient
heuristic called min-max.

3.1. Min-min heuristic

 Min-min heuristic uses minimum completion time
(MCT) as a metric, meaning that the task which can
be completed the earliest is given priority. This
heuristic begins with the set U of all unmapped tasks.
Then the set of minimum completion times,

)),(_{min(ji MTtimecompletionM = ,1(nifor ≤≤

)}1 mj ≤≤ , is found. M consists of one entry for each
unmapped task. Next, the task with the overall
minimum completion time from M is selected and
assigned to the corresponding machine and the
workload of the selected machine will be updated. And
finally the newly mapped task is removed from U and
the process repeats until all tasks are mapped (i.e. U is
empty) [2, 7].

3.2. Max-min heuristic

The Max-min heuristic is very similar to min-min
and its metric is MCT too. It begins with the set U of
all unmapped tasks. Then, the set of minimum
completion times,)),(_{min(ji MTtimecompletionM =

, ,1(nifor ≤≤)}1 mj ≤≤ , is found. Next, the task
with the overall maximum completion time from M is
selected and assigned to the corresponding machine
and the workload of the selected machine will be
updated. And finally the newly mapped task is
removed from U and the process repeats until all tasks
are mapped [2, 7].

3.3. LJFR-SJFR Heuristic

Longest Job to Fastest Resource- Shortest Job to
Fastest Resource (LJFR-SJFR) [8] heuristic begins
with the set U of all unmapped tasks. Then, the set of
minimum completion times,

)),(_{min(ji MTtimecompletionM = ,1(nifor ≤≤

)}1 mj ≤≤ , is found the same as min-min. Next, the
task with the overall minimum completion time from

M is considered as the shortest job in the fastest
resource (SJFR). Also the task with the overall
maximum completion time from M is considered as
the longest job in the fastest resource (LJFR). At the
beginning, this method assigns the m longest jobs to
the m available fastest resources (LJFR) and then
assigns the shortest task to the fastest resource and the
longest task to the fastest resource alternatively. After
each allocation, the workload of each machine will be
updated.

3.4. Sufferage Heuristic

In this heuristic for each task, the minimum and
second minimum completion time are found in the
first step. The difference between these two values is
defined as the sufferage value. In the second step, the
task with the maximum sufferage value is assigned to
the corresponding machine with minimum completion
time. The Sufferage heuristic is based on the idea that
better mappings can be generated by assigning a
machine to a task that would “suffer” most in terms of
expected completion time if that particular machine is
not assigned to it [6].

3.5. WorkQueue Heuristic

 This heuristic is a straightforward and adaptive
scheduling algorithm for scheduling sets of
independent tasks. In this method the heuristic selects
a task randomly and assigns it to the machine as soon
as it becomes available (in other word the machine
with minimum workload).

3.6. Proposed Heuristic

This heuristic (called min-max) is composed of two
steps for mapping each task and uses the minimum
completion time in the first step and the minimum
execution time in the second as metric. In the first
step, this heuristic begins with the set U of all
unmapped tasks. Then the set of minimum completion
times,)),(_{min(ji MTtimecompletionM =

,1(nifor ≤≤)}1 mj ≤≤ , is found the same as min-
min heuristic. In the second step, the task whose
minimum execution time (time for executing task on
the fastest machine) divide by its execution time on
the selected machine (in the first step), has the
maximum value will be selected for mapping. The
intuition behind this heuristic is that we select pair
machines and tasks from the first step that the

machine can executes its corresponding task
effectively with a lower execution time in comparison
with other machines.

4. Comparison and Experimental results

We compared the performance of the above
heuristics for minimizing makespan and flowtime. We
used the benchmark proposed in [2]. The simulation
model in [2] is based on expected time to compute
(ETC) matrix for 512 jobs and 16 machines. The
instances of the benchmark are classified into 12
different types of ETC matrices according to the three
following metrics: job heterogeneity, machine
heterogeneity, and consistency. In ETC matrix, the
amount of variance among the execution times of
tasks for a given machine is defined as task
heterogeneity. Machine heterogeneity represents the
variation that is possible among the execution times
for a given task across all the machines. Also an ETC
matrix is said to be consistent whenever a
machine jM executes any task iT faster than

machine kM ; in this case, machine jM executes all

tasks faster than machine kM . In contrast,
inconsistent matrices characterize the situation where
machine jM may be faster than machine kM for

some tasks and slower for others. Partially-consistent
matrices are inconsistent matrices that include a
consistent sub-matrix of a predefined size [2].
Instances consist of 512 jobs and 16 machines and are

labeled as u-yy-zz-x as follow:
• u means uniform distribution used in generating

the matrices.
• yy indicates the heterogeneity of the jobs; hi means

high and lo means low.
• zz represents the heterogeneity of the nodes; hi

means high and lo means low.
• x shows the type of inconsistency; c means

consistent, i means inconsistent, and p means
partially-consistent.

The obtained makespan and flowtime using mentioned
heuristics are compared in tables 1 and 2 respectively.
The results are obtained as an average of five
simulations. In these tables, the first column indicates
the instance name, and the second, third, fourth, fifth
and sixth columns indicate the makespan and
flowtime of workQueue, max-min, LJFR-SJFR,
Sufferage, min-min and min-max heuristics.
Figures 1 and 2 show the comparison of statistical

results using different heuristics for mean makespan

and flowtime for the 12 considered cases. As it is
evident from the figures, min-max, the proposed
heuristic, can minimize the makespan better than
others in most cases. Also min-min heuristic can
minimize flowtime better than others.

5. Conclusions

Scheduling in HC environments is an NP-complete
problem. Therefore, using meta-heuristic algorithms is
a suitable approach in order to cope with its difficulty
in practice. In meta-heuristic algorithms, the use of
one or more heuristics for generating individuals is an
appropriate method that can improve the final
solutions. In this paper we compare 6 heuristics for
scheduling in HC environments. The goal of the
scheduler in this paper is minimizing makespan and
flowtime. The experimental results show that min-min
heuristic can obtain the best results for minimizing
flowtime and the proposed heuristic can obtain the
best results for minimizing makespan too. These
results indicate that using min-max heuristic for
generating initial individuals in meta-heuristic
algorithms is a suitable selection.

Figure 1. Comparison results between

heuristics on makespan

Figure 2. Comparison results between

heuristics on flowtime

Table 1. Comparison of statistical results on makespan (Seconds)
Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max
u-lo-lo-c 7332 6753 6563 5461 5468 5310
u-lo-lo-p 8258 5947 5179 3433 3599 3327
u-lo-lo-i 9099 4998 4251 2577 2734 2523
u-lo-hi-c 473353 400222 391715 333413 279651 273467
u-lo-hi-p 647404 314048 279713 163846 157307 146953
u-lo-hi-i 836701 232419 209076 121738 113944 102543
u-hi-lo-c 203180 203684 202010 170663 164490 164134
u-hi-lo-p 251980 169782 155969 105661 106322 103321
u-hi-lo-i 283553 153992 138256 77753 82936 77873
u-hi-hi-c 13717654 11637786 11305465 9228550 8145395 7878374
u-hi-hi-p 18977807 9097358 8027802 4922677 4701249 4368071
u-hi-hi-i 23286178 7016532 6623221 3366693 3573987 2989993

Table 2. Comparison of statistical results on flowtime (Seconds)

Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max
u-lo-lo-c 108843 108014 102810 86643 80354 84717
u-lo-lo-p 127639 95091 81861 54075 51399 52935
u-lo-lo-i 140764 79882 66812 40235 39605 39679
u-lo-hi-c 7235486 6400684 6078313 5271246 3918515 4357089
u-lo-hi-p 10028494 5017831 4383010 2568300 2118116 2323396
u-lo-hi-i 12422991 3710963 3303836 1641220 1577886 1589574
u-hi-lo-c 3043653 3257403 3153607 2693264 2480404 2613333
u-hi-lo-p 3776731 2714227 2461337 1657537 1565877 1640408
u-hi-lo-i 4382650 2462485 2181042 1230495 1214038 1205625
u-hi-hi-c 203118678 185988129 173379857 145482572 115162284 125659590
u-hi-hi-p 282014637 145337260 126917002 76238739 63516912 69472441
u-hi-hi-i 352446704 112145666 104660439 47237165 45696141 46118709

References

[1] S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski,
“Heterogeneous computing”, Encyclopedia of Distributed
Computing, Kluwer Academic, 2001.

[2] H.J. Braun et al, “A comparison of eleven static
heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems” Journal of
Parallel and Distributed Computing, 61(6), 2001.

[3] J. Page and J. Naughton, “Framework for task
scheduling in heterogeneous distributed computing using
genetic algorithms”, Artificial Intelligence Review, 2005 pp.
415–429.

[4] G. Ritchie and J. Levine, “A hybrid ant algorithm for
scheduling independent jobs in heterogeneous computing
environments”, In: 23rd Workshop of the UK Planning and
Scheduling Special Interest Group, 2004.

[5] A. Yarkhan and J. Dongarra, “Experiments with
scheduling using simulated annealing in a grid
environment”, In: 3rd International Workshop on Grid
Computing (GRID2002), 2002, pp. 232–242.

[6] M. Macheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems”, J. Parallel
Distribut. Comput. 59 (2) (1999) 107–131.

[7] R. F. Freund et al, “Scheduling resources in multi-user,
heterogeneous, computing environments with SmartNet”, In:
7th IEEE Heterogeneous Computing Workshop (HCW 98),
1998, pp. 184-199.

[8] A. Abraham, R. Buyya, and B. Nath, “Nature’s
heuristics for scheduling jobs on computational grids”, In:
The 8th IEEE International Conference on Advanced
Computing and Communications, India, 2000.

[9] D. Fernandez-Baca, “Allocating modules to processors in
a distributed system”, IEEE Trans. Software Engrg. 15, 11
(Nov. 1989), pp. 1427-1436.

