
J Comb Optim
DOI 10.1007/s10878-013-9644-6

An efficient meta-heuristic algorithm for grid
computing

Zahra Pooranian · Mohammad Shojafar ·
Jemal H. Abawajy · Ajith Abraham

© Springer Science+Business Media New York 2013

Abstract A grid computing system consists of a group of programs and resources that
are spread across machines in the grid. A grid system has a dynamic environment and
decentralized distributed resources, so it is important to provide efficient scheduling
for applications. Task scheduling is an NP-hard problem and deterministic algorithms
are inadequate and heuristic algorithms such as particle swarm optimization (PSO) are
needed to solve the problem. PSO is a simple parallel algorithm that can be applied
in different ways to resolve optimization problems. PSO searches the problem space
globally and needs to be combined with other methods to search locally as well. In
this paper, we propose a hybrid-scheduling algorithm to solve the independent task-
scheduling problem in grid computing. We have combined PSO with the gravitational
emulation local search (GELS) algorithm to form a new method, PSO–GELS. Our
experimental results demonstrate the effectiveness of PSO–GELS compared to other
algorithms.

Keywords Grid computing · PSO algorithm · GELS · Scheduling ·
Independent tasks

Z. Pooranian
Graduate School, Dezful Islamic Azad University, Dezful, Iran

M. Shojafar (B)
Department of Information Engineering, Electronics and Telecommunications (DIET),
Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
e-mail: Shojafar@diet.uniroma1.it

J. H. Abawajy
School of Information Technology, Deakin University, Waurn Ponds, VIC, Australia

A. Abraham
Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation
and Research Excellence, P.O. Box 2259, Auburn, WA 98071-2259, USA

123

J Comb Optim

1 Introduction

Grid computing was introduced in the early 1990s by a supercomputing committee
whose goal of using computing resources in a convenient form for calculations was
complicated by the fact that the resources were distributed geographically. Grid com-
puting enables controlling a wide range of heterogeneous, distributed resources to exe-
cute computations and data-intensive applications (Garg et al. 2010). The basic idea of
grid computing is that participating machines share resources through a transparent and
reliable software layer. The software layer is responsible for resource virtualization,
resource discovery and search, and managing running applications. Two organizations
that are working on developing large-scale data collections are the European data grid
and Globus. Systems in a service grid provide services that cannot be provided with
a single machine (Sullivan et al. 1997; Foster et al. 2002). The first phase of grid task
scheduling is resource discovery, which generates a list of potential resources. The
second phase includes gathering information about these resources and choosing the
best set of resources matching the application’s requirements. In the third phase, the
task is executed, which involves file staging and cleanup (Yan-ping et al. 2008).

Grid resources are shared as distributed and heterogeneous resources that belong to
organizations that have their own policies. Scheduling algorithms must therefore be
consistent with changes in workloads and available resources to achieve acceptable
performance and also to comply with time limits. The grid resource broker, which is
responsible for scheduling applications for users, should be an efficient scheduling
algorithm. Task scheduling is an NP-hard problem, and scheduling algorithms can be
categorized into deterministic algorithms and approximate algorithms. Deterministic
algorithms are able to find exactly the optimal result, but they cannot solve NP-hard
optimization problems quickly, as their time to arrive at a solution increases exponen-
tially. Approximate algorithms can find good (near optimal) solutions for optimization
problems in a short time. Approximate algorithms can be categorized into heuristic and
meta-heuristic algorithms. There are several measures for categorizing meta-heuristic
algorithms, such as whether they are based on a single solution or on a population.
Single-solution-based algorithms, such as simulated annealing (SA), tabu search (TS),
and gravitational emulation local search (GELS), modify a single solution during the
search process. In contrast, population-based algorithms, such as partial swarm opti-
mization (PSO), genetic algorithms (GAs), and ant colony optimization, consider a
population of solutions. In addition, some algorithms search the problem space glob-
ally, while others search it locally.

Most of these algorithms try to minimize makespan. Many meta-heuristic algo-
rithms have been proposed for task scheduling in a grid environment, including GAs
(Gao et al. 2005), SA (Orosz and Jacobson 2002), TS (Benedict and Vasudevan 2008),
two-phase encoding particle swarm optimization (Shiau and Huang 2012; Shiau 2011),
and PSO (Zhang et al. 2008). Hybrid meta-heuristic algorithms, in which one algo-
rithm is used as the main algorithm and others are used to improve the solutions, are
also being closely studied. These include the combinations GA–SA (Cruz-Chavez et
al. 2010), GA–TS (Xhafa et al. 2009), GA–GELS (Pooranian et al. 2011, 2013b),
PSO–SA (Chen et al. 2009), Queen Bee (Pooranian et al. 2012), HSPN (Shojafar
et al. 2013, 2010), GLOA (Pooranian et al. 2013a), and PSO–TS (Padmavathi and

123

J Comb Optim

Mercy shalinie 2010). PSO has the better ability for global searching and has been
successfully applied in many areas. It also has fewer parameters than either GAs or
SA. Furthermore, PSO works well for most global optimization problems. But PSO’s
local search ability is weak, and there is a high probability of becoming trapped in a
local optimum. In this paper, we combine PSO with GELS, a local search algorithm
that improves PSO’s performance in finding a solution. The proposed hybrid algorithm
(PSO–GELS) decreases makespan and minimizes the number of tasks that miss their
deadlines.

The rest of this paper is organized as follows. Section 2 summarizes previous related
work in this field. Section 3 describes our computing system model. Sections 4 to 7
describe the intelligent PSO and GELS algorithms, and Sect. 8 describes our proposed
algorithm in detail. Section 9 compares our proposed algorithm with several similar
algorithms, and the final section presents our conclusion and future research directions.

2 Related work

A combined optimization algorithm using PSO and SA was proposed in Weijun et al.
(2004) for the task scheduling problem. A particle consists of m segments and every
segment has n different job numbers, representing the processing orders of n jobs on
m machines. Thus, we have m machines and n jobs, which convert the continuous
optimization problem to a discrete optimization problem. The real optimum values
are rounded to the nearest integers. In this algorithm, the PSO results are given to the
SA algorithm to avoid being trapped in a local minimum.

In Sivanandam and Visalakshi (2007), a combination of PSO and SA was proposed
for scheduling independent tasks with a dynamically varying inertia to provide a
balance between the global and local explorations. The algorithm requires less iteration
than PSO on the average to find a sufficiently optimal solution. Hence, our proposed
method also combines compatible AI algorithms to increase the speed of grid task
scheduling.

The discrete PSO algorithm was proposed in Izakian et al. (2009) for task scheduling
in grid systems. The scheduler aims to simultaneously minimize makespan and flow
time. This algorithm uses a matrix in which each column represents a job’s resource
allocations and each row represents jobs allocated to a resource. This inspired us to
illustrate our proposed method with a 2D matrix.

The method in Zhang et al. (2008) solves the task scheduling problem by using
the PSO algorithm with the small position value (SPV) rule borrowed from random
key representation. The SPV rule can convert continuous position values to discrete
permutations in the PSO algorithm. Each particle represents a potential solution to the
resource scheduling problem. Simulation results demonstrate that the PSO algorithm
can perform better than GAs for large scale optimization problems. We will similarly
demonstrate that our proposed hybrid method performs better than GAs.

In Mathiyalagan et al. (2010), a list scheduling algorithm is presented that uses
PSO based on a TS, combining the advantages of both algorithms. It also uses a
swap operation to create a new particle. Because we need fast convergence in a grid
scheduling problem, and the inertia weight is the deciding factor for the convergence

123

J Comb Optim

speed of the PSO algorithm, the algorithm in Mathiyalagan et al. (2010) modifies
the inertia equation. This increases the speed of convergence, boosts efficiency, and
achieves better results. In this paper we also improved PSO by modifying the inertia
parameter, and our algorithm achieves better performance than other methods and
optimizes the results.

In Tao et al. (2011), the rotary chaotic PSO algorithm is presented for workflow
scheduling in grid computing. A new method called the rotary discrete rule is proposed
for changing a continuous space to a discrete space. The method avoids local optima
in perturbations of the chaotic sequence, and it makes better modifications of particles
than other methods such as Gauss or Cauchy. Our method also pays close attention to
several quality of service (QOS) parameters such as availability, reliability, cost, and
time concurrency. In our hybrid method, we use chaotic activity to schedule tasks.

In Liu et al. (2010), fuzzy matrices are used for the position and velocity matrix in
PSO instead of real vectors. This method is shown to be better than SA and GAs in its
speed of convergence and its ability to find optimal solutions. The paper dynamically
generates an optimal schedule, completing the tasks within a minimal period of time as
well as utilizing the resources efficiently. In our proposed method, we use an optimal
scheduler with various parameters that will be discussed below.

In Yusof et al. (2010), the TS algorithm, which is a local search algorithm, is used
for scheduling tasks in a grid system. The TS algorithm uses a perturbation scheme
for pair changing.

In Joshua Samuel Raj and Vasudevan (2011), the SA algorithm is used to solve the
workflow scheduling problem in a computational grid. Simulation results show that
this algorithm is highly efficient in a grid environment.

In Barzegar et al. (2009), the GELS algorithm was used for resource reservation and
scheduling. Here, if one resource is unable to execute a task within its designated dead-
line, the objective function switches resources and allocates the task to other resources
for execution. Our proposed method uses the GELS algorithm in combination with
PSO to improve some QOS parameters in grid scheduling.

3 Computing system model

Before presenting our proposed algorithm, we describe the computing system model on
which the algorithm is based and assessed. Grid models are composed of a number of
homogeneous machines that are used to run applications. Figure 1 shows an overview
of the grid model. The scheduler system consists of a scheduler, an application model,
and a set of computing machines. For the application model and homogeneous group
of machines, an estimate of the expected time for each task to execute on each machine
is known beforehand, and it is assumed that these values are available to the scheduler
(Maheswaran 1999). The values have been stored in an m ×n matrix ETC, where m is
the number of machines and n is the number of tasks. Obviously, n/m will generally
be greater than 1, with more tasks than machines, so that certain machines will need to
be assigned multiple tasks. Each column j of the ETC matrix contains estimates of the
expected running times of each task i on machine j . In addition, a 1 ×m matrix Ready
stores the time that each machine requires to complete its current task. We consider

123

J Comb Optim

Meta task Set of
Machines

Expected Time to
Complete

Mapping Algorithm

Application
HC suite of
machines

Mapping

HC System Model

Scheduling System

Fig. 1 Computing system model

how each task would be processed by each machine, since the goal is to minimize
makespan. Makespan is defined to be the maximum of the possible completion times
stored in a matrix Completion_Time, as in Eq. (1):

makespan = max(Completion_Time[i, j])
for 1 ≤ i ≤ n, 1 ≤ j ≤ m

(1)

Completion_Time[i, j] is the time for completing task i on resource j , calculated as
follows:

Completion_Time[i, j] = Ready[j] + ETC[i, j]. (2)

The running time of each task for each resource must be calculated for the purpose
of scheduling. If the processing speed of resource R j is PS j , then the processing time
for task Si can be calculated by Eq. (3):

Ti j = Ci/ PS j (3)

where Ti j is the processing time of task Si by resource R j and Ci is the computational
complexity of the task Si (Abdollahi Azgomi and Eetezari-maleki 2010). The values
obtained from Eq. (3) are stored in the ETC matrix.

123

J Comb Optim

The purpose of grid scheduling is that tasks should be allocated to resources in such
a way that makespan and the numbers of tasks that miss their deadlines are minimized.

4 The PSO algorithm

The PSO algorithm, which was proposed in Eberhat and Kennedy (1995), is a sto-
chastic optimization technique (Shi and Eberhat 1998) that operates on the principle
of social behavior behind bird flocking and fish schooling (Shi and Eberhat 1999). For
example, birds migrate to find food, and they begin by flying behind birds that have
more experience and others then fly behind them; thus, birds use the experience of
other birds in their orderly flying. Something that is interesting about the migration
of birds is that if a bird feels it has more experience than the bird in front of it, they
exchange positions so that the bird that has more experience moves to the forward
position. In this way, the birds all use their experience to move to the correct place in
their migration. The same situation occurs in schools of fish, and the idea used in the
PSO optimization technique is taken from such behavior. It can be said that the swarm
reaction has the ability to solve optimization problems.

In a PSO system, a swarm of individuals (called particles) fly through the search
space. Each particle represents a candidate solution to the optimization problem. The
position of a particle is influenced by the best position (pbest) it has visited, i.e., by its
own experience and the experience of neighboring particles. When the neighborhood
of a particle is the entire swarm, the best position in the neighborhood is referred to as
the global best position of the particle, and the resulting algorithm is known as gbest.
PSO has the following parameters:

Vmax maximum particle velocity;
ω Inertia weight factor;

Rand1 and Rand2 random numbers with a uniform distribution on the interval [0, 1];
C1 and C2 positive constants, respectively called the cognitive and the social

parameters.

When all particles have been initialized, an iterative optimization process begins
in which the positions and velocities of all particles are revised through the recursive
equations (4) and (5):

Vi+1 = ω Vi + C1rand1
(
pbesti − Xi

) + C2rand2
(
gbesti − Xi

)
(4)

Xi+1 = Xi + Vi+1 (5)

where Xi and Vi are the position and velocity of the i th particle. Here, the particle
flies through potential solutions toward pbesti and gbesti in a navigated way, while
still exploring new areas by the stochastic mechanism to escape from local optima.
The inertia weight can be dynamically varied by applying an annealing scheme for
the ω-setting of the PSO, where ω decreases from ω = 0.9 to ω = 0.1[20] over the

123

J Comb Optim

entire run. In general the inertia weight ω is set according to Eq. (6):

ω = ωmax − ωmax − ωmin

i termax
× i ter (6)

where ωmax is the initial value of the weighting coefficient, ωmin is the final value of
the weighting coefficient, i termax is the maximum number of iterations, and iter is the
current iteration.

Performance is significantly improved by varying the inertia.
Pseudocode for the PSO algorithm (Cruz et al. 2003) is shown below in Algorithm 1.

As can be seen, the initial positions and velocity of particles in the search area are
determined randomly. Then the fitness function is calculated for all particles. Next, the
fitness of all of the particles is compared, and if the fitness of any particle is less than
the fitness of the related pbest particle that particles’ coordinate is stored in pbest. Then
gbest is set to the best pbest value. The new coordinates of the particles are obtained
with (4) and (5). These steps are repeated for the maximum number of iterations.

5 The GELS algorithm: background

Voudouris and Tsang (1995) proposed the guided local search algorithm for searching a
search space with an NP-hard solution. Webster (2004) proposed a powerful algorithm
that he called the GELS algorithm. This algorithm mimicks gravitational attraction to
search within a search space. Each response (problem solution) has different neighbors,
which can be grouped based on problem-specific criteria. A dimension consists of the
neighbors in a neighbor group. A primary velocity is defined for each dimension. A
dimension that has greater primary velocity has a more apparent response (solution)
for the problem. The GELS algorithm uses two methods to calculate gravitational force
between the responses in a search space. The first method selects a response from the
local neighbor space of the current response, and gravitational force is calculated for the
two responses. The second method calculates gravitation force for all of the neighbor
responses in a neighbor space of the current response rather than a single response. The
GELS algorithm also uses two methods to implement movement in the search space.
The first method allows movement from the current response toward the response to
the current response in local neighbor spaces. The second method allows movement
toward the responses outside of the current response’s local neighbor spaces in addition
to the neighboring responses. Each of these movement methods can be combined with
each of the gravitational force methods; as a result, there are four models for the GELS
algorithm.

Balachandar and Kannan (2007) used GELS to solve the traveling salesman problem
and compared it with other algorithms such as hill climbing and SA. The results showed
that when the size of a problem is small, all of the algorithms perform equally well,
but when the size of a problem is large, GELS obtains better results than the other
algorithms.

123

J Comb Optim

6 The GELS algorithm

The GELS algorithm begins with a primary response and a primary velocity vector
consisting of the primary velocities. These velocities can be initialized by the user or
randomly.

Using the primary velocity vector, a dimension that has the most primary veloc-
ity among the neighbors is selected for movement. The algorithm uses a pointer
object that can move within the search space. This object always points to the

123

J Comb Optim

response with the greatest weight. For the first method, each iteration of the algo-
rithm begins by selecting a dimension for obtaining a neighbor response to the
current response, and a candidate response is selected from this dimension. The
gravitational force of the current and candidate responses are calculated and then
added to the primary velocity of the dimension that was used to obtain the can-
didate response; this is referred to as updating the primary velocity. In the next
iteration, the primary velocity vector is checked and used to select the new move-
ment direction for continuing the response search. For the second method, each
iteration of the algorithm is similar to the iterations of the first method except
that instead of considering gravitational force and updating the primary velocity
vector for a single candidate response in the current dimension, the gravitational
force of each candidate response in the current dimension is considered and the
primary velocity for each candidate response in the current dimension is updated.
This algorithm calculates the gravitational force f between two responses using
Eq. (7):

f = G(CU − CA)

R2 (7)

where CA and CU are the candidate response and current response, respectively, G is a
constant with the value 6.672, and R is the neighbor radius between the two responses
in the search space. The value R can be constant or changed intelligently during any
iteration. The algorithm terminates when one of the following occurs: either the pri-
mary velocity for all equal response dimensions (all elements of the primary velocity
vector) is zero, or the maximum number of algorithm iterations has been reached
(Webster 2004).

Another parameter used in this algorithm is the maximum primary velocity, which is
the maximum value that elements of the primary velocity vector can have. The primary
velocity parameter that selects the motion direction is used to obtain a neighbor, and this
parameter can prevent increasing the motion of the primary velocity vector elements.
Algorithm 2 presents the GELS pseudocode:

7 The PSO algorithm for solving the task scheduling problem

One of the key issues in successfully applying PSO to job scheduling con-
cerns deciding how to encode a schedule as a search solution, i.e., finding
a suitable mapping between problem solutions and PSO particles. In our pro-
posed method, each particle represents a feasible solution for task assignment
using a vector of n elements, where each element is a randomly produced inte-
ger value between 1 and m. Figure 2 illustrates the allocation of four tasks
to four resources. For example, in Particle 1, tasks T1 and T3 are assigned to
resource R1 and tasks T2 and T4 are assigned to resource R2 and R3, respec-
tively.

123

J Comb Optim

T1 T2 T3 T4

Particle 1 R1 R2 R1 R3

Particle 2 R1 R3 R4 R2

Particle 3 R3 R4 R1 R2

....

Fig. 2 Particle representation

7.1 Fitness evaluation

The initial population is generated randomly, with the velocity vector containing ran-
dom values in the range [−Vmax, Vmax] for each particle. Subsequently, a fitness value
is used for evaluation. The aim of task scheduling is to minimize makespan, the time
required for completing the execution of all tasks. We note that this time should always
be equal to or less than the max deadline (MD) of all tasks. In our proposed method,
an appropriate solution to the task scheduling problem is a move that minimizes not
only makespan, but also the number of tasks that miss their deadline. We have also
compared the performance and complexity of our proposed method for different val-
ues of n and m in the dynamic grid system to the performance of related methods, and
our comparison shows that when the complexity changes, our method can adapt itself
to the problem environment by changing its fitness function. Equation (8) is used to
calculate the fitness function:

fitness = 1

makespan
+ 1

miss_task × MD
(8)

123

J Comb Optim

where miss_task is the number of tasks that miss their deadlines in the solution, and
MD is the maximum deadline for all tasks.

7.2 Particle modification

Particles’ velocities and positions are updated using Eqs. (4) and (5). After generat-
ing a new population, real values such as 2.25 may have been generated as particle
positions. These values are invalid for indicating the number of resources. Therefore,
the algorithm rounds the real values to the nearest integers. In this way, a continu-
ous optimization problem is converted to a discrete optimization problem. Our hybrid
algorithm uses Eq. (6) to calculate ω in each iteration of the algorithm. Selection of
the correct inertia weights will greatly impact the algorithm’s performance so that it
avoids falling into a local minimum.

7.3 Force calculation

The gravitational force between the current and candidate particles is calculated using
Eq. (9):

force = G × fitness (candidate_particle) − fitness (current_particle)

R2 (9)

8 The PSO–GELS algorithm

The PSO algorithm uses different search points, and these points are close to the
optimum point with their pbest and gbest values. PSO can be used for continuous and
discrete problems, and it is good for global searches in the problem space. But it is
weak for local searches, with a significant probability of becoming trapped in a local
optimum in the last iteration. PSO converges globally because it searches globally. It
always tries to move to solutions that have better fitness functions in a purely stochastic
search problem space. It does not pay close attention to local subspaces so it is unable
to recognize and avoid local optima. As a result, PSO may become trapped in local
optima and have a low convergence rate in the late iterative process. One option for
addressing this problem is to use local search algorithms such as GELS or SA that
can avoid local optima. SA is much slower than GELS when combined with PSO,
so we have chosen to use GELS. Although GELS behaves like a greedy algorithm, it
does not always move to better fitness functions. It tests available solutions to find the
best solution and does not try to search the problem space purely stochastically.

Our proposed scheduling algorithm uses PSO as the main search algorithm, while
GELS is used to improve the population. There are two reasons for using both algo-
rithms. First, we need an algorithm that is based on a population that can search the
entire grid space for this problem. Second, the grid environment is dynamic, so the
scheduling algorithm must be fast enough to adapt with the natural grid environment
and must be able to converge faster than other algorithms. Moreover, although PSO is
weak for local searches, our combination of PSO with an algorithm that is strong in

123

J Comb Optim

local searches addresses this weakness. Because GELS actions have a high computa-
tional cost for each particle in the PSO search and the grid scheduler should execute
quickly, GELS is run on the global result of the last iteration of PSO. That is, an initial
solution for GELS is provided by PSO during the hybrid search process. Algorithm 3
shows the pseudo code for the PSO–GELS algorithm.

9 Performance evaluation

This section discusses the performance of our proposed algorithms for scheduling
independent tasks in a grid computing environment. These tasks relate to applications
that have been submitted by users for execution. In their submissions, users can specify

123

J Comb Optim

Table 1 PSO algorithm
parameters

Parameter Value

Vmax Number of resources

C1, C2 1.49

Initial velocity [1, Wmax]
ωmax 0.9

ωmin 0.1

Table 2 GELS algorithm
parameters

Parameter Value

Initial velocity [1, Wmax]
Wmax Number of tasks

R 1

QOS parameters such as deadlines and optimum strategies for the system. Our simu-
lation is implemented with Java software running under the Win XP operating system
on a 2.66 GHZ CPU with 4 GB of RAM.

An application consists of several independent tasks. Each task has its own length,
measured in terms of a million instructions. The task lengths are randomly defined
values in the range (Min…Max), with a uniform task distribution. In the simulation,
lengths are considered to be homogenous, and in the most homogenous state, the
range of the distributed task lengths is (10,000…110,000). Resources in the grid have
different processing speeds so that the various scheduling algorithms can be clearly
compared. All of the resources have a single processor.

Scheduling algorithms that have optimal time as their goal can execute users’ appli-
cations in the grid and deliver the results with the minimal possible time. Based on
the resource owners and customers, some algorithms are more efficient than others for
assigning the independent tasks to available grid resources in a way that minimizes
the runtime consumed by tasks. Moreover, the numbers of tasks that miss their dead-
lines should be minimized. A proper algorithm can show acceptable results for users
in various situations, such as short/long deadlines and homogenous tasks and users.
We will discuss the different experimental situations for comparing PSO–GELS with
other algorithms.

Before examining the results, we present the initial values of parameters used in
the PSO and GELS algorithms. These are shown in Tables 1 and 2.

We compared our algorithm with other algorithms based on the situation depicted
in Table 3. We considered the task lengths to be equal in all models. There is a uniform
distribution of task lengths within the range indicated by the parameter. The iterations
parameter indicates that each case has been executed five times, and the average of
the calculated values is displayed. For example, Table 4 depicts the results obtained
by the various algorithms. In this table, the values are calculated for 50 tasks with 10
resources and 100 iterations. The average column lists the average of five runs of the
different algorithms; these results are the task scheduling problem solutions.

123

J Comb Optim

Table 3 Time optimization
experiment results for various
task lengths and execution rates

Parameter Value

Algorithm type Various

Task no. Various

Deadline Various

Task length [100,000…110,000]

Experiment iterations 5

Table 4 Makespan average for five runs

Algorithm Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average

PSO–GELS 82.66 82.1 90.71 86.66 83.8 85.186

PSO–SA 88.42 88.57 89.14 87 94.8 89.586

PSO 84.1 86 93 84.72 83.8 86.144

GA–GELA 82.8 93.9 84.3 104.0 85 90

GA–SA 104.33 103.875 90.375 87.66 91.57 95.562

GA 104.0 104.0 92.0 92.66 103.33 99.198

SA 177.33 134. 141.66 105.55 124.8 136.742

To show the significant performance of our PSO–GELS algorithm, we compared it
with the SA, GA–SA, GA–GELS, GA, PSO–SA, and PSO algorithms under various
conditions, including different numbers of tasks and resources with different numbers
of iterations. The PSO–SA algorithm combines PSO and SA for solving the task
scheduling problem, GA–SA combines GA and SA, and GA–GELS combines GA
and GELS. The algorithms were tested for various cases and the makespan, execution
time, and number of tasks that missed deadlines were calculated. Table 5 at the end of
this article shows the makespan averages for the seven algorithms.

The results show that the makespan found by PSO–GELS is in most cases better
than that found by the other algorithms. We expect a good scheduling algorithm to
allocate resources to tasks with a minimal total runtime. Since PSO’s convergence
is faster than that of the GA, it is more suitable for grid scheduling. Moreover, PSO
found better solutions than the GA. Because PSO cannot search locally, we combined
it with the GELS method. The results show that PSO–GELS is better than PSO–SA;
this is because GELS searches the problem space intelligently and does not work as
the SA method does—searching quickly to find solutions with better goal function
values—but does its job by examining present solutions; as a result, its algorithmic
convergence is faster and it is able to find adequate solutions.

Figure 3a–d shows the makespan obtained by our proposed method compared with
the other algorithms for 1,000 iterations on 10 and 20, resources for various numbers
of input tasks. As can be seen in the figure, as the number of input tasks increases
and the problem space grows, PSO–GELS performs better than the other algorithms.
When the number of tasks increases to greater than 500, PSO–GELS produces a
smaller makespan compared to the other algorithms. Additionally, when the number
of available resources in the system changes, increasing from 10 to 20, PSO–GELS

123

J Comb Optim

Table 5 PSO–GELS makespan average compared with other algorithms

Iteration (Task,
resource)

SA GA GA–SA GA–GELS PSO PSO–SA PSO–GELS

100 (50, 10) 136.742 99.198 95.562 90 86.144 89.586 85.186

(50, 20) 98.944 62.496 60.968 61.692 53.826 53.266 53.138

(50, 30) 71.442 50.53 49.476 48.354 41.95 40.45 39.964

(100, 10) 307.738 183.49 190.353 181.028 168.718 167.33 166.094

(100, 20) 190.862 111.1742 111.646 109.548 102.542 100.714 99.897

(100, 30) 138.632 99.25 89.822 88.91 75.904 73.318 75.238

(300, 10) 973.728 638.082 597.8 581.842 521.568 511.532 494.466

(300, 20) 585.848 352.698 337.648 350.686 297.389 288.962 286.066

(300, 30) 384.928 262.166 256.664 259.664 209.128 216.402 209.592

(500, 10) 1837.662 1105.56 1072.362 1087.216 918.336 887.195 911.099

(500, 20) 833.996 602.174 571.796 587.042 493.954 504.33 484.848

(500, 30) 721.596 449.73 446.646 442.182 350.482 352.978 352.704

(1000, 10) 3443.596 2401.208 2319.28 2440.772 1989.53 2120.764 1937.73

(1000, 20) 1653.262 1310.43 1255.288 1251.832 1096.666 1062.232 1017.326

(1000, 30) 1410.196 892.414 917.496 903.632 750.75 735.304 757.326

(3000, 10) 10066.928 8489.314 8078.916 8006.548 7365.264 7282.062 7303.596

(3000, 20) 5565.994 4255.43 4292.203 4212.462 3604.518 3539.608 3528.852

(3000, 30) 3710.328 2954.048 2836.95 2798.978 2525.713 2484.276 2472.258

(5000, 10) 17820.598 14303.062 14597.194 14298.594 13353.398 13300.994 13077.332

(5000, 20) 9091.598 7415.132 7432.38 7102.594 6404.416 6357.77 6302.026

(5000, 30) 6077.596 5062.862 4996.796 4874.464 4392.909 4360.116 4313.384

300 (50, 10) 131.12 89.486 86.98 84.298 85.312 87.694 84.174

(50, 20) 74.832 60.87 57.304 59.389 53.824 53.77 52.662

(50, 30) 62.055 47.637 42.932 46.06 30.454 41.208 41.076

(100, 10) 233.2 172.628 179.062 175.598 170.452 167.16 166.422

(100, 20) 173.116 111.946 105.314 103.092 104.994 100.098 94.104

(100, 30) 120.452 90.716 87.846 80.086 75.15 70.572 72.963

(300, 10) 911.68 570.466 532.968 600.862 518.268 526.71 527.086

(300, 20) 523.33 327.522 337.428 326.924 293.558 296.168 286.274

(300, 30) 408.714 253.132 246.48 251.564 204.634 205.496 202.722

(500, 10) 1492.616 1071.014 1037.942 1055.504 890.354 896.586 881.991

(500, 20) 893.262 602.134 593.116 578.826 499.371 493.9 498.497

(500, 30) 626.162 430.32 412.7152 408.282 343.226 339.331 343.413

(1000, 10) 3416.932 2361.57 2408.914 2341.962 1996.662 1982.64 2048.876

(1000, 20) 1785.73 1227.296 1244.67 1255.58 1094.373 1079.494 1057.576

(1000, 30) 1193.396 886.596 867.146 870.664 732.248 722.843 698.876

(3000, 10) 10555.664 8056.196 8051.328 8365.632 7292.462 7408.096 7199.13

(3000, 20) 5108.662 4149.312 4358.014 4101.446 3630.56 3527.966 3533.242

(3000, 30) 3617.996 2865.062 2958.53 2872.396 2472.288 2404.406 2439.382

123

J Comb Optim

Table 5 continued

Iteration (Task,
resource)

SA GA GA–SA GA–GELS PSO PSO–SA PSO–GELS

(5000, 10) 16884.398 14513.396 14480.062 13735.464 13113.462 13261.394 13145.528

(5000, 20) 9355.996 7311.996 7232.978 7368.728 6387.366 6495.002 6366.268

(5000, 30) 6158.196 5025.482 4908.264 5075.128 4441.045 4473.182 4411.648

500 (50, 10) (50, 10) 117.994 85.264 84.614 83.362 85.22 83.774

(50, 20) (50, 20) 69.88 55.876 51.366 51.941 54.116 53.011

(50, 30) (50, 30) 62.898 43.658 43.672 42.908 42.712 40.926

(100, 10) (100, 10) 261.364 175.084 171.817 168.714 176.688 170.432

(100, 20) (100, 20) 147.598 121.444 102.814 101.272 96.654 95.227

(100, 30) (100, 30) 104.8 82.8 78.18 80.522 74.52 74.857

(300, 10) (300, 10) 855.896 563.55 521.302 552.828 506.026 509.04

(300, 20) (300, 20) 494.314 339.752 337.19 301.632 289.59 296.211

(300, 30) (300, 30) 360.798 240.01 233.38 237.343 217.269 215.358

(500, 10) (500, 10) 1640.528 993.964 1000.569 954.652 849.066 894.495

(500, 20) (500, 20) 831.396 599.588 547.096 534.166 507.43 506.996

(500, 30) (500, 30) 631.046 418.472 401.71 398.078 355.896 357.54

(1000, 10) (1000, 10) 3260.796 2419.198 2161.618 2279.85 1985.768 1958.13

(1000, 20) (1000, 20) 1651.564 1263.748 1241.98 1211.298 1098.702 1068.04

(1000, 30) (1000, 30) 937.998 868.036 832.112 865.452 741.914 771.884

(3000, 10) (3000, 10) 10372.328 7724.066 7902.312 7670.23 7627.728 7268.512

(3000, 20) (3000, 20) 5426.33 4276.364 4271.764 4237.064 3780.672 3817

(3000, 30) (3000, 30) 3655.396 2813.612 2814.764 2297.882 2549.052 2533.717

(5000, 10) (5000, 10) 17514.126 14129.878 13994.396 14050.196 13533.398 13616.996

(5000, 20) (5000, 20) 9002.728 7088.228 7218.796 7036.364 6352.38 6537.594

(5000, 30) (5000, 30) 5042.46 4975.396 4896.182 4860.098 4314.304 4387.548

1000 (50, 10) 108.151 82.566 84.856 81.402 87.436 86.106 85.72

(50, 20) 70.616 50.772 51.057 49.562 54.536 57.332 54.473

(50, 30) 59.384 45.14 40.134 38.703 42.66 43.848 41.328

(100, 10) 223.184 167.755 160.84 160.694 170.716 174.648 169.784

(100, 20) 140.246 105.26 99.907 95.316 100.006 100.896 99.173

(100, 30) 110.426 83.14 76.978 72.144 74.981 75.096 74.386

(300, 10) 867.48 545.046 542.52 533.336 520.953 511.33 421.388

(300, 20) 459.53 318.31 299.077 301.58 292.132 288.673 291.96

(300, 30) 315.888 231.15 218.67 206.74 207.528 205.894 201.52

(500, 10) 1495.312 933.798 935.794 932.23 856.9 888.534 851.614

(500, 20) 1977.333 563.104 543.056 536.382 515.15 513.352 507.842

(500, 30) 580.948 401.004 381.582 390.21 359.624 360.244 350.954

(1000, 10) 3464.596 2035.652 2072.752 2169.282 1913.336 1986.5 1878.196

(1000, 20) 1651.594 1211.262 1135.048 1168.844 1053.176 1071.952 1078.516

123

J Comb Optim

Table 5 continued

Iteration (Task,
resource)

SA GA GA–SA GA–GELS PSO PSO–SA PSO–GELS

(1000, 30) 1116.864 856.032 847.732 833.698 750.054 732.017 724.133

(3000, 10) 1007.093 7915.646 7768.732 7757.198 7120.996 7364.13 7345.594

(3000, 20) 5425.13 4197.262 4023.55 3989.732 3694.2 3653.962 3563.424

(3000, 30) 3760.06 2784.728 2782.68 2731.58 2482.12 2467.899 2448.768

(5000, 10) 17649.86 13955.796 13298.514 13483.214 13444.662 13494.594 13347.796

(5000, 20) 8881.194 7182.096 7065.698 7009.528 6525.274 6541.064 6344.172

(5000, 30) 6019.264 4896.612 4813.212 4795.078 4348.716 4410.25 4264.454

Bold values indicate the points that the proposed method did not provide better results compared to other
methods

adapts to the larger number of resources in the new scenario. It assigns tasks to the
new resource queues, thus decreasing the makespan and the number of tasks that miss
their deadline.

Figure 4 shows the average runtime for the various algorithms. Because PSO has
fewer parameters than GA, it converges more quickly than the other algorithms. There-
fore, since the grid environment is dynamic and its scheduling should be fast, PSO
is better suited than GA. Since our proposed method uses a combination of PSO
and GELS and each method has the same number of iterations, it seems natural that
PSO–GELS should consume more runtime than PSO. By way of illustration, in PSO–
GELS with 1,000 iterations, PSO and GELS each repeat with 1,000 iterations, but PSO
without GELS repeats only 1,000 times. The results show that although PSO–GELS
repeated more instructions than PSO, its execution time is close to PSO’s. PSO–GEL’s
execution time is also better than the execution time of PSO–SA, even though both
have the same number of repetitions. Although the time consumed by PSO–GELS is
close to that consumed by PSO, its solution has a better makespan than PSO.

Figure 5 shows fail task rates in the case of 1,000 tasks and 10 resources for various
numbers of iterations. PSO–GELS is the best, because its missed task deadline rate
is lower than the others’, and for 500 or more iterations it is zero. This means that
all the allocated tasks have completed within their deadlines. For the other methods,
convergence to zero is slow, and none of them actually reaches zero. For all algorithms,
the missed task deadline rates are high for 100 iterations, but PSO–GELS’s rate is lower
for the initial iterations, and its rates drop rapidly as the number of iterations increases.

Figure 6 shows PSO–GELS’s improvement in makespan compared with the other
algorithms for the case (5000, 30). PSO–GELS clearly obtained the best makespan. For
example, PSO–GELS’ makespan for 5,000 tasks and 30 resources is approximately
29.2 % of SA’s makespan, as recorded in Eq. (10):

makespan (PSO−GELS) = 0.292 × makespan (SA) (10)

Therefore, PSO–GELS should be used in place of SA for grid scheduling.

123

J Comb Optim

F
ig

.3
C

om
pa

ri
so

n
of

m
ak

es
pa

n
fo

r
th

e
di

ff
er

en
ta

lg
or

ith
m

s

123

J Comb Optim

Fig. 4 Comparison of algorithms’ average execution time for (5000, 30)

Fig. 5 Tasks that fail to meet deadlines rates for the case (1000, 10) for the various algorithms

10 Conclusion

Computational grids have different computational capabilities, including the use of idle
resources as additional resources and parallel processing for increased performance.
Resource management is an important part of grid computing and has an important
role in controlling and monitoring the use of resources. The main function of a resource
management system is scheduling tasks on resources. Since the resources are complex,
distributed, heterogeneous, dynamic, and autonomous, resource allocation and task
scheduling poses difficulties. Because scheduling tasks for a grid system is an NP-

123

J Comb Optim

Fig. 6 PSO–GELS’s makespan improvement over the other algorithms

hard problem, efficient algorithms for solving this problem will not be deterministic.
Thus, much research has been devoted to heuristic algorithms. The present paper
presents a novel task-scheduling technique for grid systems based on a hybrid PSO–
GELS algorithm that minimizes makespan and the number of tasks that fail to meet
their deadlines. Each particle in the PSO algorithm represents a feasible solution. The
position vector for PSO is transformed from continuous values to discrete values by
rounding the real values. The hybrid PSO algorithm performs better for local searches.
Because GELS is used for the local search rather than other local search algorithms
such as hill-climbing or SA, the hybrid algorithm finds better solutions than other
algorithms. Overall, a comparison of the performance of PSO–GELS with existing
methods through a simulation experiment shows that PSO–GELS perform better than
the other algorithms.

References

Abdollahi Azgomi M, Eetezari-maleki R (2010) Task scheduling modeling and reliability evaluation of
grid services using colored Petri nets. Future Gener Comput Syst 26(8):1141–1150

Balachandar S, Kannan K (2007) Randomized gravitational emulation search algorithm for symmetric
traveling salesman problem. Appl Math Comput 192(2):413–421

Barzegar B, Rahmani AM, Zamanifar K, Divsalar A (2009) Gravitational emulation local search algorithm
for advanced reservation and scheduling in grid computing systems. In: Fourth international conference
on computer sciences and convergence information technology ICCIT ’09, Seoul, pp 1240–1245

Benedict SH, Vasudevan V (2008) Improving scheduling of scientific workflows using tabu search for
computational grids. Inf Technol J 7(1):91–97

Chen R, Shiau D, Andlo SH (2009) Combined discrete particle swarm optimization and simulated annealing
for grid computing scheduling problem. In: Lecture notes in computer science, vol, 57. Springer, Berlin,
pp 242–251

Cruz JB Jr, Chen G, Li D, Wang X (2003) Particle swarm optimization for resource allocation in UAV
cooperative control. In: AIAA guidance navigation and control conference and exhibit, Reno, pp 1–11

123

J Comb Optim

Cruz-Chavez M, Rodríguez-Leon A, Avila-Melgar E, Juarez-Perez F, Cruz-Rosales M, Rivera-Lopez R
(2010) Genetic-annealing algorithm in grid environment for scheduling problems. In: Security-enriched
urban computing and smart grid communications in computer and information science, vol 78. springer,
New York, pp 1–9

Eberhat R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Sixth international sympo-
sium on micro machine and human science, Piscataway, pp 39–43

Foster I, Kesselman C, Nick J, Tuecke S (2002) The physiology of the grid: an open grid services architecture
for distributed systems integration. Computer 35(6):1–4

Gao Y, Rong HQ, Huang JZ (2005) Adaptive grid job scheduling with genetic algorithms. Future Gener
Comput Syst 21:151–161

Garg SK, Buyya R, Siegel HJ (2010) Time and cost trade-off management for scheduling parallel applica-
tions on utility Grids. Future Gener Comput Syst 26:1344–1355

Izakian H, Tork Ladani B, Zamanifar K, Abraham A (2009) A novel particle swarm optimization approach
for grid job scheduling. Commun Comput Inf Sci 31:100–109

Joshua Samuel Raj R, Vasudevan V (2011) Beyond simulated annealing in grid scheduling. Int J Comput
Sci Eng 3(3):1312–1318

Liu H, Abraham A, Hassanien A (2010) Scheduling jobs on computational grids using a fuzzy particle
swarm optimization algorithm. Future Gener Comput Syst 26:1336–1343

Maheswaran M (1999) Dynamic mapping of a class of independent tasks onto heterogeneous computing
systems. J Parallel Distributed Comput 59(2):107–131

Mathiyalagan P, Dhepthie UR, Sivanandam SN (2010) Grid scheduling using enhanced PSO algorithm. Int
J Comput Sci Eng 2(2):140–145

Orosz ZE, Jacobson SH (2002) Analysis of static simulated annealing algorithm. J Optim Theory Appl
115:165–182

Padmavathi S, Mercy shalinie S (2010) Dag scheduling on cluster of workstations using hybrid particle
swarm optimization. In: First international conference on emerging trends in engineering and technology
ICETET ’08, vol 10, Mawson Lakes, no 6, pp 384–389

Pooranian Z, Harounabadi A, Shojafar M, Hedayat N (2011) New hybrid algorithm for task scheduling in
grid computing to decrease missed task. World Acad Sci Eng Technol 55:924–928

Pooranian Z, Shojafar M, Javadi B (2012) Independent task scheduling in grid computing based on queen
bee algorithm. IAES Int J Artif Intell 1(4):171–181

Pooranian Z, Shojafar M, Abawajy JH, Singhal M (2013a) GLOA: a new job scheduling algorithm for grid
computing. Int J Artif Intell Interact Multimed 2(1):59–64

Pooranian Z, Shojafar M, Tavoli R, Singhal M, Abraham A (2013b) A hybrid meta-heuristic algorithm for
job scheduling on computational grids. Inform J 37(2):157–164

Shiau Der-Fang (2011) A hybrid particle swarm optimization for a university course scheduling problem
with flexible preferences. Expert Syst Appl 38:235–248

Shiau D, Huang Y (2012) A hybrid two-phase encoding particle swarm optimization for total weighted
completion time minimization in proportionate flexible flow shop scheduling. Int J Adv Manuf Technol
58(1):339–357

Shi Y, Eberhat R (1998) Parameter selection in particle swarm optimization. In: Proceedings of the 7th
annuals conference on evolutionary programming. Springer, Berlin, pp 591–600

Shi Y, Eberhat R (1999) Empirical study of particle swarm optimization. In: Proceedings of the IEEE
congress on evolutionary computation, vol 3. IEEE Press, Los Alamitos, pp 1945–1950

Shojafar M, Barzegar S, Meybodi MR (2010) A new method on resource scheduling in grid systems based
on hierarchical stochastic Petri net. In: Proceedings of third international conference on computer and
electrical engineering (ICCEE 2010), Chengdu, pp 175–180

Shojafar M, Pooranian Z, Abawajy JH, Meybodi MR (2013) An efficient scheduling method for grid systems
based on a hierarchical stochastic Petri net. J Comput Sci Eng 7(1):44–52

Sivanandam SN, Visalakshi P (2007) Multiprocessor scheduling using hybrid particle swarm optimization
with dynamically varying inertia. Int J Comput Sci Appl 4(3):95–106

Sullivan WT, Werthimer D, Bowyer S, Cobb J, Gedye D, Anderson D (1997) A new major SETI project
based on Project Serendip data and 100000 personal computers. In: Proceedings of the fifth international
conference on bioastronomy, Bologna, no 61, p 729

Tao Q, Chang H, Yi Y, Gu CH, Li W (2011) A rotary chaotic PSO algorithm for trustworthy scheduling of
a grid workflow. Comput Oper Res 38:824–836

Voudouris CH, Tsang E (1995) Guided local search. Eur J Oper Res 16(3):46–50

123

J Comb Optim

Webster B (2004) Solving combinatorial optimization problems using a new algorithm based on gravitational
attraction. PhD thesis, Florida Institute of Technology, Melbourne

Weijun X, Zhiming W, Wei ZH, Genke Y (2004) A new hybrid optimization algorithm for the job-shop
scheduling problem. In: Proceeding of the 2004 American control conference, vol 6, Boston, pp 5552–
5557

Xhafa F, Gonzalez J, Dahal K, Abraham A (2009) A GA(TS) hybrid algorithm for scheduling in compu-
tational grids. In: Hybrid artificial intelligence systems. Lecture notes in computer science, vol 5572.
Springer, Berlin, pp 285–292

Yan-ping B, Wei ZH, Jin-shou Y (2008) An improved PSO algorithm and its application to grid scheduling
problem. International symposium on computer science and computational technology ISCSCT ’08,
Shanghai, pp 352–355

Yusof M, Badak K, Stapa M (2010) Achieving of tabu search algorithm for scheduling technique in grid
computing using GridSim simulation tool: multiple jobs on limited resource. Int J Grid Distributed
Comput 3(4):19–32

Zhang L, Chen Y, Sun R, Jing SH, Yang B (2008) A task scheduling algorithm based on PSO for grid
computing. Int J Comput Intell Res 4(1):37–43

123

	An efficient meta-heuristic algorithm for grid computing
	Abstract
	1 Introduction
	2 Related work
	3 Computing system model
	4 The PSO algorithm
	5 The GELS algorithm: background
	6 The GELS algorithm
	7 The PSO algorithm for solving the task scheduling problem
	7.1 Fitness evaluation
	7.2 Particle modification
	7.3 Force calculation

	8 The PSO--GELS algorithm
	9 Performance evaluation
	10 Conclusion
	References

