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Abstract: Nowadays, the Advanced Encryption System –

AES is used in almost all network-based applications to ensure
security. The core computation of AES, which is performed
on data blocks of 128 bits, is iterated for several rounds, de-
pending on the key size. The strength of AES is proportional
to the number of rounds applied. So far, the number of rounds
is fixed to 10, 12 and 14 for a key size of 128, 192 and 256
bits respectively. Most cryptographers feel that the margin
between the number of rounds specified in the cipher and the
best known attacks is too small. On the other hand, it is clear
that the overall efficiency of a given AES implementation is
inversely proportional to the number of rounds imposed. In
this paper, we propose a very efficient pipelined hardware
implementation of AES-128. Besides, we show that if the re-
quired number of rounds must increase to defeat attackers,
the proposed implementation stays efficient.

Keywords: cryptography, AES, embedded hardware,
pipeline.

1 Introduction

Cryptography is the study of methods to transform infor-
mation from its original comprehensible form into a scram-
bled incomprehensible form, such that its content can only
be disclosed to some qualified persons. In the past, cryptog-
raphy helped ensure secrecy in important communications,
such as those of spies, military leaders, and diplomats. In
recent decades, it has expanded in two main ways: (i) firstly,
it provides mechanisms for more than just keeping secrets
through schemes like digital signatures, digital cash, etc; (ii)
secondly, cryptography is used by almost all computer users
as it is embedded into the infrastructure for computing and
telecommunications. Cryptography ensures secure commu-
nications through confidentiality, integrity, authenticity and
non-repudiation.

Cryptography has evolved over the years from Julius Ce-
sar’s cipher, which simply shifts the letters of the words a
fixed number of times, to the sophisticated RSA algorithm,
which was invented by Ronald L. Rivest, Adi Shamir and

Leonard M. Adleman, and the elegant AES cipher (Advanced
Encryption Standard), which was invented by Joan Daemen
and Vincent Rijmen.

Cryptographic algorithms used by nowadays cryptosystems
fall into two main categories: symmetric-key algorithms and
asymmetric-key algorithms (8). Symmetric-key ciphers use
the same key for encryption and decryption, or to be more
precise, the key used for decryption is computationally easy
to compute given the key used for encryption. Cryptography
using symmetric ciphers is also called private-key cryptogra-
phy.

Symmetric-key ciphers use the same key for encryption and
decryption, or to be more precise, the key used for decryp-
tion is computationally easy to compute given the key used
for encryption. Symmetric-key ciphers, in turn, can fall into
two categories: block ciphers and stream ciphers. Stream ci-
phers encrypt the plaintext one bit at a time, in contrast to
block ciphers, which operate on a block of bits of a predefined
length. Most popular block ciphers are DES, IDEA (7) and
AES (3), and most popular stream cipher is RC6 (9).

Using symmetric-key cryptography, two parties who want
to communicate confidentially must have access to the private
key. This is somehow a limiting aspect for this category of
cryptography. In contrast with symmetric-key, the key used
during encryption is distinct from that used during decryption
in asymmetric-key algorithms. The encryption key is made
public while the decryption key is kept secret. Within this
scheme, two parties can communicate securely as long as it
is computationally hard to deduce the private key from the
public one. This is the case in nowadays asymmetric-key, or
simply public-key algorithms such as RSA, which relies on the
difficulty of integer factorisation. The future of cryptography
resides in systems that are based on elliptic curves, which are
kind of public-key algorithms that may offer efficiency gains
over other schemes.

The Advanced Encryption System – AES is a block cipher,
adopted as the new encryption standard in substitution to
its predecessor Data Encryption Standard – DES (2). AES
main scrambling computation is performed on a fixed block
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size of 128 bits with a key size of 128, 192 or 256 bits. This
core computation is iterated for many rounds. The number of
rounds depends on the key size. Currently, it is set to 10, 12
and 14 for the cited keys sizes respectively. The resistance of
AES against breaking attacks depends entirely on the num-
ber of rounds used. So far, the best known attacks are on
7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9
rounds for 256-bit keys (5). The small margin between these
round numbers and the actual ones is very worrying for the
cryptographer’s community.

The need for fast but secure cryptographic systems is grow-
ing bigger. Therefore, dedicated hardware for cryptography
is becoming a key issue for designers. With the spread of
reconfigurable hardware such as FPGAs, embedded crypto-
graphic hardware became cost-effective. Nevertheless, it is
worthy to note that nowadays, even hardwired cryptographic
algorithms are not safe. Attacks based on power consump-
tion and electromagnetic Analysis, such as SPA, DPA and
EMA have been successfully used to retrieve secret informa-
tion stored in cryptographic devices. Besides performance in
terms of area and throughput, designer of embedded cryp-
tographic hardware must worry about the leakage of their
implementation.

In this paper, we propose a novel hardware implementa-
tion of AES-128. The architecture allows one to perform
the core computation of the algorithm is a pipelined man-
ner. The throughput of the cryptographic hardware is 1Gbits
per second. A unique hardware is used for encryption and
decryption. The pipelined encryption and decryption allows
an increase of the number of rounds without much loss of effi-
ciency. Recall that increasing the number of rounds applied,
increases the resistance of the AES algorithm.

This rest of this paper is organised in four subsequent sec-
tions. First, in Section 2, we give a brief description of the
AES encryption and decryption algorithms as well as the
modified version of these two algorithms, which are the basis
of the proposed hardware architecture. Thereafter, in Section
3, we describe in a structured manner, the pipelined hardware
architecture of AES-128 for encryption and decryption. Sub-
sequently, in Section 4, we present some experimental result
and compare our implementation to existing ones. Last but
not least, in Section 5, we draw some conclusions and intro-
duce some directions for future work.

2 Advanced Encryption Standard

The AES (3) is an elegant and a so-far-secure cipher. The
encryption and decryption processes are perfomed through a
repetitive process of four main stages. The encryption and
decryption are done in a slightly different way. However,
both processes can be modified so that the main stages are
equivalent in the sense that for each stage, the computational
process is the same but some parameters such as the s-box
used and the key schedule exploited is different. In the re-
maining part of this section, we proceed with the description
of the algorithms used by AES in the encryption and decryp-
tion processes as well as their respective modified versions
that allowed us to yield a versatile hardware that can be used
for both computations.

2.1 Encryption with AES

Encryption using AES proceeds as described in Algorithm
1, wherein functions SubBytes, ShiftRows, MixColumns and
AddroundKey are defined later in this section.

Algorithm 1.AES-Cipher
input: Byte T [4 × nb], Word K[nb × (nr + 1)];
output: Byte C[4 × nb],

Byte state[4, nb];
state := T ;
AddRoundKey(state, K[0, nb − 1];
for round := 1 to nr − 1 do

SubBytes(state); ShiftRows(state);
MixColumns(state);
AddRoundKey(state, K[round×nb, nb(round+1)−1]);

SubBytes(state);
ShiftRows(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
C := state;
return C;

end

For hardware efficiency reasons, we modified the AES
cipher algorithm as in Algorithm 2. Note that Algorithm 1
and Algorithm 2 are equivalent and yield the same output.

Algorithm 2.Modified-AES-Cipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
for round := 0 to nr − 1 do

AddRoundKey(state, K[round×nb, nb(round+1)−1]);
SubBytes(state);
ShiftRows(state);
if round < nr − 1 then MixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end

2.1.0.0.1 Function SubBytes The function yields a new
state simply by substituting each of the 16 bytes of state using
a substitution box. The four most significant bits of the byte
in question is used as the S-box row index while the remaining
four bits are used as the S-box column index as shown in Fig.
1.
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Figure 1: Illustration of SubBytes state transformation
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2.1.0.0.2 Function ShiftRows The function obtains a
new state by cyclically shifting the state rows. The bytes
of row i are shifted i times, where 0 ≤ i ≤ 4, as shown in Fig.
2.

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3

S1,1 S1,2 S1,3 S1,0

S2,2 S2,3 S2,0 S2,1

S3,3 S3,0 S3,1 S3,2

Sr,0 Sr,1 Sr,2 Sr,3

ShiftRows

S′

r,0 S′

r,1 S′

r,2 S′

r,3

current state Next state

Figure 2: Illustration of ShiftRows state transformation

2.1.0.0.3 Function MixColumns The function operates
on the states columns. The bytes of a given column are used
as coefficients of a polynomialover GF(28). The formed poly-
nomialis multiplied by a fixed polynomialP (x) modulo x4 +1,
wherein polynomial P (x) is defined as in (1):

P (x) = {03}x3 + {01}x2 + {01}x + {02} (1)

The details of the multiplication operation can be found in
(3), (1). The transformation performed by MixColumns is
illustrated in Fig. 3.
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Figure 3: Illustration of MixColumns state transformation

2.1.0.0.4 Function AddRoundKey The function com-
putes the new state using a xor of the state columns bytes
and the key schedule of the current round. The transforma-
tion performed by this function is depicted in Fig. 4.
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Figure 4: Illustration of AddRoundKey state transformation

Before the cipher operation takes place, a key schedule is
generated. Four subkeys are required for each round of the

cipher algorithm. The subkeys for the first round are the pri-
vate cipher key, which is provided by the user. For a given
round, the first subkey is obtained by first rotating once the
last subkey from that of theprevious round, then substitut-
ing each of byte using the S-box used by function subBytes.
Thereafter xoring the result with a given constant and finally
xoring the result with first subkey of the previous round. The
subsequent subkeys of the current round are computed using
a xor of the previous key in the current round and the one
inversely respective from the previous round. Of course, the
whole key schedule required by the entire encryption process
can be generated beforehand and store for later use by func-
tion AddRoundKey appropriately.

2.2 Decrytpion with AES

The decryption of a text that was ciphered using AES
can be performed by Algorithm 3. Comparing Algorithm
1 and Algorithm 3, one can note that each function was
replaced by its inverse. However, the application sequence
of these functions is slightly different. In order to have a
unique versatile hardware for encryption and decryption, this
algorithm was modified as in Algorithm 4, wherein functions
InvSubBytes, InvShiftRows and InvMixColumns are defined
in the following subsections. Function AddroundKey is kept
unchanged. FIGURE 2.2.0.0.5.

Algorithm 3.AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
AddRoundKey(state, K[round × nb, nb(nr + 1) − 1]);
for round := nr − 1 downto 1 do

InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
InvMixColumns(state);

InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, K[0, nb(nr + 1) − 1]);
T := state;
return T ;

end

Algorithm 3 and Algorithm 4 are equivalent as operations
InvSubBytes and InvShiftRows commute. Moreover, function
InvMixColumns is linear so we have InvMixColumns(x xor y)
is equivalent to InvMixColumns(x) xor InvMixColumns(y).
Recall that operation AddRoundKey is a xor of its ar-
guments. Using these two facts, we can swap operations
AddRoundKey and InvMixColumns, provided that the
columns of the decryption key schedule are modified using
operation InvMixColumns. Note that functions SubBytes
and InvSusbytes perm the same process but using distinct
S-Boxes.

Algorithm 4.Modified-AES-Decipher
input: Byte C[4 × nb], Word K[nb × (nr + 1)];
output: Byte T [4 × nb],

Byte state[4, nb];
state := C;
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for round := nr − 1 to 0 do
AddRoundKey(state, K[round×nb, nb(round+1)−1]);
InvSubBytes(state);
InvShiftRows(state);
if round < nr − 1 then InvMixColumns(state);

AddRoundKey(state, K[nr × nb, nb(nr + 1) − 1]);
T := state;
return T ;

end

2.2.0.0.5 Function InvSubBytes The function operates
in the same manner as function SubBytes does but the S-box
used is different and is usually called InvS-Box as shown in
Fig. 5.

S0,0 S0,1 S0,2 S0,3
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Figure 5: Illustration of InvSubBytes state transformation

2.2.0.0.6 Function InvShiftRows The function yields a
new state by cyclically shifting the state rows. The shifting
is done in the opposite directions with respect to function
InvShiftRows. As before, the bytes of row i are shifted i times,
where 0 ≤ i ≤ 4, as shown in Fig. 6.
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Figure 6: Illustration of InvShiftRows state transformation

2.2.0.0.7 Function InvMixColumns The function oper-
ates in the same way function MixColumns does but with a
different matrix. The formed polynomial is multiplied by a
fixed polynomialP (x) modulo x4 + 1, wherein P (x) is defined
as in (2):

P (x) = {0B}x3 + {0D}x2 + {09}x + {0E} (2)

The transformation performed by InvMixColumns is illus-
trated in Fig. 7.

3 Pipelined AES Hardware
The overall architecture of the AES hardware mirrors the
structure of Algorithm 2 and Algorithm 4. It is a syn-
chronous implementation of both the processes of cipher
and decipher. It uses four 128-registers. Every clock tran-
sition, these registers are loaded, except Register3, which
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Figure 7: Illustration of InvMixColumns state transformation

is loaded when an input state is completely ciphered. In
the encryption/decryption process, Register0 is loaded with
the input data or the partially encrypted/decrypted plain-
text/ciphertext; Register1 with the result of the AddRound-
Key component; Register2 with the state after applying func-
tions SubBytes (using the appropriate S-Box) and subse-
quently ShiftRows. The block architecture of the AES ci-
pher/decipher hardware is shown in Fig. 8.

Figure 8: Overall architecture for the AES hardware

3.1 Component Synchronisation

For component synchronisation purposes, the architecture in-
cludes a controller. Among other actions, the controller de-
termines when to reset the cipher hardware, accept input
data, to register output results. As the excution of function
MixColumn/InvMixColumn is conditional (see Algorithm 2),
the controller decides when the result obtained by the asso-
ciated component can be used or must be ignored. Recall
the hardware allows both encryption and decryption. When
data is being deciphered, the key schedule generated by com-
ponent KeyExpansion must be ordered differently (3). The
AES hardware of Fig. 8 takes advantage of component Mix
to schedule the subkeys in the required order. The controller
also synchronises this operation. The controller is structured
as in Fig. 9.

The included combinational logic permits the conversion
of the 5-bit count to a single bit that triggers state transi-
tion. The sate machine includes six states. As long as control
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Figure 9: Controller architecture

signal keyExpand is set, the current state is kept unchanged
in S0. As soon as this signal is reset by component keyEx-
pansion, which means that the step of key schedule genera-
tion is complete, the machine transits to state S1, wherein
it stays for 3 clock cycles, which is the required time to
complete the processing of one 128-bit state. Also, during
this period of time, the data input signal is active, which
allows the hardware to accept the three states that will be ci-
phered/deciphered in pipelined manner. Synchronously with
the fourth clock transition, the machine transits to state S2

allowing to deactivate the data input signal and wait for the
three accepted states are almost processed as only the last
AddRoundKey is yet to be performed to complete the encryp-
tion/decryption process. At the 30th. clock transition, the
machine state changes to S3 to activate output result signal,
which is maintained for the two subsequent clock periods. A
the 33rd. clock transition, the encryption/decryption of the
three accepted states is completed and therefore, the control
is returned to state S1, where in data input signal is reacti-
vated to allow more date to be entered and processed. The
state machine transition diagram is shown in Fig. 10.

Figure 10: State machine transition diagram

3.2 Component Mix

Function MixColumns is implemented by a massively parallel
component that computes all the bytes of the new state in a
single clock. It uses four components of the same architecture.
This basic component produces one column os the new state.
Its architecture is described in Fig. 11, wherein component
mult yields the a special product of a given byte from the state

Figure 11: Basic element in component Mix

Figure 12: Architecture of the basic component mult

times {01}, {02}, {03}, {09}, {0B}, {0D} or {0E} (see (3), (1)
for details on the operation). The architecture of component
mult is presented in Fig. 12. Component xtime computes the
xtime operation as defined in (3) and its architecture is given
in Fig. 13.

3.3 Component Substitute/Shift

The component implementing function SubBytes uses 16 S-
boxes (8 for ciphering and 8 for deciphering) stored in a Read-
Only Memory (rom). The obtained state is row-shifted before
its storage in Register2. The component architecture is given
in Fig. 14. The component that implements function Ad-
dRoundKey is simply a net of xor gates that adds in GF (28)

Figure 13: Architecture of the basic component xtime
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the key schedule to the current state.

Figure 14: The structure of component Substitute/Shift

3.4 Component KeyExpansion

As explained before, the generation of the entire key sched-
ule that is required by the encryption/decryption process is
performed prior to the start of the proper process. When
hardware is used for decryption, the key schedule generated
by component KeyExpansion must be ordered differently (3).
Without increase of area requirements, the proposed versatile
AES hardware of Fig. 8 takes advantage of component Mix
to schedule the subkeys in the required order. The subkeys
are then stored in a look-up table. Also, the controller al-
lows for the appropriate set of subkeys to be provide for each
round of the encryption/decryption process. The architecture
of component keyExpansion is shown in Fig. 15.

Figure 15: Architecture of component KeyExpansion

4 Experimental Results

The pipelined execution of the AES cipher using the archi-
tecture of Fig. 8 is illustrated in Fig. 16. We implemented
the hardware described throughout this paper using recon-
figurable hardware. The FPGA family used is VIRTEX-II.
Component KeyExpansion introduces a delay of 78.3ns. The
clock cycle is 10.44ns. Every 33 clock cycles, the hardware can
yield an encrypted datastream of 3 × 128 bits. The through-
put, say tp can then be calculated as in (3). The throughput
is a little more than 1Gbps.

Tp =
3 × 128

33 × clockcylcle
=

128

11 × 10.44
= 1062.9Mbs (3)

Table 1: Performance comparison

Implementation Tp Area CLB/Mbs

Our’s cipher & decipher 1063 9937 9.35
(6): cipher only 1911 8767 4.59
(10): cipher only 1450 542 0.37

Figure 16: Pipelined execution of the AES algorithm using
the hardware of Fig. 8

As far as the authors know, the versatile hardware imple-
mentation of AES algorithm that perform both encryption
and decryption is novel. We compared our implementation to
the ones from (6) and (10). Note that these implementations
are for the cipher algorithm only while our implementation ci-
phers and deciphers. One may think that the implementation
proposed and those from (6) and (10) are incomparable. They
are cited here for reference only. The throughput, expressed
in Mbps, as well as the hardware area required, expressed in
number of CLBs, are given in Table 1.

Recall that the resistance of AES-based encryption against
cryptanalysis attacks depends entirely on the number of
rounds used. The pipelined implementation we propose
throughout this paper can be easily adapted to a higher round
number. The chart of Fig. 17 show that this can be done
without much loss in efficiency. To be able to increase the
number of round, component KeyExpansion needs to gener-
ate more key schedules and therefore the delay introduced by
it increases with the number of rounds. The throughput, say
tp, can be expressed in terms of the round number, say rn, is
as in (4).

Tp(rn) =
128

(rn + 1) × clockcycle
(4)

5 Conclusion

In this paper, we propose a novel pipelined hardware imple-
mentation of AES-128 that can be used for both encryption
and decryption. Besides, we show that if the required num-
ber of rounds must increase to defeat attackers, the proposed
implementation stays efficient. The hardware proposed is
massively parallel and executes the four main steps of the
algorithm in a pipelined manner, which allows a reasonable
throughput fo a little more of 1Gbs. Compared to existing
implementations of the cipher algorithm, this kind of through-
put may be considered somehow low. However, considering
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rn
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Figure 17: The impact of increase in the round number

the 2-in-1 aspect of the hardware as it allows encryption and
decryption, it comes handy for devices with restricted hard-
ware area with a not too bad throughput of 1Gbs.

In future research work, we intend to investigate further
the proposed implementation, with the hope the improve the
throughput without much increase in required hardware are.
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