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Abstract: High-performance computing clusters have be-

come critical computing resources in many sensitive and/or
economically important areas. Anomalies in such systems can
be caused by activities such as user misbehavior, intrusions,
corrupted data, deadlocks, and failure of cluster components.
Effective detection of these anomalies has become a high pri-
ority because of the need to guarantee security, privacy and
reliability. This paper describes the integration of intelligent
anomaly agents and traditional monitoring systems for high-
performance distributed systems. The intelligent agents pre-
sented in this study employ machine learning techniques to
develop profiles of normal behavior as seen in sequences of
operating system calls (kernel-level monitoring) and function
calls (user-level monitoring) generated by an application. The
Ganglia monitoring system was used as a test bed for inte-
gration case studies. Mechanisms provided by Ganglia make
it relatively easy to integrate anomaly detection systems and
to visualize the output of the agents. The results provided
demonstrate that the integrated intelligent agents can detect
the execution of unauthorized applications and network faults
that are not obvious in the standard output of traditional
monitoring systems. Hidden Markov models working in user
space and neural network models working in kernel space are
shown to be effective. Simultaneous monitoring in both user
space and kernel space is also demonstrated.

Keywords: anomaly detection, performance monitoring,
hidden Markov models, artificial neural networks.

1 Introduction

In April 2004, several academic supercomputing laboratories
were targeted by “unsophisticated” attackers who logged into
the system using compromised accounts. After the incident
was noticed (in some cases several weeks after the intru-
sions had taken place) at least one supercomputing center
reported that the attackers were executing distributed ver-
sions of well-known password cracking tools such as “John
the Ripper,” using standard MPI (Message Passing Inter-
face) applications [1]. Even if the latest operating system

patches are installed, the best commercial and open source
firewalls are in place, and traditional intrusion detection sys-
tems are deployed, this type of unauthorized action can be
concealed. Additionally, previous research by the authors has
demonstrated several specific attack techniques against high-
performance clusters. These attacks, while not yet reported
in general use, have been implemented in research environ-
ments and shown to perturb normal operations in a cluster
of Linux workstations [2–4]. Application-specific anomaly de-
tection systems hold the promise of detecting such attacks.

These are a few examples of the lack of protection in
sensitive distributed systems where a wide variety of inter-
networked computational resources are combined. Often, in
order to contain costs, commercial off-the shelf (COTS) com-
ponents are used and these typically provide sparse moni-
toring mechanisms. Furthermore, despite careful monitoring
of the software development process, flaws in the design and
implementation of COTS systems create opportunities for un-
expected system failures, user misbehavior and computer at-
tacks.

In the not-too-distant future, it is likely that high-
performance clusters will be employed in safety critical envi-
ronments such as the dashboards of automobiles where they
will facilitate drive-by-wire applications, in the nose-cones of
anti-missile missiles where they will control targeting maneu-
vers, and in the cockpits of high-performance aircraft where
they will handle various avionics applications [3]. Typically,
such systems will mostly consist of a static suite of software
applications exhibiting regular behavior that can be charac-
terized and monitored. Furthermore, corrective, perfective,
and adaptive maintenance will be performed on the software
over time, increasing the risk of introducing malicious ex-
ploits. Detecting anomalies and reporting them quickly will
be an essential requirement in these systems.

The Center for Computer Security Research at Mississippi
State University (http://www.cse.msstate.edu/ ~security) has
been working on the problem of anomaly detection in high-
performance computer environments by using machine learn-
ing techniques to build intelligent anomaly detection agents
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[2–6]. Lightweight detection systems with high accuracy have
been successfully implemented, but several issues related to
scalability and usability remain. In previous work with agent-
based detectors in high-performance clusters of workstations,
the authors used a centralized collection scheme in order to
gather the results of the anomaly detection systems running
on each node of the distributed system. The central host dis-
plays the status of the cluster system. However, when the
number of nodes in the cluster is large, communication with
this central host becomes a bottleneck. Therefore, alterna-
tive scalable solutions are required. Furthermore, determin-
ing how to meaningfully convey the voluminous output from
the various distributed anomaly detectors to the system ad-
ministrator is an additional challenge.

Several distributed cluster monitoring systems are avail-
able in the high-performance computing community that dis-
play cluster status and performance information to system
administrators. Therefore, a natural extension of previous
research is the integration of intelligent anomaly detection
agents (IADAs) into traditional cluster monitoring systems.
This paper describes the integration of two IADAs into the
Ganglia distributed monitoring system (developed by Massie,
Chun and Culler at the University of California, Berkeley [7]).
Ganglia is open-source, can be compiled for a wide variety
of Unix/Linux flavors, provides detailed documentation, and
has been used successfully by more than 500 cluster and grid
installations around the world. Furthermore, the Ganglia
PHP-based web front end provides an effective mechanism
for visualizing the overall status of the distributed system.
This display mechanism can be leveraged for displaying the
behavior of parallel applications as reported by the IADAs.

2 Related Work

Verifying a program’s behavior by analyzing the processes,
methods, tasks, and function calls that a program executes
has been an active field of research. Forrest and Longstaff
[8] authored one of the first research papers on the analy-
sis of system calls. An extended overview of their work is
described in [9]. Other anomaly detection algorithms in-
clude the EMERALD system [10], Somayaji’s pH [11] and
Eschenauer’s ImSafe [12]. Warrender, Forrest and Pearlmut-
ter [13] performed a comparison of different algorithms that
performed anomaly detection of privileged UNIX programs
using system calls. In their previous work, the authors have
successfully applied different artificial neural networks and
boosting algorithms for detecting anomalies in well-known se-
quential UNIX applications and in parallel applications exe-
cuting on high-performance clusters of workstations [14,15].

Markov processes are widely used to model systems in
terms of state transitions. Some detection algorithms that ex-
ploit the Markov property implement hidden Markov models
(HMM), Markov chains, and sparse Markov trees. Lane [16]
used HMMs to profile user identities for the anomaly detec-
tion task. An open problem with this profiling technique is
the selection of appropriate and effective model parameters.
Other experiments performed by Warrender, Forrest, and
Pearlmutter [13] compared an HMM with algorithms such as
s-tide and RIPPER for anomaly detection using sequences of
system calls. They concluded that the hidden Markov model
exhibited the best performance but was also the most com-
putationally expensive of all the models considered.

A number of applications have been implemented to gather
data from the execution of parallel programs in a cluster of
workstations, but none were developed with anomaly detec-
tion as an objective. Some examples include the automatic
counter profiler [17] and the Umpire manager [18].

Several monitoring tools have been published and used
successfully in real-world distributed environments. As an
example, PerfMC, the monitoring system created by Mar-
zolla [19], implements a performance monitoring systems for
a large computing cluster. Some of the metrics collected by
PerfMC are available space on /tmp, /var and /usr, cached
memory, available free memory and total swap, among oth-
ers. Lyu and Mendiratta [20] use resource monitoring for
reliability analysis of a cluster architecture in their RCC (Re-
liable Clustered Computing) system and present a Markov
reliability model for software fault tolerance. Augerat, Mar-
tin and Stein [21] implement a scalable monitoring tool that
uses bwatch, a Tcl/Tk script designed to watch the load and
memory usage of Beowulf clusters.

Parmon, another example of a cluster-monitoring tool for
Beowulf clusters, was designed and implemented by Buyya
[22]. It monitors system resources utilization, process activ-
ities, system log activities, and selected kernel activities for
each node in a distributed system. This performance moni-
toring system is based on a client-server model in which nodes
to be monitored act as servers and monitoring nodes act as
clients. Performance information is collected and stored in a
Parmon-server and a GUI based client is responsible for data
visualization.

Finally, Supermon [23] a research project conducted at Los
Alamos National Laboratory, consists of three distinct com-
ponents: a loadable kernel module providing performance in-
formation about each node, a single-host data server (mon)
and a data concentrator (Supermon) that summarizes perfor-
mance information from many nodes into a single data sam-
ple. Supermon uses a data exchange protocol consisting of
data in s-expressions format introduced originally as part of
the LISP programming language. The simple and recursive
form of s-expressions allows Supermon to encode arbitrarily
complex data. Unlike Parmon, Supermon provides an archi-
tecture to collect and represent performance information from
a distributed system, but it does not provide a graphical user
interface for visualization of the overall status of the system.

3 Ganglia: A Distributed Monitoring

System

The authors selected Ganglia as the test platform for inte-
grating IADAs into a distributed monitoring system because
Ganglia is open-source, is supported on many commonly used
platforms, provides for easy integration of new components
for monitoring and visualization, and is widely used in the
cluster computing community [7].

Ganglia was developed by Massie, Chun, and Culler at
the University of California, Berkeley [7] as a scalable dis-
tributed monitoring system for high-performance computing
systems. This system is able to collect between 28 and 37
different built-in and user-defined metrics “which capture ar-
bitrary application-specific state” [7]. Ganglia is based on a
hierarchical design targeted at federations of clusters, where
a multicast-based listen/announce protocol is used to mon-
itor state within clusters and a hierarchy tree of point-to-
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Figure 1: The Ganglia architecture (Taken from Massie, Chun
and Culler [7])

point connections among representative cluster nodes is used
to federate clusters and aggregate their state. Membership is
maintained by using the reception of a heartbeat from a node
signaling the node’s availability. Each node monitors its local
resources and sends multicast packets containing monitoring
data to a well-known multicast address whenever significant
updates occur. Thus, all nodes always have an approximate
view of the entire cluster’s state, and this state is easily re-
constructed after crash recovery.

Ganglia uses the RRDtool (Round Robin Database) to
store and visualize historical monitoring information, XML
(Extensible Markup Language) for data representation, and
XDR (External Data Representation standard) for compact
data transport.

Figure 1 (taken from [7]) shows the basic software archi-
tecture of Ganglia. Ganglia uses two daemons, gmond and
gmetad. The former monitors single nodes, whereas the lat-
ter integrates data from multiple clusters. Because the ex-
periments reported in this paper were conducted on a single
Linux cluster, the set of Ganglia metrics reported in this pa-
per were collected from gmond.

4 Anomaly Detection

An anomaly detection system learns a baseline-model from a
set of observations of a computer system operating under nor-
mal conditions and recognizes unusual and potentially dan-
gerous events in the system. Any deviation from the set of
normal patterns is considered an anomalous event. This work
assumes an environment where the application base is well
defined, but the user-base may not be. Therefore, patterns
of usage are expected to emerge that can be used to detect
irregularities in the execution of parallel programs. These
irregularities include user misbehavior, intrusions, corrupted
data, deadlocks, and failure of cluster components.

Current monitoring systems such as Ganglia are able to
detect some of these irregularities by testing individual ser-
vices with simple message exchanges among the cluster com-
ponents. Other configuration management systems provide
methods for configuration and for prevention of errors in a
cluster. However, no single system can find all possible er-
rors, misconfigurations, and runtime irregularities. Further-
more, traditional monitoring systems typically cannot provide

Figure 2: A sequence of events produced over time

useful information about the status of specific distributed ap-
plications because they show the overall status of the whole
system.

An application-specific anomaly detection system can pro-
vide a qualitative measure of the execution of a job that an-
swers the question “is the parallel program being executed cor-
rectly?” Detection of anomalous program execution can also
play an important role in providing the inner layers of protec-
tion in defense-in-depth security architectures. For example,
many cluster computer installations typically enforce tight au-
thorization and authentication policies at the head node while
leaving the compute nodes relatively less secure. This is be-
cause only the head node is accesible from outside the cluster;
the compute nodes are not directly connected to an exter-
nal network. However, this security configuration renders the
cluster vulnerable to misuse by insiders and by outsiders who
have compromised the passwords of legitimate users. Addi-
tionally, application-specific anomaly detection can also be
used to enhance the security of systems in which classes of
users, as opposed to individual users, are permitted to submit
jobs. In such systems, profiling behaviour of users may be of
limited use for anomaly detection.

Anomaly detection generally consists of the following three
phases:

1. Samples of sequences of normal events in the system are
collected, generating a set of observations. The discrete
events generated by the application being monitored in-
clude operating system calls (low level information, known
as kernel-level monitoring) and/or application library func-
tion calls (high-level information, known as user-level mon-
itoring).

2. Machine learning algorithms are applied to the dataset col-
lected in the previous step. In the experiments conducted
for this paper, the profiles were acquired using artificial
neural networks and Hidden Markov models. In each node
of the cluster, the profile of the application is used as the
input to an IADA.

3. New sequences of events in the system are collected, and
the intelligent anomaly detection agents determine in real-
time if the sequence of events is sufficiently similar to the
profile. If the application is not behaving as expected, a
counter of anomalies is increased and reported to the Gan-
glia database.

5 Intelligent Anomaly Detection Agents

A problem of interest in many domains is the characterization
of signals produced by a real-world process in terms of simple
models. Such models can provide an abstract description of
the process and can be embedded in practical systems to aid
in complex decision problems [24].

This research deals specifically with discrete-valued signals,
where the stream of events being monitored is categorical,
(i.e. it can be divided into finite groups). Examples of cate-
gorical variables include DNA bases, operating system (OS)
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Figure 3: Average number of false positives detected in 60
test instances of FFT

commands typed by a user on a console, computer security
audit events, and network requests among many others.

Previous research in the area of anomaly detection in com-
plex software applications [3, 4] has demonstrated that ar-
tificial neural networks (ANNs) and hidden Markov mod-
els (HMMs) outperform simpler deterministic algorithms for
anomaly detection when the amount of training data is lim-
ited. When learning the behavior of a parallel implementa-
tion of the Fast Fourier Transform (FFT ), for example, ex-
periments were conducted to determine the number of train-
ing samples (sequences of library function calls generated by
the application) required to completely describe the program.
Figure 3 contrasts the number of training samples required by
the ANN and the HMM with the number of samples required
by a deterministic algorithm to model this scientific applica-
tion. Details of this experiment can be found in [3,4]. Clearly,
the deterministic algorithm achieves a high accuracy (i.e. low
number of false positives) with a large number of samples,
but the ANN and the HMM perform better with less train-
ing data. In a system where it is difficult or expensive to
gather large sets of training data and where the total number
of samples from the event source that needs to be provided
is difficult to determine, traditional deterministic algorithms
are not appropriate.

The intelligent agents integrated into the Ganglia monitor-
ing system are implemented as artificial neural networks and
hidden Markov models. A brief discussion of the use of these
machine learning techniques for solving the anomaly detec-
tion problem is presented in the next section.

5.1 Artificial Neural Network

The use of artificial neural networks (ANNs) for construct-
ing classifiers has become popular in recent years. Compared
with other approaches for classifier construction (e.g. tem-
plate matching, statistical analysis, and rule-based decision
trees) neural network models have the advantages of having
relatively low dependence on domain specific knowledge and
the availability of efficient learning algorithms.

5.1.0.0.1 Description An artificial neural network is
composed of simple processing units and weighted connec-
tions between the units that are used to determine how much
one unit will affect another. In this work, a feed-forward neu-

Figure 4: A two-layer feed-forward network

ral network is used to build the model of normal program
behavior. The feed-forward network consists of three types of
units: input units, hidden units, and output units. By assign-
ing a value to each input unit and allowing the activations to
propagate through the network, a neural network performs a
functional mapping from one set of values (assigned to the
input units) to another set of values (appearing in the out-
put units). The mapping function is stored in the weights of
the network. An example of a two-layer feed-forward neural
network with six input units, four hidden units and a single
output unit can be seen in Figure 4.

5.1.0.0.2 The Backpropagation Algorithm The
training of artificial neural networks for anomaly detection
involves the use of both normal and anomalous data. The
experiments described in this paper use normal data collected
from audit data and anomalous data generated by randomly
injecting artificial anomalies into normal data. Anomalies
were spread throughout the training space to the extent pos-
sible. The network weights were initialized to random values
prior to training. A traditional backpropagation algorithm
was used to find an optimal set of weights to describe the set
of subsequences of calls issued by an application.

The backpropagation algorithm can be seen as a gradient
descent method in weight space where the goal is to min-
imize the error propagated throughout the network by the
input nodes and hidden nodes (See Figure 5). The error of
the network is defined as the difference between the expected
output (i.e. normal or anomalous subsequence of calls) and
the output node. The key of the backpropagation algorithm
is to “assess the blame for an error and divide it among the
contributing weights” [25, p.579].

In order to build the lightweight detection system required
for high performance cluster monitoring, computational over-
head must be reduced as much as possible without compro-
mising the accuracy of the detector (a fundamental design
objective). Moreover, in Linux kernel programming, the stan-
dard C math library cannot be accessed. Therefore, a simple
activation function that retains accuracy and reduces compu-
tation is needed. In order to reduce computational require-
ments, the standard sigmoid function (1) can be modified as
suggested by Tveter [26]. This simple sigmoid function is
given in (2) and its derivative is presented in (3).

ystd =
1

1 + e−x
(1)

y =
x
2

1 + |x|
+ 0.5 (2)
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Figure 5: The backpropagation algorithm as a gradient de-
scent search in weight space. The training error is minimized
with respect to the set of weights W1 and W2

y
′ =

1

2(1 + |x|)2
(3)

5.1.0.0.3 The Online Detection Algorithm with

ANNs The main goal of the ANN-based anomaly detec-
tor described in this paper is to determine whether an input
sub-sequence of calls is anomalous or normal. Therefore, a
sliding window is used to divide a trace into a set of small
sub-sequences. As an example, assume the following trace:

execve, brk, open, fstat, mmap, close, open, mmap, munmap

Processing this trace with a window size of 4 yields the follow
subsequences:

position 3 position 2 position 1 current
execve

execve brk
execve brk open

execve brk open fstat
brk open fstat mmap
open fstat mmap close
fstat mmap close open
mmap close open mmap
close open mmap munmap

Each system call is represented by a binary number and the
binary representations of the calls in a window are concate-
nated to yield an input vector. A single output node is used
to indicate the status of the input sub-sequence. A value of 0
indicates a normal subsequence and a value of 1 indicates an
anomalous subsequence. Because researchers have reported
that anomalous sequences in operating system calls tend to
occur in clusters [27,28], a scheme called maxburstcounter [29]
was implemented. In this scheme, a counter of anomalies is
incremented every time an anomalous call is found. Con-
versely, the counter is decremented at a slow rate when the
application is behaving as expected. The two fundamental
assumptions of this method are as follows:

1. An anomalous sequence seen long ago should have only a
small effect on classification of the entire trace.

2. Although anomalous sequences tend to occur locally, they
are not necessarily consecutive.

The main advantage of using maxburstcounter is that it allows
for anomalous behavior that occasionally occurs during nor-
mal system operation, while simultaneously, it is sufficiently

sensitive to detect the temporally co-located anomalies that
occur when a program is being misused. This mechanism is
similar to the leaky bucket method of Ghosh et al. [27]and
the LFC method by Somayaji [11]. However, it is much less
computationally expensive than these methods and enables
the monitoring of a large number of operating system calls.

5.2 Discrete Hidden Markov Model

Discrete hidden Markov models are useful for anomaly de-
tection because “...when the observations are categorical in
nature, and when the observations are quantitative but fairly
small, it is necessary to use models which respect the discrete
nature of the data” [30, p.3]. This section introduces a brief
description of stationary discrete first order hidden Markov
models. For a more complete description of HMMs refer to
the work of Rabiner [24] and MacDonald and Zucchini [30]
among others.

5.2.0.0.4 Description Consider a system with N states
Si, Sj , Sk..., where each state represents some physical (ob-
servable) event. Employing Rabiner’s notation, let the ac-
tual state at time t be qt. By assuming a discrete first order
Markov chain, the probability that qt = Si, for some state Si,
is given by

P [qt = Si|qt−1 = Sj , qt−2 = Sk, ...] = P [qt = Si|qt−1 = Sj ]
(4)

Furthermore, assuming a stationary process, it is not neces-
sary to keep track of the time t to compute transition proba-
bilities, and therefore

P [qt = Si|qt−1 = Sj ] = aij , 1 ≤ i, j ≤ N (5)

This system is considered to be an “observable” first-order
Markov model because each state is associated with one (and
only one) observable event and the history of previous tran-
sitions is summarized in the last transition. Such a Markov
chain can be seen as a finite state automata (FSA) with proba-
bilistic transitions. An nth-order Markov chain can always be
converted into an equivalent first-order Markov chain given
a large state space [31]. In contrast, in a hidden Markov
model, a state cannot be observed directly, since each state
outputs different symbols with some probability distribution
B. Therefore, a hidden Markov model is a doubly stochastic
process, where the states represent an unobservable condition
of the system [32]. Because this work deals with “discrete”
HMMs, the output probability distribution is discrete. The
elements of a discrete HMM λ = (A, B, π), are described as
follows:

1. N, the number of states,

2. M, the number of distinct observation symbols per state
(the alphabet size),

3. A, the state transition probability distribution,

4. B, the observation symbol probability distribution, and

5. π, the initial state distribution.

5.2.0.0.5 The Baum-Welch Algorithm The Baum-
Welch algorithm is an expectation maximization (EM) tech-
nique that is generally used to train the transition and symbol
probabilities of an HMM utilizing the concept of forward and
backward probabilities [24]. The forward procedure finds the
probability of the partial observation sequence from the first



64 Florez-Larrahondo, Liu, Dandass, Bridges, & Vaughn

event to some event O(t) at time t, whereas the backward
procedure finds the probability of the partial observation from
O(t+1) to the last event in the sequence.

The forward variable corresponds to the probability of the
partial observation sequence O up to time t and state Si at
time t, given the model λ. It is defined as

αt(i) = P (O1O2...Ot, qt = Si|λ) (6)

and can be computed by induction, knowing that

α1(i) = πibi(O1), 1 ≤ i ≤ N (7)

and

αt+1 =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1). (8)

This variable can be used as an efficient estimate (in O(N2T )
time) of the likelihood that the observation O is generated by
the model λ:

P (O|λ) =

N
∑

i=1

αT (i). (9)

Note that P (O|λ) can also be computed in O(TNT ) time
by summing the probability of occurrence of the observations
O1O2...Oτ for each hidden state sequence q1q2...qτ from the
set Q of all possible hidden state sequences:

P (O|λ) =
∑

Q

P (O|Q, λ)P (Q|λ) (10)

which yields

P (O|λ) =
∑

q1,q2,...qτ

πq1bq1(O1)aq1q2bq2(O2)...aqτ−1qτ
bqτ

(Oτ ).

(11)
On the other hand, the backward variable is the probability

of the partial observation from t+1 to the last event, given
the state Si at time t and the model λ. It is defined as

βt(i) = P (Ot+1Ot+2...OT |qt = Si, λ) (12)

and can also be computed by induction, using the fact that

βT (i) = 1, 1 ≤ i ≤ N (13)

and

βt(i) =
N

∑

j=1

aijbj(Ot+1)βt+1(j). (14)

The Baum-Welch algorithm updates the model λ (M-step)
using the probability of being in state Si at time t and state
Sj at time t+1, given the model and the observations. This
variable, ξt(i, j) can be seen as an efficient auxiliary variable
for the E-step of the algorithm and is given by:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

∑N

i=1

∑N

j=1
αt(i)aijbj(Ot+1)βt+1(j)

. (15)

Given ξt(i, j) , the probability of being in state Si at time t
given the model and observation sequence can be estimated
as:

γt(i) =
∑

j=1

ξ(i, j). (16)

The initial state distribution can be computed as the expected
frequency of being in state Si at time t = 1 as:

πi = γ1(i). (17)

The state transition probability distribution is given by the
expected number of transitions from the state Si to state Sj

divided by the expected number of transitions from state Si:

aij =

∑

t=1
ξt(i, j)

∑

t=1
γt(i)

. (18)

The observation symbol probability distribution can be com-
puted as the expected number of times state j occurred and
the symbol vk was observed, divided by the expected number
of occurrences of the state j:

bi(k) =

∑

t=1

s.t. Ot=vk

γt(j)
∑

t=1
γt(j)

. (19)

A new estimator ξt(i, j) can be computed using πi, aij and
bi(k). This process is repeated several times until some limit-
ing point is reached. It has been proven by Baum et al. that
this process leads to an increase in the likelihood P (O|λ) [24].
It is important to observe, however, that the maximum-
likelihood procedure only results in a local maxima. The
time and space complexity of the Baum-Welch algorithm is
O(N2T ).

5.2.0.0.6 The Threshold-Based Online Detection

with HMMs Given a sequence of events O and a model
λ = (A, B, π), the following algorithm for detection of single
anomalies was implemented:

1. Initialize the counter of anomalies, C = 0.

2. For each event Ot (0 ≤ t < TO)

(a) For each state Sj that can be reached from the previous
state, i.e. if the probability aij of moving to the current
state from some state Si is greater than the threshold θA

• If the probability of producing the symbol Ot in the
current state, bj(Ot), is less than a user threshold θB ,
then the event is considered anomalous, and C = C+1.

• Otherwise, repeat step 2.

(b) If Ot could not be produced by any state then C = C+1.

3. Output C.

6 Integration of Intelligent Anomaly De-

tection Agents into Ganglia

An event-driven system architecture has been chosen where
specific sensors collect information every time a discrete event
is generated. Sequences of those events are used for train-
ing the intelligent agents. In this research, the set of dis-
crete events considered corresponds to the application li-
brary function calls and/or operating system calls issued by
a UNIX/Linux parallel application.

6.1 Operating System Calls (Kernel-level
Monitoring)

System call interfaces are the application programmer inter-
faces (APIs) through which the operating system kernel pro-
vides low-level operations (such as memory allocation, file
access, and network transfers) to the user space applications.
For Linux, this interface is wrapped by the GNU standard C
library (libc) so that C programmers can have a common stan-
dard interface. Although user space applications usually uti-
lize low-level operations through library function calls, some
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applications and attacks can bypass the libc interface and in-
voke system calls directly [2].

Several mechanisms can be used to obtain system call in-
formation. The current implementation uses a loadable ker-
nel module (LKM) because of the flexibility, efficiency and
compatibility this approach provides. LKMs are used by the
Linux kernel and many other UNIX-like systems as well as
Microsoft Windows to expand their functionality. An LKM
can access all the variables in the kernel. This method is more
flexible than the methods based on kernel patching because
it does not require changes to the kernel source code. A priv-
ileged user can load or unload the LKM during runtime. The
disadvantage is that an attacker can install malicious code
into the kernel before the tool is loaded. This weakness can
be resolved by adding the tool into a startup script.

Extensions that use kernel level interposition have a broad
range of capabilities. For example, extensions “...can pro-
vide security guarantees (for example, patching security flaws
or providing access control lists), modify data (transparently
compressing or encrypting files), re-route events (sending
events across the network for distributed systems extensions),
or inspect events and data (tracing, logging)” [33, p.1]. The
primary advantage of this method is that it cannot be by-
passed. All programs must use the system call interface to
access the low-level functionality implemented by the kernel.
Another advantage is it does not require modification of the
application code. Only the kernel needs to be changed. The
disadvantage is that a security hole in the monitor program is
much more dangerous than with other methods. It can cause
the system to crash or to grant root privilege.

It is interesting to note here that fundamental design ob-
jectives in early attempts to develop secure operating systems
required the security mechanisms to be tightly coupled at the
kernel level, and to be non-bypassable, tamper proof, and
verifiably correct [34]. Those same characteristics should be
included in any secure low-level monitoring system.

6.2 Library Function Calls (User-level
Monitoring)

A software application issues calls to the operating system
to perform a wide variety of functions such as I/O access,
memory requests, and network management. However, many
application programmer interfaces (APIs) do not make use
of system calls, mainly for performance reasons or because
no privileged resources need to be manipulated. A typical
example is the set of functions such as cos, sin or tan from
the standard mathematical library of C.

Linux provides a large collection of mechanisms to trap
system and function calls from any process in user-mode. For
instance, in order to monitor kernel calls, the OS provides the
tools strace, trace and truss [35], but these tools only record
kernel level functions, and the trap mechanism produces too
much overhead [36]. However, another method that has been
widely used for implementing performance and monitoring
tools is library interposition.

The link editor (ld) in a Linux operating system builds
dynamically linked executables by default. Building “incom-
plete” executables, the link editor allows the incorporation of
different objects in real time. Communication between the
main program and the objects is done by shared memory op-
erations. Such (shared) objects are called dynamic libraries:

“A dynamic library consists of a set of variables and functions
which are compiled and linked together with the assumption
that they will be shared by multiple processes simultaneously
and not redundantly copied into each application” [36, p.1].

In the Linux system, the link editor uses the
LD PRELOAD environment variable to search for the user’s
dynamic libraries. Using this feature, the operating system
gives the user the option of interposing a new library. In-
terposition is “the process of placing a new or different li-
brary function between the application and its reference to a
library function” [36]. Thus, the library interposition tech-
nique allows interception of the function calls without the
modification or recompilation of the dynamically linked tar-
get program. By default, C compilers in Linux use dynamic
linking. Furthermore, “most parts of the Linux libc package
are under the Library GNU Public License, though some are
under a special exception copyright like crt0.o. For commer-
cial binary distributions this means a restriction that forbids
statically linked executables” [37].

The user functions (i.e., the functions inside the interposi-
tion library with the same prototype as the “real” ones) are
able to check, record and even modify the arguments and the
response of the original function call. Other advantages in-
clude the capability to profile a subset of the library rather
than the entire library, the ability to generate levels of pro-
filing, and provision of control over nesting levels inside the
library [36].

The main disadvantage of the interposition library tech-
nique is that it can be bypassed by calling functions at a lower
level (for instance, executing system call interruptions) [38].
Also, as explained above, the process of searching the symbol
table in the new interposition library and the allocation of
memory increases the execution time of the target process.

The libraries to be profiled are defined by the system ad-
ministrator using a configuration file and template like the
one depicted in Figure 6. The source code needed to inter-
cept function calls from any dynamic library is generated au-
tomatically.

6.3 System Architecture

Figure 7 contrasts the mechanisms used to collect and analyze
operating system calls and library function calls issued by a
dynamically linked program. The output of the detectors is
sent to the Ganglia monitoring system via the interface gmet-
ric. Four important characteristics of the system should be
noted. First, operating system calls describe low-level access
of the application and cannot be bypassed by a malicious user.
In contrast, application library function calls represent high-
level information about the application and can be bypassed.
Second, monitoring of function calls is more efficient than
monitoring of system calls, because the number of operating
system calls greatly outnumbers the number of function calls.
Third, root access is needed to monitor system calls because
the system call wrapper must be executed as a part of the
kernel. In contrast, function calls can be monitored in user
space, and root access is not required. Finally, although our
current experiments only collect calls from the libraries libc
and libmpipro, other dynamic libraries can be easily included
in the detection scheme.
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Figure 7: Architectures used to monitor system calls (in kernel space) and function calls (in user space)

Figure 6: Template to intercept any C function

7 Experiments

7.1 Dataset
Five MPI (Message Passing Interface) parallel applications
written in C were selected for the test cases. These were
executed on a small cluster with Linux RedHat 7.1 (kernel
2.4.2). The cluster contains one head node able to compile
and launch the parallel programs and eight computing nodes.
The head node is a four-CPU SMP computer and the other
nodes are dual-CPU SMP computers. The machines are fully
connected with Ethernet and Giganet switches and the MPI
environment used in all the experiments was MPI/Pro 1.5.
Only the head node can be accessed from the Internet.

The following applications were selected to test the inte-
gration of the intelligent anomaly detectors with Ganglia: an
implementation of the Fast Fourier Transform (FFT) [39],
an NPB benchmark based on a bucket sort (IS) [40], an
implementation of the LU Factorization method for solving
systems of linear equations (LU), a modified version of LL-
Cbench from the MPBench benchmarks suite (LL) [41], and
the Network Protocol Independent Performance Evaluator
(NETIPPE) [42]. Training and test data for the anomaly
detectors were generated by executing each program fifteen
times with different input parameters and collecting both the
sequence of function calls and system calls issued by each
executable in each of the four nodes of the cluster. As an ex-
ample, when executing FFT, a total of 60 function-call trace
files and 60 system-call trace files were created.

Previous research by Tan and Maxion [43] among others
have demonstrated that the intrinsic structure of the data,
as measured by conditional entropy, affects the performance
of anomaly detection algorithms. Entropy is associated with
the level of uncertainty or randomness in the sequence of ob-
servations. Because entropy has no upper bound, a relative
entropy is often used where a minimum value of 0 means that
the sequence is completely predictable and a maximum value
of 1 indicates that the sequence is completely random. Of par-
ticular interest is the sequential dependence of the data where
some events precede others. This property can be measured
as the conditional relative entropy (CRE) of the source. Sup-
pose X and Y are two random variables. Knowing the con-
ditional probability distribution P (Y |X), the CRE can be
computed as

CRE =
−

∑

x
P (x)

∑

y
P (y|x) log P (y|x)

MaximumEntropy
(20)
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where MaximumEntropy is the entropy of a theoretical
source in which all symbols have the same probability.
P (Y |X) can be defined as a matrix M , in which the rows
represent the current symbol and the columns represent the
next symbol in the sequence: The value of M(x, y) is the
conditional probability P (Y = y|X = x).

Figure 8 shows the conditional relative entropy for each
program. An important conclusion is that the CRE of the
function call sequences varies from 0.05 to almost 0.35, in-
dicating that some of the programs are highly deterministic
(such as NETPIPE), but others exhibit more complex behav-
ior. In contrast, the CRE of the system call datasets for all
the applications shows far less variation for all values (in the
range 0.25 - 0.3).

Since the system call traces record more detailed events for
each program operation (such as I/O transactions or memory
allocation), the number of calls invoked by a program is quite
large and, as indicated by the CRE values, the sequences of
calls show less organization than is often seen with function
calls. This can make it more difficult to accurately model the
behavior of the program. For example, consider the system
calls generated by high-level function calls such as MPI Send
and MPI Recv. Both calls will make use of similar low-level
system requests for operations such as memory allocation, in-
put/output device control and timestamps. Figure 9 presents
histograms of the frequency of different calls (both system
calls and function calls) observed for 20 samples of FFT and
LU. It is difficult to differentiate the behavior of the two pro-
grams based on system call logs, but in the function call logs,
there are library function calls that are executed exclusively
by one of the programs and not the other.

It is also important to observe the difference in the total
number of library function calls and operating system calls
issued by the applications. A summary of the average num-
ber of calls issued by each application is shown in Figure 10.
Clearly, the number of system calls is substantially greater
than the total number of function calls for most of the ap-
plications. This may affect both the performance and accu-
racy of the intelligent detection systems. For a comparison
of accuracy and overhead between user-level and kernel-level
monitoring refer to the author’s previous work [3, 4].

7.2 Configuring the Intelligent Detection
Agents

In all of the experiments reported in this paper, ANN-based
detectors were used for kernel-level monitoring, and HMM-
based detectors were used for user-level monitoring. Each
type of model has a different set of parameters that must be
determined.

An appropriate number of states for the hidden Markov
model must be estimated from the training dataset in order
to generate high-quality profiles for the parallel applications.
If an HMM has fewer states than needed, or if the topol-
ogy is not adequate, the estimation algorithm will generate a
suboptimal model. For example, Figure 11 shows the aver-
age Baum-Welch likelihood estimation of five HMMs from 60
samples of sequences of library calls for FFT using different
numbers of states. The y-axis shows the log of the probability
of the sequence being generated by each of the models (the
highest point on this axis corresponds to a probability of 1,
i.e. exact match between the 60 logs of function calls and

Figure 10: Average number of calls for each MPI application.

Figure 11: Baum-Welch estimation of 60-function call logs for
FFT

the HMMs). This graph shows that there is a large improve-
ment in the likelihood by using 16 states but little additional
improvement using 32 states. In the experiments reported
in this paper, HMMs with 16 states were used and up to 20
iterations of the Baum-Welch algorithm were allowed in train-
ing. Also, the empirical thresholds θA = θB = 0 have been
selected for the online detection algorithm with the HMM.

The number of hidden nodes and number of epochs in-
fluence the classification performance of neural networks. A
five-fold cross-validation technique was used to select the best
number of hidden nodes and the most appropriate number of
epochs to prevent overfitting. Results of this experiment re-
sulted in the selection of 32 hidden nodes. The number of
epochs was controlled to prevent memorization (and there-
fore lack of generalization) of the patterns. The subsequence
length (window size) of the input examples for the feed-
forward network was set to six.

7.3 Monitoring of Applications

Figure 12 shows the percentage of CPU time spent by user
processes, the average load for the last one minute, and the
amount of free memory of four nodes in the cluster, when
five FFT applications with different parameters were exe-
cuted consecutively. This data was collected by pulling data



68 Florez-Larrahondo, Liu, Dandass, Bridges, & Vaughn

Figure 8: Conditional Relative Entropy of Training Data

Figure 9: Frequency of calls issued by 20 samples of FFT and LU
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from gmond every five seconds by executing the command tel-
net localhost 8649 and parsing the corresponding XML file.
These results demonstrate that although Ganglia monitoring
is useful for determining the overall status of the distributed
system, it can be misleading when it is used to monitor a
particular parallel application. For example, the execution of
a parallel program with different input data and parameters
will result in very skewed values for CPU usage times, and
therefore, it is difficult to summarize this feature using simple
statistical properties such as mean and variance. The prob-
lem of profiling applications with traditional Ganglia metrics
is even more difficult when the application makes use of ran-
domized algorithms. Because most of the sensors used in
Ganglia are time-driven (i.e a snapshot of the sensor is taken
at a given time period), creating a useful model of the sensor
for a complex distributed application can be a difficult task.

An experiment was conducted to demonstrate the added
detection capability provided by our intelligent sensors. Con-
sider a hypothetical distributed environment where a single
application is allowed to execute. Any other program is con-
sidered to be anomalous even if it has been launched by an
authorized user. Figure 13 shows three standard Ganglia met-
rics along with the output of one intelligent anomaly detection
agent (an HMM analyzing library function calls) for a hypo-
thetical environment where the application FFT is the only
one allowed to run. In this particular example, four FFT
programs were launched with different parameters along with
one IS program used to simulate the execution of an unautho-
rized program. A system administrator can easily recognize
when a user is misusing the system by looking at the output
of the intelligent anomaly detector. Note that in this example
one can observe a small reduction in the amount of available
memory that indicates the existence of potential anomalies
in the system. However, this reduction in free memory could
also be attributed to other factors such as incorrect arguments
for the program or a small input dataset.

7.4 Integrating Anomaly Detection with
the Ganglia Front End

Previous experimental results demonstrated that the output
of an anomaly detection system can help a system admin-
istrator determine when an application is not behaving as
expected. The next step is the integration of the detectors
into the Ganglia framework. This is easily accomplished by
using the gmetric interface and by modifying the PHP source
of the Ganglia front end. Three test cases were conducted
to demonstrate the capabilities of the system with intelligent
anomaly detection agents integrated into the Ganglia moni-
toring system. The first test case shows how the execution of
an unauthorized program can be detected using the integrated
system. The second test case shows how the integrated sys-
tem can be used to recognize network or software faults in the
system. The third test case demonstrates simultaneous use of
user-level and kernel-level monitoring for detecting anomalies.

Case Study 1. Detection of Unauthorized Applications: A
test environment was created where it was assumed that only
one application (IS) is authorized to run and the execution of
other programs such as LL, FFT, LU and NETPIPE should
be detected as anomalies. Figure 14 shows the output of
Ganglia from the most recent 10 minutes of activity in the
cluster when both legal and illegal programs have been exe-

cuted. Note that the figure shows the output of the user-level
monitoring as AD FC (i.e., anomaly detection with function
calls in the Ganglia framework) for six computing nodes, as
well as four standard Ganglia metrics such as CPU Load and
bandwidth usage. As was demonstrated previously, it is diffi-
cult to determine whether unauthorized applications are be-
ing executed in the cluster using only the traditional Ganglia
metrics. On the other hand, the six anomaly detectors shown
in Figure 14 (each one monitoring a single node in the cluster)
alert the system administrator of suspicious activity in nodes
1, 2, 6 and 7. Furthermore, the figure indicates that some
unauthorized applications were executed in four nodes, while
some other unauthorized applications employed only nodes 1
and 2.

Similar techniques can be applied on a distributed system
in order to detect exploitation of computer resources by ma-
licious users who are attempting to gain access to sensitive
information or to perform distributed network attacks. The
attack on academic supercomputing laboratories using sim-
ple MPI applications reported in 2004 [1] is an example of
the type of attack that requires more sophisticated sensors
than those provided by firewalls and traditional intrusion de-
tection systems.

Case Study 2. Fault Tolerance and Detection: Software and
hardware faults are likely to occur during long-running jobs in
a cluster with several individual nodes. Several approaches for
the development of fault-tolerant distributed applications are
known (see for example the previous work on fault tolerance in
MPI programs [44,45]). A simple mechanism that checks the
return status of MPI functions was implemented. If the return
code is not equal to MPI SUCCESS, an error is reported to
a log via the standard C function fwrite.

In this particular scenario, an interposition library was cre-
ated to simulate anomalies in the network interface when
the application LLCbench was executed five times, with a
0.001 probability of error for the functions MPI Send and
MPI Recv. This is an example of fault injection and simula-
tion of attacks described in previous work [3,4]. Every time a
fault is reported via the fwrite call by a parallel program, the
intelligent agents detect the change in the sequence of obser-
vations and inform Ganglia that the counter of anomalies has
been increased. Figure 15 shows the output of the anomaly
detectors in the Ganglia front end. The intelligent detection
agents integrated in the Ganglia front end clearly provide a
simple way to visualize system faults. Again, these faults are
difficult to detect using the standard Ganglia metrics.

Note that although fault detection is not widely used in
MPI programs, similar catch-throw mechanisms often occur
in high-quality software. Therefore, recognizing a change in
the sequence of discrete events can still be used as a means
of detecting faults.

Case Study 3. Simultaneous Detection of Anomalies in
User Space and Kernel Space: The author’s previous work
conducted experiments to compare the accuracy in the detec-
tion and the overhead produced by the intelligent detection
agents [3, 4] . However, the behavior of distributed applica-
tions when both systems are simultaneously used to detect
anomalies in real-time has not been observed before. Figure
16 shows the detection of network faults in a single node of
the cluster when both user-level monitoring and kernel-level
monitoring are enabled.
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Figure 12: Three standard Ganglia measures for five consecutive executions of FFT with different parameters. It is difficult
to visually recognize the most important characteristics of the application

Figure 13: Output of three Ganglia sensors and one intelligent anomaly detection agent for five consecutive program executions
(four of FFT one of IS) in four nodes. In this hypothetical environment, FFT is the only legal application and the execution
of IS (fourth program executed) should be detected as an anomaly
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Figure 14: Detection of unauthorized applications using the Ganglia front end enhanced with an intelligent anomaly detector
(AD FC)

Figure 15: Detection of network faults using the Ganglia front end enhanced with an intelligent anomaly detector (AD FC)
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Figure 16: Simultaneous detection of network faults in a single cluster node for the previous 10 minutes using the HMM-based
detector and the ANN-based detector. The outputs in the first row correspond to user-level monitoring (AD FC ) and the
kernel-level monitoring (AD SC ). Four built-in Ganglia metrics are also shown.

One of the problems encountered when executing both sys-
tems at the same time is contamination of the system call
sequences by calls made by the user level monitoring system.
Every operating system call issued by the user space monitor-
ing system is recorded by the kernel space monitoring system.
Therefore, even if an MPI application is behaving as expected
(and the user-level monitoring system reports 0 anomalies),
the kernel-level detection system will detect changes in the se-
quence of operating system calls and report these as anoma-
lies. To solve this problem, a new system call exclusively
executed by the user-level monitoring system that acts as a
flag to temporarily deactivate the detection of system calls
was created. Although this naive solution allows observation
of the behavior of both systems in a research environment, it
is not an adequate solution for real-world systems because it
can create a security vulnerability. Further research is needed
to develop better mechanisms for allowing the simultaneous
execution of the two levels of detection in real-time including
studies of the security, scalability and performance of such
mechanisms.

7.5 Limitations of Anomaly Detection with
Sequences of Discrete Events

The fundamental assumption of this work is that high-quality
profiles (artificial neural networks or hidden Markov models)
can be used to discriminate between normal and suspicious
executions of a distributed application. However, there are
situations in which this assumption may not hold. For ex-
ample, when the behavior of legal applications is quite varied
resulting in a complex model, it may not be possible to de-
tect the execution of illegal applications with simple behav-
ior that is a subset of the behavior of the legal application.
This phenomenon was observed in our experiments when we

used one application as the “legal” application. When the
model of the legal application was run against sequences of
system calls from other applications that should have been
detected as anomalies, it was not always possible to detect
the anomalies. Figure 17 shows the results of such an exper-
iment in which HMM profiles were created using five differ-
ent programs. Each profile was run with system calls result-
ing from running the other applications and the percentage
of anomalous function calls (i.e., y-axis) was computed with
each profile. The programs run were (FFT, IS, LU, LL and
NETPIPE). Points on the x-axis represent executions of dif-
ferent instances of each program. When the profile for one
program is used, the system calls from all other programs
should be flagged as anomalous. From the figure it is clear
that most of the profiles are able to discriminate normal be-
havior (i.e. the intelligent agents output 0% anomalies when
the parallel program being executed has the same behavior
as the profile of such a program) from suspicious activities
in the system. However, when NETPIPE is the “anomalous
application”, only the profiles obtained from sampling FFT
and IS detect it as anomalous. NETPIPE is an example of
a highly deterministic benchmark application where a large
portion of the computation consists of calls to the functions
MPI Send (send a message to a specific node) and MPI Recv
(receive a message). These sequences of calls are also likely to
occur in the other applications. Figure 18 repeats the same
experiment with the ANN-based detector monitoring operat-
ing system calls. It is important to observe that the large
difference in the scale of the x-axis for Figures 17 and 18 is
due to the large number of operating system calls executed
by the applications.
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Figure 17: The percentage of anomalous function calls de-
tected for each application execution by the HMM-based de-
tector monitoring library function calls for a given profile is
plotted for a work session consisting of the consecutive exe-
cution of several MPI programs.

Figure 18: The percentage of anomalous function calls de-
tected per application execution by the ANN-based detector
monitoring operating system calls for a given profile is plotted
for a work session consisting of the consecutive execution of
several MPI programs.

8 Conclusions and Future Work

The central focus of the research reported in this paper is
the integration of intelligent anomaly agents and high perfor-
mance monitoring systems. An event-driven system architec-
ture is used in which sensors collect information every time
a discrete event is generated. The intelligent agents used for
this study use machine learning techniques to develop pro-
files of normal behavior as seen in the sequences of operating
system calls generated by an application and the sequence of
function calls. The intelligent agents are able to flag anoma-
lies that are difficult to detect in traditional monitoring sys-
tems, while the monitoring systems provide the framework
needed for communication and visualization of system status.
The Ganglia monitoring system was used as a test bed for
integration case studies. Mechanisms provided by Ganglia
make it relatively easy to integrate the new detectors into the
system and to visualize the results of these detectors. The ex-
perimental results demonstrate that the integrated intelligent
agents can detect the execution of unauthorized applications
and faults that are not obvious in the standard output from
the monitoring system. Both hidden Markov models working
in user space and neural network models working in kernel
space are shown to be effective. Simultaneous monitoring in
both user space and kernel space is also demonstrated.

The research reported in this paper provides preliminary
evidence that intelligent anomaly detectors can be effectively
integrated in a high performance monitoring system. Our sys-
tem can also be used to detect anomalies in general purpose
systems because we use standard Linux libraries and the Gan-
glia framework. However the system may suffer from a large
number of false positives in general environments because it
becomes difficult to collect an adequate set of samples to train
the models.

A number of research issues remain. More effective meth-
ods are needed for resolving conflicts encountered during si-
multaneous user and kernel space monitoring. Studies need to
be conducted in order to determine the performance penalty
incurred by the anomaly detectors and to determine scalabil-
ity of the system.

Also, although previous work has shown that the anomaly
detectors have small overheads [3,4], the authors are currently
investigating the use of reconfigurable co-processors to reduce
this overhead further. Research also needs to be conducted in
the use of extended models that are able to monitor a set of
attributes of the calls such as return value or call parameters.
This kind of model can potentially provide more information
about the expected behavior of an application.

Future work also includes the study of incremental al-
gorithms able to estimate the parameters and topology of
HMMs to reduce the space complexity from O(N2T ) to
O(N2). Such an algorithm will provide a mechanism for learn-
ing directly from the sequence of calls generated by the appli-
cations without the need to store and transfer large amounts
of data and can be modified to handle non-stationary distri-
butions, providing a solution for the problem of concept drift.
Furthermore, in the case that it is necessary to avoid contam-
inating the model with outliers (elements in the dataset that
do not seem consistent with past observations, including per-
haps system anomalies), the incremental learning algorithm
can decide whether a observation needs to be included in the
model or not.
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Finally, a related issue in high-performance cluster mon-
itoring is the fusion of monitoring results by disparate sen-
sors in a highly efficient and accurate manner. Experimental
work in this area includes the use of fuzzy cognitive maps
(FCMs) as the technical basis for a fusion engine. The inter-
ested reader is invited to review Siraj’s work [5, 6].
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